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Abstract

The 3D convolutional neural network (CNN) is able to make full use of the spatial 3D context

information of lung nodules, and the multi-view strategy has been shown to be useful for

improving the performance of 2D CNN in classifying lung nodules. In this paper, we explore

the classification of lung nodules using the 3D multi-view convolutional neural networks

(MV-CNN) with both chain architecture and directed acyclic graph architecture, including 3D

Inception and 3D Inception-ResNet. All networks employ the multi-view-one-network strat-

egy. We conduct a binary classification (benign and malignant) and a ternary classification

(benign, primary malignant and metastatic malignant) on Computed Tomography (CT)

images from Lung Image Database Consortium and Image Database Resource Initiative

database (LIDC-IDRI). All results are obtained via 10-fold cross validation. As regards the

MV-CNN with chain architecture, results show that the performance of 3D MV-CNN sur-

passes that of 2D MV-CNN by a significant margin. Finally, a 3D Inception network achieved

an error rate of 4.59% for the binary classification and 7.70% for the ternary classification,

both of which represent superior results for the corresponding task. We compare the multi-

view-one-network strategy with the one-view-one-network strategy. The results reveal that

the multi-view-one-network strategy can achieve a lower error rate than the one-view-one-

network strategy.

Introduction

Lung cancer is the most frequently diagnosed cancer and was the most leading cause of cancer

death among males in 2012 [1]. Clearly, lung cancer has become a major threat to human life.

However, people with early stage lung cancer do not present any clinical symptoms. Patients

only begin presenting symptoms once the lung cancer has sufficiently advanced. Therefore,

early detection is crucial for lung cancer survivability, and can improve the effectiveness of

treatment and increase the patient’s chance of survival.

Low-dose computed tomography (CT) is an effective method for identifying lung cancer

early. However, radiologists must carefully examine each image from amongst a very large

number of CT images, greatly increasing the burden of labor on radiologists. On the other

hand, radiologists tend to be subjective when using CT images for the diagnosis of lung
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disease, often leading to inconsistent results from the same radiologist at different times or

from different radiologists examining the same CT image. To alleviate these diagnostic chal-

lenges, computer aided diagnosis systems, which use an automated image classification tech-

nique, can be used to help radiologists in terms of both their accuracy and speed.

Most traditional methods for the automated classification of nodules do not work in an

end-to-end manner: first, they extract features using predefined filters, such as descriptors of

histograms of oriented gradients [2], and wavelet feature descriptors [3], or they extract hand-

crafted features, such as those related to geometry [4, 5], appearance [6] or texture [7].

An alternative to identification through these predefined features is by using feature learn-

ing methods to learn high-level representations directly from the training data. Convolutional

neural networks (CNN), as a fast, scalable, and end-to-end learning framework, drastically

advanced the landscape of computer vision, such as in image classification [8], object detection

[9], semantic segmentation [10], and action recognition [11] tasks, etc. However, the convolu-

tions in these CNN models are all two-dimensional (2D).

Recently, the architecture of CNN has undergone some improvements. LeCun et al. [12]

designed LeNet-5, in which the convolutional layer and the pooling layers were alternately

connected. This model is widely used in the United States to identify numbers on hand-written

checks. Krizhevsky et al. [13] constructed a large-scale CNN on two GPUs, which definitively

won the ILSVRC-2012 competition. Lin et al. [14] added 1×1 convolutional layers to their net-

work to increase representational power, which was heavily used in GoogLeNet [8, 15, 16].

The Visual Geometry Group (VGG) [17] encouraged model designers to use small convolu-

tions in order to build deeper networks. Later, Google designed several versions of CNN-based

on Inception architecture. The first version of the Inception architecture (Inception v1) made

use of different kernel sizes in the same convolutional layer [8]. Batch Normalization (BN) was

introduced in Inception v2 [18]. In Inception v3, larger convolutions were designed to be

divided into multiple small convolutions, while n × n convolutions were designed to be divided

into 1 × n and n × 1 convolutions [15]. Almost simultaneously, deep residual network was pro-

posed by He et al. [19] and achieved a top-five error rate of 3.57% in the ILSVRC-2015 classifi-

cation task. Later, Google introduced residual connections in the Inception network, and

proposed Inception-resNet-v1 and Inception-resNet-v2 [16], in which the top-5 error rate for

the Imagenet classification challenge was reduced to 3%, with an ensemble of three residual

and one Inception-v4.

Motivated by the success of CNN in the field of image recognition, there have been efforts

made to apply the technique to medical diagnosis, especially nodule classification in CT.

Kumar et al. used auto-encoders [20] and CNN [21] to classify lung nodules as either malig-

nant or benign, reaching a best accuracy of 77.52%. Shafiee et al. [22] leveraged stochastic

sequencers consisting of three stochastically-formed convolutional layers and obtained an

accuracy of 84.49%, a sensitivity of 91.07%, and a specificity of 75.98%. Kim et al. [23] used a

stacked denoising auto-encoder with 3 hidden layers to extract features from collected CT

scans. They combined these features with 96 raw hand-crafted imaging features and fed them

to a SVM classifier. The results showed that this method was more effective than the conven-

tional methods that used only the original raw hand-crafted features. Shen et al. [24] proposed

multi-scale convolutional neural networks that could capture nodule heterogeneity by extract-

ing discriminative features from alternatingly stacked layers. They [25] then modified their

model and presented a multi-crop convolutional neural network that was able to automatically

extract salient nodule information by employing a novel multi-crop pooling strategy that

crops different regions from convolutional feature maps and applies max-pooling at varying

times.

3D MV-CNNs for lung nodule classification
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The use of 3D CNNs in the field of medical imaging applications is still in its infancy. Dou

et al. [26] used multi-level 3D CNNs with the aim of reducing false positive in lung nodule

detection. The proposed algorithm achieved the highest CPM score in LUNA16. There are

also other variants of 3D CNNs for medical imaging applications. Dou et al. also used a 3D

CNN combined with conditional random fields to segment a liver from CT images. They eval-

uated the model’s perforemance on the public dataset MICCAI-Sliver07 and obtained a state-

of-the-art effect [27]. They also used a 3D fully convolutional network (FCN) to retrieve cere-

bral micro-bleeds (CMBs) candidates and then applied a 3D CNN to distinguish CMBs from

mimics, yielding a sensitivity of 93.16% in a data set with 320 volumetric magnetic resonance

scans [28]. Çiçek et al. [29] proposed a 3D u-net by replacing all 2D operations in u-net with

their 3D counterparts for volumetric segmentation. Kamnitsas et al. [30] proposed a dual way

3D CNN combined with 3D full-chain Conditional Random Fields employed to reduce false

positive. The pipeline was evaluated by its performance on 3 challenging tasks of lesion seg-

mentation in multi-channel Magnetic Resonance Imaging data with traumatic brain injury,

brain tumors, and ischemic stroke.

Thoracic CT produces a volume of slices that can be manipulated to demonstrate various

volumetric representations of bodily structures in the lung. 2D convolution ignores the third

spatial dimension, meaning it is unable to make full use of the 3D context information, 3D

CNN can, obviously, make up for this. We investigate empirically the challenge of classifying

lung nodules captured by computed tomography (CT) in an end-to-end manner using the 3D

multi-view convolutional neural networks (MV-CNN), and conduct a binary classification

(benign and malignant) and a ternary classification (benign and malignant primary and meta-

static malignant) on CT images from the Lung Image Database Consortium image collection

(LIDC-IDRI). Our main contributions can be summarized as follows:

1. We use 3D CNN for automatic classification of lung nodules. Compared with the 2D

model, 3D CNNs can encode richer spatial information to extract more distinguishable

representations.

2. Multi-view patches are used in our models. However, we use the multi-view-one-network

strategy that differs from the one-view-one-network strategy used in paper [26]. The results

show that our strategy can achieve a lower error rate than the one-view-one-network strat-

egy while using fewer parameters. Note that, while the model employed in paper [31] used

a similar strategy, they employed only 2D CNN, while we used 3D CNN for this paper.

3. To the best of our knowledge, this is the first study to use 3D variants of Inception and

Inception-ResNet to classify lung nodules. In the latter part of this paper, the 3D variants of

Inception and Inception-ResNet will be writtern as “3D Inception” and “3D Inception-

ResNet” respectively, for brevity’s sake.

4. Our model achieved better results than other works related to the classifications on CT

images from LIDC dataset.

Materials and methods

Data

Data from the LIDC-IDRI database [32] is used in our experiment. It consists of 1018 lung

cancer screening thoracic CT cases with marked-up annotated lesions. They are all annotated

by 4 experienced thoracic radiologists. The annotated lesions are divided into three categories:

“nodule> = 3 mm”, “nodule<3 mm” and “non-nodule> = 3 mm”. In order to validate the

training and evaluation protocols of our classification system, we chose to use the ratings from

3D MV-CNNs for lung nodule classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0188290 November 16, 2017 3 / 21

https://doi.org/10.1371/journal.pone.0188290


diagnostic data, which is the only available way to judge the certainty of malignancy. However,

diagnostic data is available for 157 patients only. In order to extract information for these

patients, we chose to use the LIDC Image Toolbox [33] developed by Thomas Lampert. How-

ever, the toolbox was unable to extract information for some patients, and, therefore, these

patients were removed from our experiment, leaving only 96 final patient participants. The

diagnostic result was obtained at two levels: i) patient level and ii) nodule level. At each level,

the lesions in the lung were marked as either:

0—Unknown

1—benign or non-malignant disease

2—malignant, primary lung cancer

3—malignant metastatic

3D CNNs

In general, a CNN consists of convolutional, pooling and fully-connected layers to extract

multi-level learnable representations. They are learned jointly, in an end-to-end manner, to

solve a particular task. Unlike the conventional CNN, each channel in a 3D CNN is actually a

3D feature volume, rather than a 2D feature map. The convolutions and poolings of 3D CNN

are operated in a cubic manner. We introduce some of the basic components of 3D CNN in

the following paragraphs.

3D convolutional layer. We use y = conv(x, w) to denote the convolutional function oper-

ated by the 3D convolutional layer, where x represents the original data or feature maps that the

convolutional function operate on, w denotes the filters and y denotes the output of the convo-

lutional layer. The input x has Z ×M ×N × K × S dimensions, where Z denotes the length (the

number of slices in z axis) of the map, M and N represent, respectively, the height and width of

the map, K is the number of channels, and S is the batch size. Note that each filter has a dimen-

sion Zf ×Mf ×Nf × K × K0, where Zf,Mf and Nf are the length, height and width of the filters,

respectively. It operates on map x with K channels, generating map y with K0 channels as follows

yl0 i0j0k0s ¼
X

lijk

wlijkk0xlþl0 ;iþi0 ;jþj0 ;k;s: ð1Þ

Activation function. The activation function, which is applied to each component of a

feature map, introduces non-linearity in a CNN. We use the Rectified Linear Unit (ReLU) as

the activation function in this paper. It works as follows:

ylijks ¼ maxf0; xlijksg; ð2Þ

using y = ReLU(x) to represent it.

3D pooling layer. The pooling layer is another important operator in a CNN. A pooling

operator runs on individual feature channels, coalescing nearby feature values into one via the

application of a suitable operator. Common choices for this include max-pooling or average-

pooling. We prefer to use max-pooling, just like several other researchers [13, 17], which is

defined as

ylijks ¼ maxfxl0 i0j0ks : l � l0 < l þ p1; i � i0 < iþ p2; j � j0 < jþ p3g; ð3Þ

where pi denotes the pooling size. y = MaxP(x) is used to represent it. In some networks, we

3D MV-CNNs for lung nodule classification
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use 3D averaging pooling defined as

ylijks ¼
1

p1 � p2 � p3

X

l � l0 < lþ p1;

i � i0 < iþ p2;

j � j0 < jþ p3

xl0 i0j0ks: ð4Þ

As can be seen from the above equations, the output of each layer is also a 5D tensor, where

the meaning of each dimension is the same as the input x.

Fully-connected layer. Each neuron in a fully-connected layer is connected with all neu-

rons in adjacent layers. AlexNet [13] and VGG [17] still retain the fully connected layer, which

greatly increases the number of network parameters. So, in recent years, as the depth of net-

works has grown, researchers have tended to abandon the fully connected layer and replace it

with an average pooling layer. This method can simultaneously both reduce significantly the

parameters of a network and maintain the generalization ability at the same time [14].

Dropout and spatial dropout. We applied dropout on the fully connected layer. Dropout

is a strategy proposed by Hinton et al. [34] to relieve over-fitting for neural networks. Specifi-

cally, if the dropout rate of a layer is r (0<r<1) and the number of parameters is N, then the

model will only update randomly selected Nr parameters during the training phase, while all

parameters are used in the inference phase. We applied spatial dropout [35] on the convolu-

tional layer. For a given convolution feature tensor of size nf×height×width, the spatial dropout

performed only nf dropout trials and extended the dropout value across the entire feature map.

Therefore, adjacent pixels in the dropped-out feature map are all either 0 (dropped-out) or

active [35]. This breaks the entire feature map, not just a single neuron.

Global average pooling. The idea of global average pooling is to generate one feature map

for each corresponding category of the classification in the last 1×1×1 convolutional layer.

Instead of adding fully connected layers on top of the feature maps, it takes the average of each

feature map and feeds the resulting vector directly into the softmax layer. GoogLeNet [8,15,16]

also uses global average pooling to replace the fully connected layer. Lin et al.[14] think it not

only effectively reduces the parameters, but also make feature maps that can be easily inter-

preted as category confidence maps, and the network is more robust for spatial translations of

the input.

CNN architecture

In conventional CNNs, such as LeNet and AlexNet, computational blocks form a simple chain;

however, within more complex topologies, such as the residual net and GoogLeNet, blocks are

interconnected to form a directed acyclic graph (DAG). In this paper, both 3D CNN with

chain architecture and with DAG architecture are explored.

The multi-view strategy. We use the multi-view strategy illustrated in Fig 1. Specifically,

we first find the geometrical center of each nodule. Centered on these points, we crop patches

in different sizes, offering different view areas. We resize them into the same size using spline

interpolation before feeding them into different channels.

The muti-view strategy has two methods of implementation, which, in this paper, we dub as

the one-view-one-network strategy and the muti-view-one-network strategy in this paper. Fig 2

shows the difference between them. Dou et al. [26] used the former while we use the latter.

The 3D CNN with chain architecture. In 3D CNN with chain architecture, the convolu-

tional layer and the pooling layer are alternately connected. A channel of the input in 3D CNN

is organized in a cubic manner. So, each channel of the hidden layer is actually a 3D feature

volume. The architectures of 3D CNN with a single view and with multiple views are shown in

Fig 3.

3D MV-CNNs for lung nodule classification
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In order to observe and evaluate performance with regard to network configuration, we

investigated different configurations, including the number of input channels and the depth of

the network. The MV-CNN had n input channels and m convolutional layers, where n = {1,3}

and m = {0,1,2,3}. We use

m � ðMaxPðReLUðconvðx;wÞÞÞÞ þ fcþ softmax ð5Þ

to describe the structure of the network, where MaxP, ReLU and conv are described in the pre-

vious section and fc denotes the fully connected layer. We show the filter size and the number

of channels in each layer for different network architecture in Table 1. We think that a node in

the fully connected layer is a channel, so the number “128” in the last column refers to the

number of nodes in the fully connected layer.

The 3D CNN with DAG architecture. The 3D Inception model divides the network into

multiple branches, each with a different pooling size. Fig 4 shows the overall architecture of

the 3D Inception network. It should be noted that, inspired by Min Lin et al. [14] and Szegedy

et al. [16], we removed the fully-connected layer in the Inception network. In fact, we wanted

to imitate the global average pooling method, but we did not fully follow this method. We used

the 1×1×1 convolutional layer and average pooling layer to replace the fully connected layer,

but we used more channels and smaller pooling size. There was only one Inception module in

the overall architecture. The detailed structures of this Inception module are shown in Fig 5.

We employed two kinds of 3D Inception modules. The first made use of 1×1×1, 3×3×3 and

5×5×5 kernel sizes, while the second divided the n×n×n (n = 1, 3, 5) filter into 3 filters with

kernel sizes of 1×1×n, 1×n×1 and n×1×1.

The residual network was proposed to solve the problem of degradation in the deep neural

network [19]. The assumption is that it should be easier to optimize the residual mapping than

to optimize the original, unreferenced mapping. Inspired by Szegedy et al. [16], we also used

the Inception-ResNet to classify the lung nodules in LIDC. The network structure is shown in

Fig 6. Note that the Inception module in the Inception-ResNet is the same as Inception1 in

this paper.

Fig 1. CT examples with lung nodules in different categories. They are benign (left), primary malignant (middle) and metastatic malignant (right),

alone with 3 different view areas including 40×40, 50×50 and 60×60.

https://doi.org/10.1371/journal.pone.0188290.g001
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Performance evaluation

For the binary classification, performance is quantitatively determined via sensitivity, specific-

ity and error rate. The sensitivity measures the proportion of the positive samples that are cor-

rectly classified, the specificity measures the proportion of negative samples being correctly

classified, and the error rate measures the proportion of samples that are misclassified. They

are calculated using the true positive (TP), true negative (TN), false negative (FN), and false

positive (FP) as follows:

Sensitivity ¼
TP

TPþ FN
ð6Þ

Specificity ¼
TN

TN þ FP
ð7Þ

Error rate ¼
FPþ FN

TPþ TN þ FPþ FN
ð8Þ

where TP is the number of positive examples classified as positive, FP is the number of

Fig 2. Two kinds of the multi-view strategy. The one-view-one-network strategy (top) employs a separate

network for images from each view (cropping size), while the multi-view-one-network strategy (bottom) uses

one network for all views.

https://doi.org/10.1371/journal.pone.0188290.g002

3D MV-CNNs for lung nodule classification
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negative examples classified as positive, TN is the number of negative examples classified as

negative and FN is the number of positive examples classified as negative.

The Area Under the Curve (AUC) is shown when we compare the binary classification per-

formance with that of other works. This curve refers to the Receiver Operating Characteristic

(ROC) curve, a standard technique for summarizing classifier performance over a range of tra-

deoffs between true positive and false positive error rates. The AUC is an accepted traditional

performance metric for an ROC curve and is equivalent to the probability that the classifier or

feature will rank a randomly chosen positive instance higher than a randomly chosen negative

Fig 3. The architectures of the 3D single view CNN (SV-CNN) (top) and 3D MV-CNN (bottom).

https://doi.org/10.1371/journal.pone.0188290.g003

Table 1. The configuration of the network with chain architecture.

Number Architecture Filter size The number of channels

Softmax softmax - - - - - - - - -

CNN1 MaxP(ReLU(conv(x,w)))+fc+softmax 3×5×5 20,128

CNN2 2•(MaxP(ReLU(conv(x,w))))+fc+softmax 3×5×5, 3×3×3 20,50,128

CNN3 3•(MaxP(ReLU(conv(x,w))))+fc+softmax 3×5×5,3×5×5,2×3×3 20,50,50,128

https://doi.org/10.1371/journal.pone.0188290.t001

3D MV-CNNs for lung nodule classification
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instance. That is, the AUC can be used to represent the classifier’s ability to distinguish

samples.

Experiments and results

Setup

3D volume data generation. In order to generate a 3D lung volume data set, we first

established a 2D data set as was done in paper [31]. We grouped all slices at the nodule level,

Fig 4. The overall architecture of the 3D multi-view Inception network (left). This architecture applies to

Inception1 and Inception2. The output sizes of each layer for the binary classification (middle) and the ternary

classification (right) are different, which are also shown in this figure. Note that the output of each layer is a 5D

tensor as described in the previous section. The details of the Inception module are shown in Fig 5.

https://doi.org/10.1371/journal.pone.0188290.g004

Fig 5. The detail of the Inception module in Fig 4: 3D Inception1 (left) and 3D Inception2 (right).

https://doi.org/10.1371/journal.pone.0188290.g005
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that is, all the slices belonging to the same nodule were assigned to the same group. In total, we

found 776 nodules. 3D volume data were generated as shown in Fig 7. However, the number

of slices belonging to the same nodule was different. In order to unify the number of slices of a

nodule, we adopted a balanced strategy. Specially, for nodules with n slices, we choose slice 1,

slice n and slice 1þ n� 1

5

� �
� k, where k = {1, 2, 3, 4} and [•] denotes the function rounding to an

integer. For example, for a nodule with 10 slices, we chose slice 1, slice 3, slice 5, slice 6, slice 8

and slice 10. For a nodule with fewer than 6 slices, we used all-zero slices to fill them up to 6

slices.

Labeling. We carried out both binary and ternary classifications in our experiments.

For the binary classification, we labeled lung nodules as benign if the diagnosis result was 1 at

the nodule level, and malignant if the diagnosis result was 2 or 3 at the nodule level. If the

diagnosis result at the nodule level was 0, then we labeled it in accordance with the diagnosis

result at the patient level. However, in this paper, all slices belonging to the same nodule were

considered to belong to the same sample. Ultimately, we found 29 benign patient cases and 67

malignant patient cases, with a total of 186 benign lesions and 590 malignant lesions. We aug-

mented the data by performing rotations on each lesion. More specifically, each benign lesion

was rotated by 9 degree intervals from 0 to 360 degrees, resulting in 7,440 benign lesions. In

order to obtain a balanced dataset, we rotated each malignant lesion by 30 degree intervals

from 0 to 360 degrees, eventually resulting in 7,080 malignant lesions.

Fig 6. The overall architecture of the Inception-ResNet network.

https://doi.org/10.1371/journal.pone.0188290.g006
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As for the ternary classification, we labeled the extracted lesions as benign, malignant pri-

mary or malignant metastatic. Benign lesions were identified in the same way as those in the

binary classification, while the malignant lesions were subdivided into primary malignant (if

the diagnosis result was 2) and metastatic malignant (if the diagnosis result was 3). Ultimately,

we found 29 benign patient cases, 25 primary malignant patient cases and 42 metastatic malig-

nant patient cases, with a total of 186 benign lesions, 169 primary malignant lesions and 421

metastatic malignant lesions. Each benign lesion was rotated by 20 degree intervals from 0 to

360 degrees, resulting in 3,348 benign lesions. In order to obtain a balanced dataset, each pri-

mary malignant lesion was rotated by 18 degree intervals from 0 to 360 degrees, and each met-

astatic malignant lesions was rotated by 45 degrees intervals from 0 to 360 degrees, resulting

in 3,380 primary malignant lesions and 3,368 metastatic malignant lesions. The number of

patients and lesions are listed in Table 2.

Hyperparameters setting. The results in paper [31] showed that the BN layer did not

reduce the error rate for 2D data in the LIDC dataset. So, in our experiment, we did not

employ the BN layer throughout. Instead, it was replaced by the dropout layer. We set each

dropout rate to be 0.5. We initialized the learning process with a learning rate of 0.001 and

completed the learning process in 50 epochs using a batch-size of 16. The momentum was

fixed to 0.9 with weight decay parameters set to 5×10−4 throughout the learning process. We

Fig 7. The process of generating 3D volume data.

https://doi.org/10.1371/journal.pone.0188290.g007

3D MV-CNNs for lung nodule classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0188290 November 16, 2017 11 / 21

https://doi.org/10.1371/journal.pone.0188290.g007
https://doi.org/10.1371/journal.pone.0188290


used max-pooling in the chain architectures and all pooling sizes and pooling strides in them

are set to 2×2×2, while they are set to 2×3×3 in the network with DAG architecture. A detailed

explanation about the pooling size in the DAG architectures are shown in the discussion sec-

tion. All convolutional strides were set to 1.

The performance of the binary classification was quantitatively determined via the error

rate, sensitivity and specificity, while the performance of the ternary classification was mea-

sured only by the error rate, as sensitivity and specificity could only be defined in the binary

classification. They were all obtained by 10-fold cross validation. Specifically, all samples were

randomly divided into 10 groups. Then, 9 of them were selected as the training set, while the

remaining group acted as the validation set. After each random grouping, 10 results could be

obtained. It should be noted that there are some duplicate samples for each patient. Therefore,

in order to ensure that every sample in the validation set is not the same as that in the training

set, we divided the data at the patient level. In detail, the 96 patients were randomly divided

into 10 groups, of which there are 6 groups with 10 patients and 4 groups with 9 patients.

Therefore, the number of samples in each subset is different, but there is not much difference.

We weighted (determined by the proportion of the number of samples in the validation set)

the average of the 10 results to offer the final result for this random grouping. In order to

reduce the randomness of the results, we ran a 10-fold cross validation 5 times for the same

network, with the final results obtained by averaging the results.

Training and the validation results

The experiment was divided into two parts. First, 3D MV-CNN with chain architecture, i.e.,

Softmax, CNN1, CNN2 and CNN3, was studied. The single-view strategy and the multiple-

view strategy were all investigated for each network. We then explored 3D MV-CNN with

DAG architecture, namely Inception1, Inception2 and Inception-ResNet. For the completion

of the experiment, we used the keras library [36].

The training curves of 3D CNN with chain architecture are shown in Figs 8 and 9. We

noticed that, as the depth of the model increases, the model’s error rate for the first epoch

increases and more epochs are needed for the model to converge. This is because parameters

in the layer being farther away from the loss layer are more difficult to optimize.

The validation error rate of 3D CNN with chain architecture is given in Tables 3 and 4. The

corresponding results for 2D CNN in paper [31] are also shown. As can be seen from the table,

the validation error rate of 3D CNN is generally lower than that of 2D CNN. Furthermore, for

the ternary classification, it is CNN1 that obtains the lowest error rate for 3D CNN, while it is

CNN3 for 2D CNN in paper [31]. This indicates that, for 3D CT lung imaging, the feature

extraction capability of 3D convolution is better than that of 2D convolution. It is also worth

noticing that the error rate of the multi-view network is generally lower than that of the single-

Table 2. The number of patients and lesions.

Class The number of

Patients

The number of lesions before

rotating

The number of lesions after

rotating

The binary classification Benign 29 186 7,440

Malignant 67 590 7,080

The ternary

classification

Benign 29 186 3,348

Malignant primary 25 169 3,380

Malignant

metastatic

42 421 3,368

https://doi.org/10.1371/journal.pone.0188290.t002
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view network. Therefore, the multi-view strategy for 2D CNN can also be used to improve the

performance of the 3D CNN.

In our experiment, the error rate of CNN1 was lower than CNN2 and CNN3, which may be

due to hyper-parameters. If you did a strict grid search (which is too time consuming), you

may get a different result. But it will not change too much; that is, from our experiments, we

can at least conclude that using a 3D CNN to classify lung nodules in CT does not need a very

deep network.

Furthermore, inspired by GoogLeNet, we also explored the performance of 3D Inception

and 3D Inception-ResNet on the LIDC dataset. Two architectures were adopted for 3D Incep-

tion networks, as described in Fig 5. We use only one Inception layer, as the CNN with one

convolution layer performs with the lowest error rate, as shown in Tables 3 and 4. All the

results for the network with DAG architecture are shown in Table 5. Note that all the networks

in this table employ the multi-view strategy. The results show that Inception1 achieves better

results than all 3D CNNs with chain architecture. The interesting thing is the fact that Incep-

tion2 did not obtain a lower error rate than Inception1. In fact, while the decomposition in

Inception2 reached greater deeper depths with fewer parameters, such depths seem to have no

positive effect on the classification of our data taken from the LIDC dataset.

Therefore, we preferred to use Inception1 module in our Inception-ResNet. We also scaled

down the residuals before adding them to the previous layer activation seemed to stabilize the

training [16]. In this paper, the scaling factors were set to be 0.1. However, results show that

our Inception-ResNet did not achieve better results than Inception1. Indeed, the residual con-

nection is proposed to solve the gradient degradation problem, which often appears in deep

neural networks [19]. Results reveal that the classification for our data does not require too

Fig 8. The error rate of the 3D SV-CNN (top) and 3D MV-CNN (bottom) with chain architecture for the

binary classification. From left to right, there are the error rates of Softmax, CNN1, CNN2 and CNN3,

respectively.

https://doi.org/10.1371/journal.pone.0188290.g008
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many layers, so the residual connection would be of little help. In fact, the results show that,

for our networks and data, the residual connection makes the performance worse.

Comparing the results with other works

The results from our MV-CNN are quite competitive for the LIDC-IDRI dataset, as shown in

Table 6. It should also be noted that the augmentation factors for benign/malignant or benign/

primary/metastasis lesions are different in our experiment, and we tested all the images,

including augmented samples. In papers [21] and [31], researchers used similar methods, but

some other researchers, such as in papers [7], [24] and [37], did not include the augmented

Fig 9. The error rate of the 3D SV-CNN (top) and 3D MV-CNN (bottom) with chain architecture for the

ternary classification. From left to right, there are the error rates of Softmax, CNN1, CNN2 and CNN3,

respectively.

https://doi.org/10.1371/journal.pone.0188290.g009

Table 3. The result of the binary classification for the networks with chain architecture.

The number of input channels Network 2D CNN [31] 3D CNN

Error rate Sensitivity Specificity Error rate Sensitivity Specificity

1 Softmax 6.49% 89.7% 97.22% 5.46% 94.81% 92.96%

CNN1 5.66% 88.88% 99.67% 4.82% 95.56% 93.01%

CNN2 5.60% 88.93% 99.72% 4.97% 95.51% 92.99%

CNN3 5.87% 89.4% 98.74% 5.19% 98.45% 89.76%

3 Softmax 6.28% 90.18% 97.17% 5.29% 94.89% 93.07%

CNN1 5.41% 88.92% 100% 4.75% 95.60% 93.94%

CNN2 5.54% 89% 99.76% 4.76% 95.61% 93.89%

CNN3 5.6% 88.97% 99.68% 6.38% 94.17% 89.73%

https://doi.org/10.1371/journal.pone.0188290.t003

3D MV-CNNs for lung nodule classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0188290 November 16, 2017 14 / 21

https://doi.org/10.1371/journal.pone.0188290.g009
https://doi.org/10.1371/journal.pone.0188290.t003
https://doi.org/10.1371/journal.pone.0188290


samples in the test set. In addition, different papers use different samples and data dividing

methods. All of these make it difficult to achieve a fair comparison. Although each models in

Table 6 uses the LIDC-IDRI dataset, they don’t use the same parts. “Diagnosis data” means a

paper used data that had a clear diagnostic result, while “All” means a paper used each instance

in the dataset; but labelled each in a unique way. The data partitioning method in each paper

was also shown in Table 6. To the best of our knowledge, we could not discover any other

works that involved ternary classification of the LIDC-IDRI database except for paper [31].

The ROC curves of MV-softmax, 3D MV-CNN1 and 3D MV-inception1 are shown in Fig

10. The AUC of Softmax, 3D MV-CNN1 and 3D MV-Inception1 are 0.96,0.98 and 0.99,

respectively. It can be seen that the results of all models are not bad, and that the advantage of

3D inception1 is small compared to the other two models, so that the curves are close to each

other (which is why only three models of the roc curve are shown; otherwise, many curves

would be mixed together so that it would be difficult to distinguish). This reveals that those

samples, when correctly classified, are easy to distinguish, while the misclassified samples are

Table 4. The result of the ternary classification for the networks with chain architecture.

The number of input channels Network 2D CNN

Error rate [31]

3D CNN Error rate

1 Softmax 19.18% 10.59%

CNN1 17.66% 8.12%

CNN2 16.27% 8.42%

CNN3 15.21% 10.94%

3 Softmax 18.19% 10.03%

CNN1 18.16% 7.78%

CNN2 18.05% 8.25%

CNN3 13.19% 9.31%

https://doi.org/10.1371/journal.pone.0188290.t004

Table 5. The validation error rate of the classification for the 3D multi-view networks with DAG architecture.

Network Binary classification Ternary classification error rate

Error rate Sensitivity Specificity

3D MV-CNN1 4.75% 95.60% 93.94% 7.78%

Inception1 4.59% 95.68% 94.51% 7.70%

Inception2 4.97% 95.48% 94.32% 8.43%

Inception-ResNet 4.89% 95.64% 94.37% 8.79%

https://doi.org/10.1371/journal.pone.0188290.t005

Table 6. Some classification results on LIDC-IDRI dataset.

Related work Data sources Data partitioning methods Binary

classification

Ternary classification error rate

Error rate AUC

Han et al. [7] All 50% training and 50% testing - - - - 0.93 - - - -

Shewaye et al. [37] Diagnosis data 65% for training and 35% for testing 16% 0.94 - - - -

Kumar et al. [21] Diagnosis data 80% for training, 10% for validation and 10% for testing 22.48% - - - - - - - -

Shen et al. [24] All 5-fold cross validation 12.86% 0.93 - - - -

Liu and Kang, [31] Diagnosis data 10-fold cross validation 5.41% 0.98 13.19%

Our work Diagnosis data 10-fold cross validation 4.59% 0.99 7.70%

https://doi.org/10.1371/journal.pone.0188290.t006
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so similar to the other category that it is difficult to make the correct classification. A better-

performing model can only make corrections to a small portion of the misclassified samples.

Discussion

The number of parameters vs. training time and validation error rate

We compared the number of parameters, training time, and validation error rates for each

model in this paper, as shown in Fig 11. All experiments were conducted on an NVIDIA

GeForce GTX Taitan X. In these networks, Softmax and CNN3 are closest to the lower left

Fig 10. The ROC curves of MV-softmax, 3D MV-CNN1 and 3D MV-inception1.

https://doi.org/10.1371/journal.pone.0188290.g010

Fig 11. The number of parameters vs. training time and validation error rate for the binary classification (left) and the ternary classification

(right). The area of the circles represents the corresponding validation error rate.

https://doi.org/10.1371/journal.pone.0188290.g011
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corner. However, their error rates are higher than those of other networks. The training time

of networks with DAG architecture is longer than that of networks with chain architecture,

but their parameters are far fewer. This shows that the training time is not causally connected

to the number of parameters. Note that DAG architecture is more complex than chain archi-

tecture. Therefore, as Fig 11 shows, the training time is deeply related to the complexity of the

model architecture. Of all the networks, the Inception1 network achieved the lowest error rate.

Although its training time was higher than the model with chain architecture, it was lower

than Inception2 and Inception-ResNet. Furthermore, Inception1 has fewer parameters than

those networks with chain architecture.

Average pooling

In this subsection, we explained why we did not fully follow the global average pooling

method. We made a coarse grid search for the number of output channels in the last 1×1×1

convolutional layer and the average pooling size (a detailed grid search is time consuming, and

it takes more than five hours for a cross validation). The results of grid search for the binary

and ternary classification are shown in Fig 12.

If we used global average pooling, the number of channels in the last 1×1×1 convolutional

layer would be 2 (for binary classification) or 3 (for ternary classification) and the average

pooling size should be 6×50×50. However, the results show that the effect of this setting is very

bad. As shown in Fig 12, for binary classification, when the number of channels is 32 and pool-

ing size is 2×3×3, the model achieves its lowest error rate. For ternary classification, when the

number of channels is 64 and the polling size is 2×3×3, the model achieves its best perfor-

mance. Therefore, we used this setting in our experiment.

Global average pooling in Network-in-Network [14] and GoogLeNet [8,15,16] get good

results because they have 1000 categories, so they have 1000 channels before the softmax layer.

However, in our task, the number of categories was only 2 or 3. If we follow the global average

pooling setting fully, the softmax classifier in the network has only 4 or 9 parameters, which is

so few that it seriously affects the performance of the model. Increasing the number of chan-

nels and reducing the average pooling size appropriately will increase the number of parame-

ters in the softmax classifier, which will improve the performance of the model. Of course, the

Fig 12. The result of grid search for the binary (left) and ternary (right) classification.

https://doi.org/10.1371/journal.pone.0188290.g012
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number of these parameters cannot be too large, so we chose a setting that minimizes the the

number of parameters without degrading the model performance.

Compare with the one-view-one-network strategy

It should be noted that the Inception1 network in Table 5 use the multi-view-one-network

strategy (as shown in Fig 2 bottom). In this section, we compare it to the one-view-one-net-

work strategy (as shown in Fig 2 top), and the results are shown in Table 7. Two variants of the

one-view-one-network strategy were tested. In the first variant (one-view-one-network1), the

hidden layer of each sub-network had the same structure as the Inception1 network in Table 5.

That’s why the number of parameters of one-view-one-network1 is almost 3 times that of the

multi-view-one-network. In the second variant (one-view-one-network2), the number of

channels in each layer was reduced so that the total number of parameters would almost equal

that of the multi-view-one-network.

In Table 7, we can see that the multi-view-one-network strategy got a better result than the

one-view-one-network strategy. Compared one-view-one-network2 with multi-view-one-net-

work, one-view-one-network2 had fewer parameters, but got a higher error rate. Therefore,

fewer parameters have nothing to do with the model getting a lower error rate.

We examined two ratios: Rp and Rf in Table 7, where Rp denotes the number of parameters

in the convolutional layers compared to the number of parameters in the softmax layers

(excluding the bios), and Rf denotes the ratio of the number of filters to the number of hidden

channels. The values of Rf reveal that the multi-view-one-network strategy provides more fil-

ters when the number of hidden layers is constant. These filters make more connections

between the input channel and the hidden layer channel. And each feature map in the hidden

layer incorporates the information of all views. That’s why the inferring time of multi-view-

one-network is more than that of one-view-one-network2. Because the parameters in the con-

volutional layer account for only a small part of the parameters of the entire network (because

all the values of Rp are very small), the increase in the number of filters does not make the

parameters of the model increase significantly.

Conclusions

In this paper, 3D MV-CNN with the multi-view-one-network strategy is studied for its poten-

tial in the classification of lung nodules. We conducted two classification tasks: 1.) the binary

classification, in which nodules are divided into benign and malignant, and 2.) the ternary clas-

sification, in which nodules are divided into benign, primary malignant and metastatic malig-

nant. We explored the network with chain architecture and with a DAG architecture. For the

CNN with chain architecture, the results showed that the multi-view-one-network strategy can

aid in improving the classification performance of 3D CNN, and that 3D MV-CNN’s perfor-

mance surpasses that of 2D MV-CNN by a significant margin. For 3D CNN with DAG

Table 7. Compare the multi-view-one-network strategy with the one-view-one-network strategy.

Strategy Error rate The number of parameters Inference time (ms/sample) Rp Rf

Binary classification One-view-one-network1 5.28% 1.40×105 22.73 1:25 1:1

One-view-one-network2 5.61% 0.46×105 6.89 1:60 1:1

Multi-view-one-network 4.59% 0.47×105 10.17 1:25 3:1

Ternary classification One-view-one-network1 8.13% 4.49×105 46.06 1:33 1:1

One-view-one-network2 9.07% 1.45×105 10.90 1:80 1:1

Multi-view-one-network 7.70% 1.49×105 16.84 1:33 3:1

https://doi.org/10.1371/journal.pone.0188290.t007
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architecture, all the networks employed the multi-view-one-network strategy. The 3D variants

of Inception1 obtained the lowest error rate among all of the networks, with an error rate of

4.59% for the binary classification and 7.70% for the ternary classifications, better than other

works on the classification of the LIDC dataset. The results show that, in addition to improving

accuracy, the 3D Inception1 had fewer parameters than 3D MV-CNN with chain architecture,

due to the fact that we use the 1×1×1 convolutional layer and the average pooling to replace

the fully connected layer. We compare the multi-view-one-network strategy with the one-

view-one-network strategy. The results reveal that the multi-view-one-network strategy can

achieve a lower error rate than the one-view-one-network strategy. In the future, we aim to

investigate the effect of this model on the automatic detection of lung nodules in CT combined

with object detection techniques.
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