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Abstract

The skin tuberculin test (TST), an example of a delayed-type hypersensitivity (DTH) reac-

tion, is based on measuring the extent of skin induration to mycobacterial tuberculin (PPD).

Little is known about the genetic basis of TST reactivity, widely used for diagnosing TB infec-

tion. The study investigated the relationship of the single base change polymorphic variants

in CD14 gene (CD14(-159C/T)) with the development of DTH to PPD in BCG-vaccinated

Polish Caucasian individuals. We found persistent lack of TST reactivity in about 40% of

healthy subjects despite receiving more than one dose of BCG. The TST size was nega-

tively correlated with the number of BCG inoculations. The distribution of C/T genotype was

significantly more frequent among TST-negative compared with TST-positive individuals.

The concentration of serum sCD14 was positively associated with mCD14 expression, but

not with the TST status or CD14(-159C/T) polymorphism. A significant increase in mCD14

expression and serum sCD14 levels was found in TB group. We hypothesize that CD14

(-159C/T) polymorphic variants might be one of genetic components in the response to

attenuated M. bovis BCG bacilli.

Introduction

Tuberculosis (TB) caused by Mycobacterium tuberculosis (M.tb) is mentioned together with

AIDS and malaria among the most dangerous infectious diseases threatening human health

and life. Despite the generally accepted standard of treatment TB is still a huge global epidemi-

ological problem. Annually, there are 7–10 million new TB cases in the world, which is the

cause of death of about 3 million people each year [1]. An attenuated strain of M. bovis BCG

(Bacillus Calmette-Guerin) is still the only generally accepted vaccine against TB. Approxi-

mately 100 million newborns are vaccinated with BCG every year in more than 180 countries.

Despite the fact that it has been more than 80 years since the first administration of BCG, the

effectiveness of the vaccine is still the subject of disputes and discussions. BCG vaccination
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protects children from TB, especially from its most dangerous forms–miliary TB and TB men-

ingitis but the effectiveness of the vaccine in adults does not exceed the average of 50%, ranging

from 0% in India and Sub-Saharan Africa to 80% in the United Kingdom [2, 3, 4]. The WHO

recommends that BCG should be given once, on the first day of life, to all children born in

countries highly endemic for TB. Since 2006 BCG revaccinations of children, adolescents and

adults have been discontinued as they were found ineffective and expensive [5].

A cutaneous tuberculin skin test (TST) is a classic example of a delayed-type hypersensitiv-

ity (DTH) reaction of skin to mycobacterial antigens present in PPD (purified protein deriva-

tive). The concept of the test was invented by Robert Koch in 1890 and introduced by Clemens

von Pirquet in 1909 as a method for diagnosing M.tb infection [6]. Tuberculin hypersensitiv-

ity, which is a result of intensive infiltration of skin by monocytes and T and B lymphocytes is

initiated by Th1 cells localized in the skin that recognize secreted proteins included in the

intradermally administered PPD. Although it does not fully reflect the state of immunity to

TB, it proves the development of acquired immunity to mycobacterial products, which occurs

in the majority, but not all BCG vaccinated individuals. TST is currently the only assay that

allows in vivo testing responses to mycobacterial antigens and is still considered a useful tool in

TB diagnosis, however high rates of false positive reactions resulting from antigenic similarity

between BCG, M.tb and environmental nontuberculous mycobacteria lower its diagnostic use-

fulness [6, 7, 8].

It is known that the host genetic background plays a role in the susceptibility to TB, restrict-

ing the infection or leading to active TB disease [9–12]. The genetically determined mecha-

nisms that govern the initiation and maintenance of immune responses against M.tb can

generate an imbalance between M.tb and the host immunity. The contribution of host genetic

factors to the immune reactions underlying the development of DTH to tuberculin has also

been widely suggested since a significant proportion of people display persistent lack of TST

reactivity [4, 13–18]. One of the human genes with a possible impact on TST reactivity is the

CD14 gene encoding the CD14 receptor. CD14 molecules belong to the group of pattern rec-

ognition receptors (PRRs) recognizing the structural components of bacteria (PAMPs; patho-

gen associated molecular patterns) at the first steps of infection. They are expressed on the

surface of macrophages, neutrophils and interstitial dendritic cells, function to aid the delivery

of various ligands to TLRs, including LPS, lipoteichoic acid, ceramide, lipoarabinomannan

(LAM) or poly(I:C)/double-stranded RNA [4, 19–23]. The CD14 receptors exist also in a solu-

ble form in serum and body fluids, and appear either after the proteolytic cleavage of the mem-

brane-anchored CD14 or are directly secreted from intracellular vesicles [24]. The initial

interactions between CD14 receptors on the surface of macrophages and LAM might be a crit-

ical step in determining the outcome of infection and the development of DTH to mycobacte-

rial antigens. The recognition of mycobacterial components by CD14 triggers a complicated

series of events leading to an increased expression of proinflammatory genes that are essential

for the protective immune response. The sequence of cellular immune events begins with the

first exposure of the individual to tubercle bacilli. During the initial phase of the infection, anti-

gens of the replicating mycobacteria are presented in the context of class II molecules to naive

CD4+ T lymphocytes by infected antigen-presenting cells (APC) such as dendritic cells or

monocytes. In the presence of APC-derived IL-12 and IL-18, the naive lymphocytes differenti-

ate into T helper (Th) 1 cells, which produce IFN-γ activating macrophages and inducing a cell

mediated immune response [25]. Upon the subsequent contact with the antigen, the local

memory CD4+ and CD8+ T cells begin to secrete numerous cytokines responsible for the early

hallmarks of inflammation [26]. About 4 hours after the antigen injection, neutrophils start to

infiltrate the injection site and accumulate around the post capillary venules [27]. The influx of

neutrophils decreases gradually and after 12 hours the infection site becomes infiltrated with
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cytokine producing T cells and macrophages. As a result of TNF-α and IFN-γ production, the

endothelial cell lining undergoes remodeling and becomes permeable to plasma macromole-

cules. The deposited fibrin as well as the accumulation of T cells and monocytes around the

injection site cause skin induration, which in humans can be detectable within 48–72 hours. T

cells activated by the antigen release various lymphokines, which induce the activation and

proliferation of monocytes/macrophages. Monocytes/macrophages in turn produce mono-

kines, which regulate various cell functions and control inflammatory and immune reactions

in both local and distantly located cell populations [26]. Macrophages stimulated via CD14/

TLRs produce various cytokines (TNF-α, IL-1, IL-6, IL-8, IL-12, IFN-γ) and growth factors

that are central to innate and acquired cellular immune responses [28].

On the basis of these findings, we focused on the relationship of single base change poly-

morphic variants identified in the promoter region of CD14 gene with the development of the

skin tuberculin DTH reaction in BCG-vaccinated individuals. The polymorphic site of the

gene, C or T at position –159 (-159C/T), within the Sp1 transcription factor binding site, has

been reported to influence membrane-bound CD14 expression on monocytes and levels of cir-

culating soluble CD14 [29]. LeVan et al. found that the interplay between CD14 promoter

affinity and the [Sp3]:[Sp1 Sp2] ratio played a critical role in regulating the transcription of the

two CD14 alleles and suggested that the variation in the gene might be important for the path-

ogenesis of inflammatory diseases through gene-by-gene and/or gene-by-environment inter-

actions [30].

Materials and methods

Study cohorts

The association of CD14 (C-159T) polymorphism with the development of DTH to PPD was

assessed among 264 BCG-vaccinated HIV-negative Polish Caucasian individuals: 117 healthy,

young volunteers and 147 lung disease patients, suffering from active tuberculosis (TB) or

non-mycobacterial community acquired lung diseases (non-TB). All of the subjects had been

vaccinated with a Brazilian M. bovis BCG strain in the past according to the Polish Govern-

ment’s TB program recommendations. The study protocol was approved by the local Bioethics

Committee of the Medical University of Lodz, Poland. Written consent was obtained from all

individuals before study enrolment.

The group of healthy, young individuals consisted of 117 undergraduate and PhD students

(aged 18–29), at the Faculty of Biology and Environmental Protection of University of Lodz,

Poland, with no history of TB and no known TB contact or other immune diseases Before

blood donation all the participants underwent IGRA (Interferon-gamma release assay) testing

with QuantiFERON1-TB Gold In Tube test. All of the volunteers were IGRA-negative, what

allowed to exclude latent M.tb infection with high probability. A summary of baseline charac-

teristics of the studied healthy volunteers is shown in Table 1.

Newly diagnosed patients with pulmonary diseases (ages, 25 to 68 years), hospitalised at the

Regional Specialised Hospital of Tuberculosis, Lung Diseases and Rehabilitation in Tuszyn,

Poland, were also enrolled into the study. The diagnosis was performed on the basis of the clin-

ical presentation, a chest X-ray radiograph as well as microscopic and microbiological evalua-

tion of sputum samples obtained by spontaneous or saline induced expectoration. The

volunteers entering the study were classified as TB patients (n = 80) or non-TB patients

(n = 46) on the basis of the results of triple sputum culture. Non-TB patients suffered from

non-mycobacterial, community acquired pulmonary diseases and were cured with antibacte-

rial wide-range antibiotics, whereas anti-TB drug treatment was provided to all TB patients
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according to the national TB programme. Demographic and clinical data collected for the hos-

pitalized patients are shown in Table 2.

Tuberculin skin testing

After the collection of blood for DNA extraction and IGRA testing, all individuals were

screened with 2 tuberculin units (TU) of M.tb PPD RT-23 (Statens Serum Institute, Copenha-

gen, Denmark), injected intradermally in the forearms by trained medical staff as described

previously [7, 8]. The reaction was considered positive if the diameter of skin induration mea-

sured 72 hours after PPD administration was equal or greater than 10 mm.

Table 1. Characteristics of the healthy young volunteer group under study.

Characteristics Healthy young volunteers

Tuberculin-negative Tuberculin-positive

TST(-) TST(+)

Total no. of subjects 49 68

Mean age in years (range) 23.1 (21–29) 24.2 (18–29)

Sex [no. (%) female] 37 (75.5%) 50 (73.5%)

Ethnicity Caucasians Caucasians

BCG inoculations [no. (%)]

1 9 (18%) 6 (9%)

2 22 (46%) 47 (69%)

3 12 (24%) 15 (22%)

4 5 (10%) 0 (0%)

5 1 (2%) 0 (0%)

IGRA result [no. (%)]

negative 49 (100%) 68 (100%)

positive 0 (0%) 0 (0%)

Abbreviations: BCG, Bacille Calmette-Guérin; IGRA, interferon-gamma release assay; TST, tuberculin skin test

https://doi.org/10.1371/journal.pone.0190106.t001

Table 2. Characteristics of the groups of lung disease patients under study.

Characteristics Group of patients

TB non-TB

Total no. of subjects 80 46

Mean age in years (range) 50.1 (21–68) 52.7 (21–66)

Sex [no.(%) female] 42 (52.5) 30 (65.2)

Ethnicity Caucasians Caucasians

BCG vaccination 80 (100) 46 (100)

Past history of TB 6 (7.5) 0 (0)

TST result [no. (%)]

negative 32 (40) 33 (72)

positive 48 (60) 13 (28)

IGRA result [no. (%)]

negative 31 (39) 40 (87)

positive 48 (60) 6 (13)

indeterminate 1 (1) 0 (0)

Abbreviations: BCG, Bacille Calmette-Guérin; IGRA, interferon-gamma release assay; TST, tuberculin skin test

https://doi.org/10.1371/journal.pone.0190106.t002
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QuantiFERON®-TB Gold In Tube assay

Just before the screening with tuberculin, the interferon-gamma release assay (IGRA) was per-

formed in all individuals. The QuantiFERON1-TB Gold In Tube (Cellestis Limited, Carnegie,

Australia) was conducted according to manufacturer’s instructions as described in detail previ-

ously [7, 8]. The result was considered positive if the difference between IFN-γ level in plasma

incubated with TB antigen and Nil control was both� 0.35 IU/ml and�25% of Nil control

value.

Genomic DNA extraction

Genomic DNA was isolated from ethylenediaminetetraacetic acid (EDTA)-anticoagulated

blood samples using a QIAamp1 DNA Blood Mini Kit (Qiagen1, Hilden, Germany) accord-

ing to the instructions of the manufacturer. After extraction, DNA was quantified by spectro-

photometry, checked for purity and stored at –20˚C until further analysis.

CD14(-159C/T) genotyping

The DNA samples of 264 subjects were genotyped for CD14 (-159C/T, rs2569190), polymor-

phism using the following 4 primers: for C allele, a forward primer cfors: 5’-CTC CAG AAT
CCT TCC TGT TAC GAC-3’ and a reverse primer cdp2: 5’-TTG GTG CCA ACA GAT
CAG GTT CAC-3’, for T allele, a forward primer cdp1: 5’-TTG GTG CCA ACA GAT
CAG GTT CAC-3’ and a reverse primer trevs: 5’-TGT AGG ATG TTT CAG GGA GGG
GTA-3’. The primers cfors and trevs were designed from the published sequence so that an

additional mismatch was inserted at the penultimate 3’ nucleotide to increase the specificity of

the amplification reaction [31]. The C(-159)T CD14 polymorphism determined with an allele

specific PCR method was performed in a total volume of 10 μl (50–100 ng of genomic DNA, 1

X PCR buffer with 1.5 mM MgCl2, 200 μM of nucleotides, 0.5 U Taq polymerase and 0.5 μM

primers). After an initial denaturation at 95˚C for 5 min, 30 cycles were run at 95˚C for 30 s

and 72˚C for 1 min, and thereafter a final extension at 72˚C for 5 min. Amplified products

were visualized by electrophoresis in 2% agarose gel stained with ethidium bromide (10 mg/

ml). The assay yielded a 381-bp band for the T allele and a 227-bp band for the C allele. Prod-

uct bands were visualized on a Gel Doc 2000 gel documentation system (Bio-Rad, Hercules,

CA, USA).

Serum sCD14 levels

The concentration of the soluble CD14 receptor in serum was analyzed by the immunoenzy-

matic method (ELISA) according to the producer’s (R&D Systems, Minneapolis, MN, USA)

manual for the Human sCD14 Kit. The readouts were made at 450 nm using a multifunctional

counter Victor 2 (Wallac Oy, Turku, Finland).

Monocyte mCD14 expression analysis

Samples of heparinized blood were used for flow-cytometry analysis of monocyte mCD14

expression as described previously [23]. Briefly, the peripheral blood mononuclear leukocytes

(105) were incubated (30 min, 4˚C) with monoclonal mouse FITC-conjugated IgG2a anti-

human CD14 antibody (BD Biosciences, USA). A total of 10000 cells were analyzed using a

FACScan (BD) and Flow Jo software 7.2.2. (Tree Star Inc., USA). Isotype control antibodies

were used as a control for non-specific binding of antibodies. The mCD14 density was

expressed as mean fluorescence intensity (MFI) of anti-CD14 treated samples diminished by

MFI of isotype matched negative control.
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Statistical analysis

Statistical analysis was performed using the R statistical software. All generalized linear models

(both linear and logistic) were fitted and analyzed using the ’glm’ function in package ’stats’.

The presented p-values correspond to Wald’s test of significance of the coefficient in the linear

model. Presented correlations are Pearson product moment coefficients unless otherwise

stated. Where appropriate, the significance of correlations was further confirmed using both

the Spearman’s and Kendall’s rank based methods. Hardy-Weinberg equilibrium was analyzed

using package ’HardyWeinberg’. Equality of proportions of TST(+) and TST(-) individuals

with different genotypes was tested using function ’prop.test’.

Results and discussion

Characteristics of study participants

The baseline characteristics of the studied groups are shown in Tables 1 and 2. A total of 117

healthy, young IGRA-negative volunteers of Polish Caucasian ethnic group consented to take

part in the study (Table 1). Mean age of the volunteers was 23.7 years (SD, 1.8 years) and the

sex ratio was 3:1 (F:M). The individuals were defined either as tuberculin-negative (TST(-)) or

tuberculin-positive (TST(+)) on the basis of the diameter of skin induration to intradermally

administered PPD. The reactivity ranged from 0 to 24 mm with a median size of 10 mm. Of

117 individuals, 68 (58%) responded to tuberculin with skin induration of more than 10 mm

and were defined to be TST(+). The majority of studied individuals had received two or three

doses of BCG vaccine in their life. In the TST(-) group, 9 (18%) participants had received BCG

vaccine only once at birth, 22 (46%) individuals had received a second BCG dose at the age of

6, and 12 (24%), 5(10%) and 1 (2%) volunteers had been additionally revaccinated with BCG

three, four and five times, respectively (Table 1). Among 68 TST(+) participants, 6 (9%), 47

(69%) and 15 (22%) subjects had received one, two or three BCG doses, respectively. The num-

ber of BCG inoculations was negatively associated with the size of the reaction to PPD at a bor-

derline statistical significance level (p = 0.06), which corresponds to the test based on the

estimate of the product-moment (Pearson’s) correlation coefficient (Fig 1).

Further analysis of the distribution of TST sizes according to the number of BCG inocula-

tions showed that individuals with skin induration diameters of 10–14 mm or above 15 mm

had received in the past fewer doses of the vaccine than those with smaller TST sizes (Table 3).

Among 17 young, healthy individuals with the largest TST diameters, 3 (18%) volunteers

had been vaccinated with BCG once, 12 (71%) twice, and 2 (11%) three times. A similar ten-

dency was noted in the group of volunteers with TST sizes of 10–14 mm, among whom the

percentage of individuals vaccinated with one, two or three BCG doses was 6% (3/51), 69%

(35/51) and 25% (13/51), respectively. None of the volunteers with positive TST results had

received more than three BCG inoculations. On the contrary, among TST(-) individuals hav-

ing a diameter of skin induration of between 5–9 mm or less than 4 mm, 13% (5/40) or 12%

(1/9) volunteers had been vaccinated with BCG four or five times (Table 3). As noted in

Table 1, all healthy young volunteers showed negative IGRA test that measure IFN-γ released

from lymphocytes exposed to specific M.tb antigens.

The main demographic characteristics of patients with pulmonary diseases, suffering from

active TB (TB) or non-mycobacterial community acquired lung diseases (non-TB) included in

the study are shown in Table 2. The mean age of the patients in each group was similar, at 50.1

±17.6 and 52.7±17.3 years, respectively. Six out of 80 (8%) TB patients had a past history of

healed pulmonary TB. The TST sizes in the TB patient group ranged from 0 to 35 mm with a

median of 10,5 mm and from 0 to 25 mm (median of 0 mm) among non-TB patients. Positive
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reactions to PPD with a diameter of skin induration greater than 10 mm were developed sig-

nificantly more frequently by TB patients (60%) than among non-TB patients (28%)

(p = 0.0006; one-sided proportion test) (Table 2). The frequency of IGRA positives was 60%

among TB patients and 13% among non-TB patients (p = 0.00001). One out of 80 (1%) TB

patients had an indeterminate result of an IGRA test (Table 2). Among 48 TST(+) patients

with TB 37 had positive IGRA results (IGRA(+)), and among 13 TST(+) patients from non-TB

group 4 were IGRA(+).

Table 3. Distribution of TST sizes according to the BCG inoculations.

BCG doses (n) Healthy young individuals

n (%)

TST size range (mm)

negative positive

�4 5–9 10–14 �15

1 3 (33) 6 (15) 3 (6) 3 (18)

2 3 (33) 19 (48) 35 (69) 12 (71)

3 2 (22) 10 (25) 13 (25) 2 (11)

4 1 (12) 4 (10) 0 (0) 0 (0)

5 0 (0) 1 (2) 0 (0) 0 (0)

Abbreviations: BCG, Bacille Calmette-Guérin; TST, tuberculin skin test

https://doi.org/10.1371/journal.pone.0190106.t003

Fig 1. Correlation between TST size and the number of BCG doses in the group of healthy, young

individuals.

https://doi.org/10.1371/journal.pone.0190106.g001
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Analysis of the TST in four size ranges (� 4 mm, 5–9 mm, 10–14 mm,� 15 mm) including

data obtained for all volunteers participating in the study showed a great variation in the distri-

bution of TST sizes in the studied groups (Fig 2). The distribution of TST results was not iden-

tical in any of the studied groups (Fig 2) as estimated with Kolmogorov-Smirnov test. The

percentage of TST sizes among healthy young volunteers was significantly different from the

distribution observed either in TB or non-TB patients in each studied category. Compared to

TB patients, the percentage of TST sizes above 15 mm decreased to 21.7% in non-TB patients

and 14.5% in healthy, young volunteers.

CD14(-159C/T) genotypes in TST(-) and TST(+) individuals

The distribution of CD14-159C/T genotypes in the TST(-) and TST(+) individuals from the

studied groups is shown in Table 4. There was no evidence to reject the Hardy-Weinberg equi-

librium (HWE) hypothesis in both TST(-) and TST(+) groups at the standard significance

level of 0.05.

The heterozygous C/T CD14(-159C/T) genotype was found more frequently among TST(-)

compared with TST(+) individuals in all groups under study, however a statistically significant

difference was noticed only in the group of healthy young individuals (Table 4). In this group,

the C/T heterozygosity occurred significantly more frequently in healthy volunteers with nega-

tive skin reactions to PPD (61%) than TST(+) individuals (41%) (p = 0.03). The C/C CD14

(-159C/T) genotype significantly was more frequent among TST(+) compared with TST(-)

individuals, at 29% vs 47% (p = 0.04). In the TB patient and non-TB patient group no signifi-

cant differences were found. The frequency of the T/T genotype was low in both TST(-) and

TST(+) individuals (Table 4). In the study the distribution of CD14(-159C/T) genotypes were

analyzed among IGRA(-) and IGRA(+) individuals from TB and non-TB group (Table 5).

There was no difference in the frequency of the genotypes between IGRA(+) and IGRA(-)

patients with active TB or non-mycobacterial lung diseases.

Fig 2. Distribution of TST sizes among the study groups: TB patients (black bars), non-TB patients (grey bars)

and young healthy volunteers (white bars).

https://doi.org/10.1371/journal.pone.0190106.g002
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Association analysis of CD14(-159C/T) polymorphism with DTH to PPD

using logistic regression

In the group of healthy individuals we considered a logistic model with the TST status as the

dependent variable and two covariates: the CD14(-159C/T) genotype and the number of BCG

doses. Where possible, we tested the effects of the mutation in codominant, dominant, reces-

sive and additive models (Table 6).

Our analysis showed that the mutated T allele had a negative effect on the reactivity to

tuberculin in the dominant model (p = 0.057; effect size = -0.7619), and that the C/T genotype

also had a significant negative effect in the co-dominant model (p = 0.041; effect size =

-0.8498) (Table 6). The dominant model, which had the lowest AIC value (159.47) was

accepted as best explaining the TST status. The results demonstrated that a single copy of the T

allele was enough to associate with skin reactivity to PPD. Having at least one mutant allele for

the CD14(-159C/T) polymorphism significantly decreased the DTH development.

Monocyte mCD14 expression and serum sCD14 levels in TST(-) and

TST(+) individuals

A statistical analysis of the data showed a significant increase in the mCD14 expression on

monocytes in TB patients (10859±3054 MFI) as compared to non-TB patients (9025±2684

MFI) (p = 0.0007) (Table 7).

However, the level of sCD14 was significantly higher in sera from both TB (2198±371 ng/

ml) and non-TB patients (2024±398 ng/ml) compared to healthy volunteers (1460±455 ng/ml;

p = 6.822e-14, p =< 2.2e-16). There were no significant differences in the mCD14 expression

on monocytes from TST(-) and TST(+) individuals from both TB and non-TB groups. Simi-

larly, the average concentration of sCD14 in sera from TST(-) volunteers was equal to that

observed in TST(+) subjects in each group under study (Table 7).

We found that the serum sCD14 concentration was positively associated with monocyte

mCD14 expression (Spearman’s r = 0.19, p = 0.02) in TB and non-TB patients. The association

analysis of mCD14 and sCD14 levels with the CD14(-159C/T) polymorphism demonstrated

that a correlation was observed solely among the C/C homozygotes (p = 0.05; Spearman’s

r = 0.28), but not among the C/T (p = 0.19; Spearman’s r = 0.17) or T/T carriers (p = 0.51;

Table 4. Frequency of CD14(-159C/T) genotypes in TST(-) and TST(+) individuals from the studied groups.

Group of study CD14 Total TST result p OR (95% CI)

n (%)

(-159C/T) genotype n (%) - +

Healthy volunteers C/C 46 (39) 14 (29) 32 (47) 0.04 0.4 (0.169;0.830)

C/T 58 (50) 30 (61) 28 (41) 0.03 2.3 (1.064;4,778)

T/T 13 (11) 5 (10) 8 (12) 0.79 0.9 (0.261;2.782)

PHWE 0.404 2.716 0.778

TB patients C/C 29 (36) 10 (31) 19 (40) 0.44 0.7 (0.269;1.785)

C/T 32 (40) 15 (47) 17 (35) 0.31 1.6 (0.646;4.005)

T/T 19 (24) 7 (22) 12 (25) 0.74 0.8 (0.291;2.431)

pHWE 0.1 0.759 0.06

Non-TB patients C/C 15 (33) 10 (30) 5 (38) 0.85 0.8 (0.208;2.934)

C/T 24 (52) 20 (60) 4 (31) 0.13 3.5 (0.880;13.612)

T/T 7 (15) 3 (10) 4 (31) 0.16 0.2 (0.042;1.197)

pHWE 0.606 0.121 0.169

https://doi.org/10.1371/journal.pone.0190106.t004
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Spearman’s r = 0.13) (Fig 3). However, observed correlation is very weak and should be care-

fully interpreted.

Association analysis of CD14(-159C/T) polymorphism with sCD14 and

mCD14 levels using linear regression

We have evaluated the effect of the CD14 genotype on the serum sCD14 level and monocyte

mCD14 expression using Gaussian regression with sCD14 and mCD14 levels as the dependent

variable and the CD14 genotype as the covariate, and three different inheritance models (dom-

inant, recessive and co-dominant). In the cohort of healthy volunteers we observed a signifi-

cant negative effect of the T/T genotype in the recessive model (effect size = -275, p = 0.04)

(Table 8).

Since we could not replicate our finding as far as the effect of the CD14 variant on the

sCD14 concentration in the cohort of healthy volunteers, we have further evaluated the effect

of the CD14(-159C/T) polymorphism on both sCD14 and mCD14 concentration in the TB vs.

non-TB cohort. To this aim, we first regressed out the effect of mCD14 on sCD14 by applying

a standard linear model. Furthermore, we noted that the distribution of residuals is dependent

on the CD14 genotype–namely, for homozygous minor there is no evidence to reject the

hypotheses that residuals follow a normal distribution, whereas for the homozygous minor we

reject the null hypothesis on normality of the residuals. Due to this fact, we used both the

Mood’s median test and Kruskal-Wallis test to compare the medians in the three groups:

homozygous major (median = 72.34), heterozygous (median = 45.23) and homozygous minor

(median = 194.00), but we were unable to reject the null due to the lack of power. Nevertheless,

we were able to test the recessive effect of the CD14 variant using Wilcoxon test–that is we

were able to reject the null in three cases–homozygous major vs homozygous minor (p = 0.04),

heterozygous vs homozygous minor (p = 0.04), homozygous major and heterozygous vs

homozygous minor (p = 0.02). In what follows, we aimed to seek for the source of this effect of

Table 5. Frequency of CD14(-159C/T) genotypes in IGRA(-) and IGRA(+) individuals from TB and non-TB groups.

Group of study CD14 Total IGRA result p OR (95% CI)

n (%)

(-159C/T) genotype n (%) - +

TB patients C/C 28 (36) 12 (38) 16 (33) 0.62 1.3 (0.493;3.231)

C/T 32 (40) 12 (38) 20 (42) 0.79 0.9 (0.351;2.225)

T/T 19 (24) 7 (24) 12 (25) 0.64 0.9 (0.301;2.540)

pHWE 0.1 0.25 0.26

Non-TB patients C/C 15 (33) 12 (30) 3 (50) 0.33 0.4 (0.075;2.435)

C/T 24 (52) 22 (55) 2 (33) 0.32 2.4 (0.400;14.908)

T/T 7 (15) 6 (6) 1 (17) 0.92 0.9 (0.087;8.941

pHWE 0.606 0.42 0.54

https://doi.org/10.1371/journal.pone.0190106.t005

Table 6. Association analysis of the CD14(-159C/T) polymorphism with DTH to PPD (adjusted by BCG doses) in healthy, young volunteers using

logistic regression.

Group of study Model

effect size (p-value)

Co-dominant; AIC = 160.89 Dominant; AIC = 159.47 Recessive; AIC = 163.15 Additive; AIC = 161.38

Healthy volunteers C/T -0.8498 (0.0419) T/T -0.7619 (0.0578) T/T 0.1101 (0.8566) -0.3909 (0.1818)

T/T -0.3718 (0.5715)

https://doi.org/10.1371/journal.pone.0190106.t006
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the CD14(-159C/T) polymorphism on the residuals (but not on serum CD14 nor monocyte

CD14 levels). We used Genotype Tissue Expression data through http://www.gtexportal.org to

test the impact of rs2569190 on CD14 mRNA expression. In five tissues, where CD14 is well

enough expressed (liver, lung, spleen, adrenal gland and whole blood) rs2569190 is a signifi-

cant eQTL for CD14 only in liver (p = 0.024). This supports our hypothesis that the observed

effect might be hepatocyte-specific and thus detectable in the healthy cohort in serum CD14

but masked by monocyte/macrophage activity in the TB vs non-TB cohort.

Discussion

Although the cellular components involved in the DTH reaction have been well described, the

molecular mechanisms responsible for the protection provided by the BCG vaccine have not

Table 7. Monocyte mCD14 expression and serum sCD14 levels in TST(-) and TST(+) individuals.

Study group mCD14 sCD14

(MFI) (ng/ml)

Total TST result Total TST result

- + - +

Healthy volunteers n.d. n.d n.d. 1460±455 1452±416 1546±484

TB patients 10859±3054 11568±3625 10366±2511 2198±371 2240±330 2170±396

Non-TB patients 9025±2684 8570±2809 10146±2030 2024±398 2100±346 1935±399

n.d.—not determined

https://doi.org/10.1371/journal.pone.0190106.t007

Fig 3. Correlation between serum sCD14 levels and mCD14 expression in individuals with C/C, C/T

and T/T CD14(-159C/T) genotypes.

https://doi.org/10.1371/journal.pone.0190106.g003
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been fully understood. The accurate understanding of highly complex mechanisms of specific

immunity to M.tb infection including defensive reactions and processes involved in TB pathol-

ogy is necessary to develop new ways of preventing TB and vaccines which would be more

effective than currently used one containing attenuated M. bovis BCG bacilli. It is also neces-

sary to find effective tools for the rapid assessment of protective properties of the vaccine

which is already used and those currently being developed, the effectiveness of which will be

evaluated no sooner than after several years.

Immune parameters responsible for varying protective effectiveness of BCG vaccine remain

unexplained. The heterogeneity has been ascribed to several factors such as: biological variabil-

ity of BCG vaccine strains, route of vaccine administration, dose used, exposure to environ-

mental mycobacteria and host-related factors including nutritional status, infections as well as

genetic background [13, 14, 32]. There are differences about the interpretation of the TST

results in different populations [33]. In Poland, the country with moderate TB prevalence and

obligatory BCG immunization, the size of induration of at least 10 mm is considered positive

[8, 34]. A negative TST does not actually mean susceptibility to M.tb infection or TB disease.

On the contrary, the risk of developing active TB for individuals with sustained M.tb exposure,

who displayed persistent lack of skin DTH reactivity, was shown to be extremely small [35].

Moreover, a significant percentage of the individuals remained uninfected most likely due to

the resistant immune status that underlined the effective initiation and maintenance of

immune response against M.tb [16].

There is accumulate evidence that human genetics plays a key role in determining individ-

ual potency in developing an effective innate and adaptive immune responses during M.tb

infection and consequently conditioning susceptibility to TB disease. The interindividual vari-

ability is noticeable at the early stage of infection, as approximately 20–30% of subjects exposed

to M.tb do not become infected [16, 36]. Moreover, about one-third of the global population is

infected with M.tb, but only an estimated 10% of the infected develop clinical TB during their

lifetime. Our results suggest the involvement of the host genetic component in the immune

reactions induced by mycobacteria. We confirmed our previous results [4] that about 40% of

Table 8. Association analysis of sCD14 levels or mCD14 expression with the CD14(-159C/T) genotype using linear regression.

sCD14 CD14 regression model

(ng/ml) effect size

Study group CD14 genotype (p-value)

C/C C/T T/T dominant recessive

Healthy volunteers 1472±366 1506±491 1216±529 -19.17 -274.49

(0.825) (0.04)

TB patients 2173±327 2185±347 2257±475 39.05 78.19

(0.654) (0.426)

Non-TB patients 1983±513 2079±284 2117±233 104.81 74.65

(0.367) (0.624)

mCD14 CD14 model

(MFI) effect size

Study group CD14 genotype (p-value)

C/C C/T T/T dominant recessive

TB patients 11294±3349 10657±2489 10498±3565 -692.3 -462.4

(0.337) (0.584)

Non-TB patients 9016±2333 9061±2800 8930±3372 14.53 -112.6

(0.987) (0.92)

https://doi.org/10.1371/journal.pone.0190106.t008
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healthy young M. bovis BCG-vaccinated individuals did not develop delayed type hypersensi-

tivity to injected PPD, although approximately 80% of them had received more than one dose

of the BCG vaccine in the past. In this group, the number of BCG inoculations was negatively

correlated with the size of the reaction to PPD at a borderline statistical significance level.

Young individuals with positive tuberculin reactions differed from tuberculin-negative sub-

jects in the distribution of CD14(-159C/T) genotypes. The C/C genotype was more prevalent

among the subjects with skin hypersensitivity to PPD, while the C/T genotype dominated

among tuberculin-negative volunteers. The logistic regression analysis showed that in the

group of young healthy blood donors the mutated T allele had a negative effect on the reactiv-

ity to tuberculin in a dominant model, and that the C/T genotype had a significant negative

effect in a co-dominant model. Such association was not observed in the group of patients

with pulmonary diseases, suffering from active TB or non-mycobacterial community acquired

lung diseases. This incompatibility could be explained by the older age of patients with lung

diseases, compared to young healthy volunteers. The suggestion could be proposed on the

basis of the results of our previous research showing that the percentage of positive TST

decreased significantly with the age of TB patients [8]. The probability of such an explanation

weakens the lack of such trend in patients with non-mycobacterial lung diseases. Interestingly,

there is a similar percentage of TST negative in healthy, young group and TB patients. The sta-

tistical analysis (based both on a generalized linear model and a linear mixed model) per-

formed in the whole group under study considering the CD14(-159C/T) genotype and the age

as covariates confirmed a significant negative effect of the T allele on the skin reactivity to PPD

in a dominant model (p = 0.0316, effect size = -0.60621) as well as a negative effect of the C/T

genotype in a co-dominant model (p = 0.00796, effect size = -0.79416).

Although the biological effect of the CD14(-159C/T) polymorphism remains unclear, the

SNP has been associated with several diseases such as TB, brucellosis, chronic peridonitis,

chronic chlamydial infection and Crohn disease [37–40]. There are also several reports on the

association of the CD14 gene variants with the prevention or severity of atopy [41]. Various

studies implicated both the T and C CD14 alleles as risk factors, while others found no such

association [42–44]. In our study, the logistic regression analysis demonstrated that a single

copy of the mutated T allele was enough to decrease the possibility of DTH development, how-

ever, our results do not allow us to know if there is a link between the CD14 (-159C/T) poly-

morphism and TB susceptibility. The study by Rosas-Taraco et al. showed a higher frequency

of T/T CD14 (-159C/T) genotypes in patients with pulmonary TB than in healthy control sub-

jects [45]. In turn, other researchers showed an increase in TB risk in carriers of T/T homozy-

gote variant among Asians, but not among Caucasians [46].

The CD14(-159C/T) polymorphism (also referred to as to -260C/T) located at the promoter

region of the CD14 gene has been found to be a functional genetic variant, albeit its effect on

expression of the mRNA appears to be highly tissue specific (as supported by the GTEx eQTL

data). LeVan et al. reported that the mutated T allele had a decreased affinity for DNA/protein

interactions at a GC box containing a binding site for SP1, SP2, and SP3 transcription factors,

thereby the homozygous T/T genotype diminished the affinity of the nuclear factors binding

to the CD14 promoter and enhanced the transcriptional activity of the CD14 gene [30]. Simi-

larly, Kang et al found that the promoter activity of the T allele was higher than that of the C

allele in transfected K562 and BEAS-2B cells [47]. Consistently, Härtel et al. showed that the

CD14(-159C/T) polymorphism was associated with soluble CD14 expression, which might

influence the balance of pro- and anti-inflammatory immune responses in healthy term neo-

nates [48]. After in vitro stimulation of cord blood cultures with lipopolysaccharide, the carri-

ers of the T allele had higher levels of sCD14 and increased concentrations of IL-6 compared

with the C allele carriers. In our study, sCD14 or mCD14 levels did not differ between the T/T
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and C/C genotypes either among healthy blood donors, TB or non-TB patients, however we

confirmed our previous study and found significantly higher levels of the proteins among

patients with TB [23]. Our data are consistent with results by others [45, 49, 50]. It is very likely

that the overexpression of macrophage mCD14 may be significant in the TB development. As

it has been shown, M.tb bacilli grow more rapidly in macrophages presenting a high density of

CD14 molecules than in CD14-low cells [51]. On the other hand, the increase in sCD14 and

mCD14 levels may be a part of M.tb-driven inflammatory response of monocytes and macro-

phages. Serum sCD14 levels were found elevated also in patients with brucellosis, leishmania-

sis, HCV or HBV infection [52–55]. Although leukocytes represent the major source of

sCD14, it is also produced by hepatocytes, which are the main source of many acute-phase

proteins [56]. It cannot also be excluded that other SNPs identified within the CD14 promoter

region (1619G/A, -1359T/G, -1145A/G) might affect CD14 gene expression and contribute to

differences in the levels of encoded proteins. Moreover, longitudinal studies have suggested

that an association between CD14 polymorphisms and sCD14 levels might be age-dependent

since a relation of CD14 genotypes with sCD14 was found up to 1 year of age, but not at birth

[57].

The exact biological function of soluble CD14 is so far unknown. As an acute-phase protein,

sCD14 acts as a negative regulator of human T cell activation and function. It was found in
vitro that elevated sCD14 levels inhibited the binding of ligands to mCD14 and hence blocked

cellular activation [58]. It was demonstrated that elevated sCD14 levels could inhibit M.tb
internalization or interaction of the mycobacterial component with the membranous CD14

form through competitive inhibition [59, 60]. The soluble CD14 form impaired antigen-medi-

ated proliferation of PBMCs and anti-CD3-mediated proliferation of CD4+CD8-, CD4-CD8+

and CD4+CD8+ T cells, which was a consequence of a marked inhibition of IL-2 production

[58, 61]. It was also found to diminish secretion of IFN-gamma and induce a progressive accu-

mulation of the inhibitory protein IκB-α, which was responsible for the cytoplasmic retention

of NF-κB in an inactive form in unstimulated cells [58]. This observation is in accordance with

the results by Kang et al. showing significantly lower levels of IFN-γ produced by PPD stimu-

lated PBMCs of healthy individuals with T/T than those with C/C CD14 (-159C/T) genotypes

[47]. Taking into account that IFN-γ is thought to be a principal mediator of macrophage acti-

vation and resistance to intracellular M.tb bacilli, it is likely that the impairment in IFN-γ pro-

duction might have a negative impact on the development of DTH to PPD [62]. One of our

previous studies conducted in BCG-vaccinated healthy volunteers as well as the reports of

other authors revealed that circulating lymphocytes from TST-positive subjects produced sig-

nificantly more IFN-γ but less IL-10 in response to PPD than the cells from TST-negative indi-

viduals suggesting that the development of DTH to PPD may depend on an immanent

tendency of polarization Th1/Th2 response to mycobacterial antigens [63]. This prompted us

to ask whether there is a link between the CD14(-159C/T) polymorphism and IFN-γ produc-

tion in response to specific M.tb antigens evaluated in the IGRA test. The analysis could be

performed for TB and non-TB patients, among whom, 60% and 13% of positive IGRA results,

respectively, were found. However, there was no relationship between the IGRA result and the

polymorphism studied. This result is not surprising because the CD14 molecule is a marker of

monocytes/macrophages, whereas the IFN-γ, measured in the IGRA test, is mainly produced

by the sensitized CD4+ T helper lymphocytes.

The activation and recruitment of monocytes into the area of the inflammatory tuberculin

reaction is a crucial step in the development of DTH, which is an excellent model of integrated

innate and adaptive immune responses to M.tb. Recognition of mycobacterial antigens by

CD14 receptors, in both membranous and soluble forms, is a key element of the first line of

defense and an important link to the specific phase of the adaptive immunity. The initiation of
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the signal cascade leads to the release of monocyte inflammatory cytokines responsible for

effective elimination of the pathogen. Surface CD14 expression seems to be a factor that regu-

lates the growth of M.tb in subpopulations of human macrophages. Taking this issue into

account in our previous study [4] we set up the original hypothesis concerning the relationship

between the expression of monocyte signal transduction receptors and cellular immunity to

the BCG vaccine assessed on the basis of delayed type hypersensitivity (DTH) to tuberculin. A

group of healthy young people who were subjected to compulsory BCG vaccination in infancy

and school age and who had never suffered from TB was selected as a model for this study.

The development of specific cellular immunity was measured on the basis of the delayed type

hypersensitivity to PPD before blood donation. We found that young people, aged 18–30,

undergoing antituberculosis BCG vaccination according to the vaccination schedule in

Poland, vary in their response to tuberculin. Only slightly more than 60% of them exhibit a

positive reaction to PPD, while the others remain tuberculin-negative. Diversified response of

TST(+) and TST(-) volunteers to subcutaneous injection of PPD was accompanied by a slight

difference in the expression of the membrane receptor mCD14 on monocyte fractions pre-

pared on the basis of the adherent properties of these cells, which contained an average 79%

CD14+ cells in both groups of donors [4]. The expression of this receptor was slightly lower on

adherent monocytes of TST(+) than TST(-) volunteers. However, more homogenous mono-

cyte fractions containing about 95% CD14+ cells isolated from TST(+) and TST(-) donors

using immunomagnetic method with microparticles conjugated with anti- human CD14

monoclonal antibody (mAb) showed a similar expression of mCD14. A thorough analysis of

the results revealed the significance of the method of isolating monocyte blood fractions in the

evaluation of properties of tested cells. This suggestion is supported by the recently observed

differences in the properties of dendritic cells derived from peripheral blood monocytes, that

were isolated with different immunomagnetic methods and investigated by scanning electron

microscopy [51] The height of dendritic cells derived from peripheral blood monocytes incu-

bated before separation with anti-human CD14 mAb coated magnetic beads (positive separa-

tion) with the following differentiation in the presence of human granulocyte-macrophage

colony stimulating factor, was significantly lower in comparison to monocytes non-incubated

with anti-CD14 mAb (negative separation).

Conclusions

In summary, our results suggest that CD14(-159C/T) polymorphic variants may play a role in

controlling the level of response of the immune system regulating the development of DTH to

PPD in individuals subjected to BCG immunization. Further studies on identifying the host

genes responsible for TB resistance should provide new insights into the complex antimyco-

bacterial immunity and lead to better understanding of the pathogenesis of TB and develop-

ment of novel prophylactic or treatment strategies.
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