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Abstract

The mud shrimp Austinogebia edulis, being abundant in the intertidal zone of western Tai-

wan, constructs deep burrows (>1 m). This study highlights the potential of mud shrimps to

modify sediment characteristics of the tidal flat by its burrowing behavior. We studied the

structure of the burrow wall, compared the difference in the sediment composition of the bur-

row and the background sediment, and compared the organic content inside the burrow

wall. This study was carried out from September 2015 to November 2016 in three areas of

the western coast of Taiwan, namely Shengang, Hanbow, and Wangong. The present study

found significant differences between burrow wall and the burrow lumen. The diameter of

the burrow wall was double as wide as the inner burrow lumen at the opening and gradually

increased to 10 times of the burrow lumen at 30 cm depth. The burrow wall of A. edulis

showed low permeability and increased the sheer strength. Statistically, a significant differ-

ence was noticed in the comparison between the sediment composition of the burrow wall

and the background (p < 0.05, Student’s t-test). An accumulation of 3.63 for fine sand (t =

-5.22, p < 0.001, fine sand) and 9 for clay (t = -25.01, p < 0.001, clay) was found in the upper

burrow wall of A. edulis. This indicated that they somehow chose finer particles to build bur-

rows. This will gradually change the sediment distribution—vertically and horizontally. The

burrow wall consisted of a 24 times higher organic matter content than one individual of mud

shrimp. The burrow may provide organic material as a potential food source. The mud

shrimp thus transforms the sediment characteristics as an ecological engineer, which is

expected to have a significant ecological impact on the ecosystem.

Introduction

Mudflats are coastal wetlands that are formed by the sedimentation of mud layers during tidal

movements [1]. Generally, these layers are made of sand, silt, or clay. Tidal flats constitute a

transition zone between land and sea [2]. Tidal flats are habitats to different kinds of organisms

like, benthic burrowers, microalgae, and even bacteria. They are important wetlands where

numerous biological activities take place. Many species of crabs, clams, shrimps, fish etc. hide
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there by creating burrows into the sediment [3]. Among them are mud shrimps that dig com-

plex and deep burrows [4–7]. Some mud shrimp species are known to dig more than 2 meter

deep burrows, for which it has been always been difficult to acquire a holistic approach to their

behavior [8, 9].

In the coastal wetlands of western Taiwan and northern Vietnam, the mud shrimp Austino-
gebia edulis [10] (Fig 1) is abundant and of economic importance as seafood. The species Upo-
gebia edulis was revised to Austinogebia edulis after the re-classification of upogebiid species

into the genus Austinogebia. [11]. The locals of western Taiwan catch and consume this shrimp

extensively [12] and the ovigerous female shrimps occur only found during the reproductive

season and are more expensive than the males or non-ovigerous females. Mud shrimps are

cryptic animals that prefer to reside inside their burrows in deeper layers of sediment. Their

burrows are only recognizable through small burrow openings [12, 13–16, 17]. With the

advent of the resin casting technique [18] the interior morphology of mud shrimp burrows

received great attention, which greatly improved the understanding of their burrow structures

[8, 19–26]. Reports of resin casting in the inner burrow structure of A. edulis showed that these

are generally Y shaped with an upper U part and a lower shaft [27, 28]. One mud shrimp bur-

row has usually two openings and the mean distance between them is 21.8 cm [29] and 26.4

cm [27]. A single shrimp generally inhabits it. Studies on the outer morphology of the burrows

have not been done as yet.

We observed that the burrow wall composition was different from ambient uninhabited

sediments without the burrow. A previous study on the grain size of the sediments from abun-

dant areas of A. edulis revealed that these were mainly composed of fine silt (0.061mm), but a

detailed analysis between burrow and areas without burrows was not made as yet [27]. There-

fore, we studied here whether mud shrimps could change the sediment characteristics while

constructing their burrows acting as ecological engineers with substantial ecological impact.

Previous studies reported the effect of burrowing behavior of mud shrimps on the ecology of

tidal flats, mainly examining factors such as the bacterial abundance, change of oxygen and

nutrient fluxes, organic content inside the burrow and its potential to change the environment

[6–7, 30–35]. The burrow of A. edulis is more than 1 meter deep and this species is abundant

in the wetlands of western Taiwan [27]. Therefore, the influence of this thalassinidean shrimp

on the alteration of tidal flats must be substantial and they are expected to affect other benthic

animals living in the surroundings. Hence, studies on the composition (grain size analysis) of

the mud shrimp burrow wall (MSBW), and its comparison with the sediment from the back-

ground (a place without mud shrimp burrows) is timely.

In the laboratory, A. edulis rejected food offered into their burrow opening such as fish and

shrimp meat, planktonic algae, dead copepods, and aquaculture feed of shrimp larvae (Das

et al.unpublished data). From this observation, this shrimp is perhaps not a pure filter-feeding

animal.

While studies have indicated substantial changes of the environment caused by the mud

shrimp, it remains also important to calculate the substantial amount of carbon inside their

burrows as a food source [32, 36–37]. Amongst thalassinidean shrimps, Upogebiidae are con-

sidered mainly as filter feeders but some representatives also show plasticity for feeding behav-

ior [4,9]. The burrow provides a steady water flow and a stable carbon source in the burrow

for the animals living inside [22]. Therefore, an estimation of the organic carbon in the MSBW

that might be utilized by the mud shrimp A. edulis would be worthwhile.

The main objective of this study was to test the hypothesis whether the mud shrimp can

change its environment by building a burrow. In addition, we addressed the following ecologi-

cal issues, to study: (1) the outer morphological structure of a mud shrimps burrow wall and

its characteristics; (2) the potential of mud shrimps to modify a tidal environment by selecting

Effects of burrow by the mud shrimp on the sediment modification of tidal flat
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and fractionating sediments in the process of burrow building; (3) to measure the organic mat-

ter in a MSBW.

Material and methods

Study area

For sampling, we chose three sampling areas from north to south, which are tourist attractions

in Changhua County (Fig 1). The areas of investigation were: Shengang in the northern part

located close to the industrial park, Hanbow in the central, and Wangong in the southern part

along the western coast of Taiwan facing the Taiwan Strait (Table 1). Our study was permitted

and supported by the Industrial Development Bureau, Ministry of Economic Affairs. This

study did not involve specimens; tissue samples or any endangered or protected species. The

climate of Taiwan is affected by seasonal monsoons with the air temperature being 12˚C in

winter and 30˚C in summer. Ocean currents in this region are influenced by seasonal mon-

soons. In summer, the Kuroshio Branch Current and the South China Sea surface water enter

the Taiwan Strait from the south. In winter, the China Coastal Current enters the Taiwan Strait

from the north [38].

Fig 1. Map of the sampling area in western Taiwan.

https://doi.org/10.1371/journal.pone.0187647.g001

Table 1. Sampling period, location and coordinates of experimental specimen collections from different mudflat environments in western Taiwan.

Sampling period Sampling location (ca.)

Local name Latitude (N˚) Longitude (E˚)

September 2015–November 2016 Shengang 24.168094 120.457894

Hanbow 24.015691 120.349280

Wangong 23.968126 120.323173

https://doi.org/10.1371/journal.pone.0187647.t001

Effects of burrow by the mud shrimp on the sediment modification of tidal flat
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Sampling strategy

We conducted the field sampling from September 2015 to November 2016. Samples of mud

shrimp A. edulis burrows were collected carefully by using a shovel or small rake or fork. A

densely populated area was randomly chosen to be sampled with a shovel; a portion of mud

block containing burrows of mud shrimps was scooped out. As the burrows were very dis-

tinct from the background sediment in terms of texture, hardness, compactness, and shape,

this enabled an easy separation of muddy burrow blocks and loose sandy background sedi-

ments. The samples of burrow and background sediment were both collected from above 30

cm depth. We washed the burrows gently to remove loose sediments attached to it. A total of

50 samples from burrow and 50 samples of surrounding sediment were randomly collected

from each area. We collected background sediment from areas comprising no mud shrimp

burrow as a control to be compared with the burrow sample. In total, about 300 sediment

samples were collected to find out the difference in the composition and to measure the ash

free dry weight (AFDW, organic matter, carbon content) for three areas. After collection,

the samples were placed carefully in separate zip-lock bags and were carried to the labora-

tory. In the laboratory, the samples were then stored in a -20˚C refrigerator until analysis. In

addition, for measuring the diameter of the burrow we collected 3 resin casts of the burrow

of A. edulis in November 2015 from Hanbow according to Li. et al, 2008. We measured the

diameter of the burrow at every 10 cm depth from the surface to the bottom in all three resin

casts.

The other objective was to study the structure of the burrow wall of A. edulis, which

required a different technique. The objective was to acquire the complete burrow shape and to

show thick patches of fine sediments accumulated by the mud shrimp during their burrow-

building processes. A considerable depth and a wide surface area containing at least a major

portion of one burrow with two openings were necessary to collect. Wooden planks were

hammered into the sediment from all four sides for taking a mud block of the following size

30 × 30 × 30 cm3 that contained a portion of the outer dimension of a burrow. After this, two

shovels were inserted from two opposite sides into the bottom of the mud block. This was

done at all four sides for easy removal of the mud block from the tidal flat. Then, we wrapped

and tied the planks with adhesive tapes repeatedly to make the structure firmer. The wooden

box was then lifted up carefully from the mud flat and was carried to the laboratory.

There, after the removal of the wooden planks a weak water stream comparable to the

tidal hydrological force was used to remove the loose sediment. Coarse sediment that was

not part of the burrow was gently washed away, and the hard burrow structure got gradually

exposed. This burrow structure was used to measure the traits of the outer wall and for photo

documentation.

Sediment handling and analysis

We randomly selected 8 samples of burrow and 8 samples of background sediments in total

from each sampling area in order to measure the sedimentary composition. Particle size was

determined by passing each sample of sediment through a series of sieves. The fraction

remaining on each sieve was collected in a pre-weighed 100 ml beaker. A total of 7 mesh sizes

(4, 2, 1, 0.5, 0.21, 0.105 and 0.063 mm) were used to pass the samples and gradually separate

them into different size groups. After collecting the remaining fraction, the total weight was

again noted for each size fraction and was expressed as a percentage of the weight of the origi-

nal sample.

For measuring the volume of the burrow wall, the portion of one entire burrow collected

from 30cm depth was wrapped tightly with Polyethylene wrap film to measure the total

Effects of burrow by the mud shrimp on the sediment modification of tidal flat

PLOS ONE | https://doi.org/10.1371/journal.pone.0187647 December 13, 2017 4 / 17

https://doi.org/10.1371/journal.pone.0187647


volume by using the water displacement method [39]. For measuring the burrow lumen,

Volume ¼ p� r2 � length ð1Þ

where, r = radius of the resin casting, which is 2 cm (from the resin cast collected in November

2015), length is the height of the mud block, which is 30cm.

For revealing the variability of sedimentological characteristics of mud shrimp burrows, we

used a total of 12 samples from three sampling areas to measure the void ratio (e).

e ¼ Vv � Vs ð2Þ

where Vv is volume of void (equal to volume of water), Vs is volume of solid sediment sample

(equal to volume of burrow sample).

Estimation of organic matter of the mud shrimp burrow wall

We weighed a total of 10 adult individuals of mud shrimps (5 male and 5 female, carapace

length: 12.22–13.97 mm, 13.39 ± 0.69 mm (mean ± standard deviation), 4 samples of back-

ground sediment and 12 samples of the inner surface of the mud shrimp burrow from three

sampling areas for wet weight (WW). The dry weight (DW) of the samples was determined by

drying in an electric oven at a constant temperature of 60˚C for 24 hours. Both WW and DW

were measured by analytical microbalance (Type AG 135, Mettler Toledo, Switzerland) and

recorded. Dried samples were then placed in an electric oven and combusted at a constant

temperature of 500˚C for 16 hours to measure the ash weight (AW). For revealing the organic

content of the samples, the AFDW was calculated by deducting the AW from the DW.

In order to calculate the organic matter of the MSBW, a definite volume of the burrow sam-

ple was required. For this, a volume of 10 cm3 burrow sediment from the inner surface was

used to measure the AFDW. Hence, the estimation of the AFDW of one whole mud shrimp

burrow was following the Eq (3):

AFDWt ¼ IDB� p� LB� AFDWbm� Vm ð3Þ

Where AFDWt is represented by the total AFDW in one whole mud shrimp burrow, IDB is

the inner diameter of the burrow, LB is the length of the burrow, AFDWbm is the AFDW in

the burrow mud, and Vm is the volume of the burrow mud used to measure the AFDW. In

this study, the inner diameter of the burrow was 20 mm from the resin samples collected in

November 2015 (20 ± 0.12 mm). The length of the burrow was considered to be 100 cm since

in previous studies the lengths of the burrows at the sampling sites near this study area were

ranging between 80–100 cm [27].

Data and statistical analysis

To compare the composition of sediment samples in the mud shrimp burrow and surround-

ings, Student’s t-test was applied to identify the differences between different sizes of sediment

particles. The data for the proportion of sediment (%) and the proportion of AFDW in the sed-

iment (%) were arcsine transformed in order to satisfy the assumptions of normality and

homogeneity of variances. To identify the differences in the AFDW (carbon content) of the

surroundings and mud shrimp burrow in three sampling areas, one-way analysis of variance

(ANOVA) followed by post hoc Tukey’s honest significant difference (HSD) test were applied.

To evaluate whether the carbon content inside the burrow was sufficient to support the shrimp

living inside, the ratio of AFDW in MSBW and a single individual of shrimp (A. edulis) was

calculated.

Effects of burrow by the mud shrimp on the sediment modification of tidal flat
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Results

Morphological traits of the mud shrimp burrow wall

The sediment texture of mud shrimp burrows appeared finer than the background sediment

in all the three sampling areas. We studied the outer structure, which is the burrow wall, and

the inner narrow tube, referred to as the burrow lumen from the portion of the mud block

collected at 30cm depth. The burrow wall of the mud shrimp burrow was very broad and

appeared huge in contrast to the burrow lumen, which only represented a thin narrow hollow

tube of a confined shape (Fig 2). From the morphology of the burrow wall, a round-shaped

Fig 2. Photo of the mud shrimp burrow wall. Top view of the burrow showing the opening (a), the trunk of

the burrow gradually thickening with depth (b), irregular deposition of the clay in the burrow wall (c), and intact

morphology of the burrow wall 1 year after collection (d).

https://doi.org/10.1371/journal.pone.0187647.g002

Effects of burrow by the mud shrimp on the sediment modification of tidal flat
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opening was noted on the upper part (Fig 2a). Gradual thickening was significant from the top

to the bottom of the burrow with the diameter being 4–5 cm at the top and 20–25 cm at the

bottom (in about 30 cm depth). Distinctive portions are the opening of the burrow and a

chimney-like trunk narrowing from the lower to the upper portion (Fig 2b). An extremely

irregular deposition of thick mud without a distinct shape was noted on the outer surface of

the burrow (Fig 2c). The trunk of the burrow appeared to be strong and not fragile when it got

dry after 1 year (Fig 2d). The volume of the burrow wall showed a huge difference with the vol-

ume of the burrow lumen (Fig 3). The volume of the burrow wall was about 19.1 (± 6.0) times

of the burrow lumen (n = 2).

Composition of the mud shrimp burrow wall

The composition of MSBW showed a clear difference to background sediments in all three

sampling areas (Fig 4). The composition of background sediments indicated that the mud

shrimp used a habitat with a higher proportion of medium sand (> 70% of size F1.63) and

clay (size F9). The accumulation of clay (size F9) in the burrow wall was noticed in all three

study areas when compared with the background sediment (Fig 4). Most of the size categories

in the MSBW were altered particularly in Wangong. When the results of all MSBW samples

were combined, the Student’s t-test revealed that proportions of size F 1.63, were significantly

higher in background samples than in burrow samples (t = 6.61, p< 0.001). Nevertheless, the

proportions of size F -0.5 (t = -2.09, p = 0.043), 3.63 (t = -5.22, p< 0.001) and 9 (t = -25.01,

p< 0.001) were significantly higher in burrow samples than in background samples (Table 2).

Taken together, the results of the composition of MSBW revealed: (1) the ability and the pref-

erence of mud shrimps to select fine sediments to build their burrows, and (2) the changes in

the sediment characteristics by the burrowing behavior of the mud shrimps is caused by a

change of the physical sorting of sediment particles of the tidal flat by accumulating finer sedi-

ments inside their burrows.

Furthermore, the traits of MSBW showed an average value of the void ratio (e): 0.43 ± 0.04

(%), 0.4 ± 0.06 (%) and 0.24 ± 0.04 (%) collected from Shengang, Hanbow and Wangong,

Fig 3. The volume of the burrow wall and the burrow lumen. Pie chart—the proportion of the burrow wall

and the burrow lumen in a mud block.

https://doi.org/10.1371/journal.pone.0187647.g003
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Fig 4. Accumulated percentage and proportion of sediments in burrow wall and surroundings from three sampling areas. Shengang (a),

Hanbao (b), and Wangong (c).

https://doi.org/10.1371/journal.pone.0187647.g004
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respectively. The void ratio of the MSBW found in all three areas was very low. The results of

Student’s t–test (d.f. = 6) indicated that void ratios were significantly higher in samples of the

ambient environment than in mud shrimp burrows in Shengang (p< 0.001, t = -28.24), Han-

bao (p< 0.001, t = -17.65), and Wangong (p< 0.001, t = -19.71). (Fig 5a)

AFDW analysis

The content of AFDW in the three sampling areas varied, ranging between 1.55 ± 0.10 (% of

dry burrow sample, Wangong) and 1.74 ± 0.08 (% of dry burrow sample, Hanbow). The statis-

tical results showed no significant difference in MSBW among the 3 sampling areas, but all

AFDW values in the MSBW were higher than the background (control) samples (p< 0.001,

one-way ANOVA, Fig 5b). The average content of AFDW in MSBW was 1.23 ± 0.11 (% of dry

burrow sample). By using the Eq (2) the AFDW in one entire burrow (burrow lumen 1cm

thick) was found to be 14.17 ± 2.82 g.

The average AFDW of one adult mud shrimp was 0.586 ± 0.038 g, whereas no significant

difference was found between the two sexes (p> 0.05, student T-test). Further, the AFDW in a

single burrow was 24.2 times to the AFDW of one shrimp (Fig 5c).

Discussion

Burrow characteristics

The burrow of A. edulis comprises of an upper U-section and a central shaft, thereby giving an

overall Y-shaped appearance [27]. The structure of the burrow of A. edulis is similar to suspen-

sion feeding upogebiid shrimps like having small and narrow circular tunnels [5, 19, 27,-28,

40]. The upper U-section of the burrow is generally formed for the exchange of water from

Table 2. Results of Student’s t-test comparison for proportion (%) of each size category of sediment between habitat (control) and burrow.

Location Shengang (n = 8) Hanbao (n = 8) Wangong (n = 8) All (n = 24)

Φ value Control Burrow t-value, Control Burrow t-value, Control Burrow t-value, Control Burrow t-value,

WSC p-value p-value p-value p-value

-7 0.32 0.32 0.70, 0.34 0.29 -0.27, < 0.01 0.01 -0.47, 0.22 0.2 0.24,

Cobble 0.5 0.79 0.65 0.81

-1.5 0.08 0.08 -0.341, 0.13 0.2 -1.69, 0.02 0.02 -0.45, 0.08 0.1 -1.05,

Granule 0.74 0.11 0.66 0.3

-0.5 0.77 0.82 -0.82, 0.19 0.34 -2.60, 0.03 0.22 -8.85, 0.33 0.46 -2.09,

Very coarse sand 0.43 0.021* 0.001** 0.043*

0.5 8.51 8.55 -0.15, 2.9 2.9 -0.23, 0.08 0.19 -7.50, 3.83 3.88 -0.23,

Coarse sand 0.99 0.82 <0.001** 0.82

1.63 70.44 63.42 2.66, 85.82 70.13 4.77, 84.25 47.76 9.77, 80.17 60.44 6.61,

Medium sand 0.02* <0.001** <0.001** <0.001**

2.75 15.42 10.04 2.42, 7.93 10.12 -0.59, 13.76 29.86 -4.89, 12.37 16.67 -1.26,

Fine sand 0.03* 0.57 <0.001** 0.21

3.63 1.48 2.08 -1.80, 0.93 2 -1.67, 0.27 2.92 -19.67, 0.9 2.33 -5.22,

Very fine sand 0.1 0.12 <0.001** <0.001**

9 2.98 14.7 -24.61, 1.74 14.02 -12.82, 1.58 19.02 -45.22, 2.1 15.92 -25.01,

Clay <0.001** <0.001** <0.001** <0.001**

n is number of samples. WSC is Wentworth Size Class.

* Significant at the p < 0.05 level (2-tailed);

** significant at the p < 0.01 level (2-tailed).

https://doi.org/10.1371/journal.pone.0187647.t002
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Fig 5. Comparison of the void ratio of the mud shrimp burrow wall and the ambient sediment in 3

sampling areas; (a) comparison of ash free dry weight of background sediment and mud shrimp

burrow wall using one-way analysis of variance, followed by Tukey’s test; (b) relative weight of ash-

free dry weight of one individual of mud shrimp and one whole mud shrimp burrow wall (c).

https://doi.org/10.1371/journal.pone.0187647.g005
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outside to inside of the burrow since these shrimps are mainly filter feeders [27, 22, 41–42].

The burrow of A. edulis showed the presence of circular chambers, which is used for turning

the body inside the burrow [27].

The burrow lumen was found to be a narrow tube with a definite dimension of arm width

extending vertically into the sediment by building a central shaft [27]. Also, arm width, volume

and the total depth of A. edulis burrows were significant positively correlated with size of the

shrimp [27]. The present study is the first record showing the outer burrow wall of the A. edulis
burrow. Several interspecific variations are known from Upogebiidae shrimp burrow mor-

phology with respect to their structure, shape, and dimension [27, 42]. In the case of the

deposit feeder ghost shrimp Nihonotrypaea petalura, the extension of the burrow was greater

horizontally than vertically, having a single opening at the surface [43]. Even though the bur-

row lumen of A. edulis had a distinct Y-shaped appearance, the outer burrow wall was thick

with an overall irregular shape and became extended with accumulated sediment. In a previ-

ous study, Upogebia pusilla was observed to push significant amounts of sediment against the

burrow wall in order to considerably enlarge the burrow and build the burrow lining [19, 44].

The result of the present study supports the above inference about the behavior of the mud

shrimp (A. edulis), because their burrowing behavior leads to a thick deposition of clayey parti-

cles that ultimately strengthen the burrow.

Grain size distributions in burrow and background

Burrowing animals exhibit a strong influence on the physical characteristics of the sediment

by altering the penetrability and permeability to water, and the water content of the burrow

[37, 45, 46]. Studies on how the burrowing or other biological activities affect the physical

characteristics of the sediment are few [47]. The pattern for the alteration of physical charac-

teristics of the sediment for mud crab species like Uca uruguayensis and Chasmagnathus gran-
ulata was marked by higher penetrability and lower permeability [45]. Several studies reported

the same phenomena about the effects of bioturbating animals [47, 48–50]. In the present

study, A. edulis was found to accumulate finer sediments (clay) when building their burrow.

This was also noticed in the crab C. granulata where the burrow is characterized by the accu-

mulation of finer particles, which meant that they could selectively choose respective sedi-

ments for building their burrow wall [45]. Their report revealed the trapping of clayey or finer

sediments inside the burrow tunnel during high tide. The present study also confirmed the

presence of clay particles in the burrow wall when compared to the sediment composition of

the background.

Some thalassinidean shrimps have funnel shaped burrow openings which are supposed to

act as sediment traps by collecting clayey particles and accumulating them in their burrow lin-

ings [13, 22, 51]. The burrowing crabs are supposed to deposit the sediment in the form of

mounds on the tidal flat over many tidal cycles, eventually covering the crab bed surface [45].

Furthermore, the accumulated sediments are cohesive, dense and not easy to transport [45].

This result was in accordance with the present study where the mud shrimp A. edulis accumu-

lated clayey particles and deposited them in their burrow randomly, providing an overall irreg-

ular morphology of the burrow wall. The accumulation of fine sediments might also happen

because of the breakdown of coarser sediments into finer particles by the mud shrimp while

burrowing. Both possibilities reflect the alteration of the sediment characteristics by the mud

shrimp, which provides a sedimentological impact on the mudflat [52].

The ability of selecting particles according to their size was noted before in thalassinidean

shrimps in some studies [4, 53]. These studies were mainly associated with understanding the

trophic modes of mud shrimps. For example, the trophic mode of Upogebia omissa was
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reported to have the ability to select finer particles based on size by re-suspension during

deposit feeding [4, 53]. The present study showed that mud shrimps could separate particles

during the burrowing process by separating finer sediments and accumulating them in their

burrow.

In this study the void ratio in the burrow wall was found to be very small (less than 0.5%),

and indicates a low permeability. A tendency of the shrimp to isolate themselves from the

outer world by building strong, compact burrows with very small openings indicates that this

animal does not need to access the surface [22]. A previous study on the mudflat amphipod

Corophium volutator showed that the permeability of the sediment decreased with an increase

in population density [47]. The results of these authors suggest an inverse relationship between

shear strength and permeability of the sediment that might be responsible for biological activ-

ity. The result of the present study confirms that the influence of some mud flat animals can

change certain characteristics of the sediment, which may, therefore, affect other benthic ani-

mals living in vicinity [54]. In fact, ecosystem engineers can create their own modified habitat

by impacting the functioning and the structure of the ecosystem [55].

The low void ratio and the compactness due to the accumulation of clayey particles increase

the shear strength of the burrow [47, 56, 57, 58]. These characteristics of the burrow can pro-

tect mud shrimps from predators [41]. Several studies noticed that upogebiid shrimps reduce

the diameter of their burrow opening [19, 59]. This phenomenon of small openings could be

to maximize the generation of currents and to hide from predators [22]. Some ghost shrimps

could survive in very low oxygen and have their own response mechanisms in order to thrive

under hypoxic conditions [60]. The present results support previous studies and highlight the

fact that mud shrimps alter the physical characteristics of the sediment in order to build strong

burrows.

Organic carbon in the burrow wall

The content of the organic matter in the MSBW is an important parameter to calculate the

available particulate organic matter as a trophic source for mud shrimps. Previous studies have

shown higher values of organic matter in the burrow wall than those of the background sedi-

ment in most Upogebiidae shrimps [32, 36, 59–63]. In the present study, the organic content

in the burrow wall was also found to be higher than in background sediments. In fact, a recent

study reported high quality particulate organic matter (POM) as an essential component in the

diet of the ghost shrimp N. californiensis. This POM reaches out to the bottom of the deep bur-

row commonly through sediment reworking or burrowing behavior of ghost shrimps [64].

From previous studies, the Upogebiidea have been reported mainly as filter feeding animals

[22, 53, 65–68]. However, there are other studies that reflect different trophic modes and

sometimes even more than a single mode [22, 68]. According to the report of Coelho et al.

(2000), U. omissa had a strong tendency for deposit feeding; they described this species as a

generalist feeder. This dual trophic behavior has been previously reported for U. pusilla [67]

and U. stellata [22]. Hence, a detailed study of the burrowing and feeding behavior of mud

shrimps is necessary.

In the present study, the value of AFDW of one entire mud shrimp burrow was 24 times

higher than that of an adult mud shrimp. According to the ten percent rule in a trophic pyra-

mid, during the transfer of energy from the organic food from a lower trophic level to a higher

trophic level, approximately 10 percent of the energy from organic sources is transferred to the

higher trophic level [69]. Shrimps belonging to the Upogebiidae are shown to have trophic

plasticity [22]. A study on the callianassid shrimp Callianassa subterranea showed that ground

dried algae and dried zooplankton can let these animals survive in the laboratory for more
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than 2 years [70, 71]. According to the report of Kinoshita et al. (2008), organic particles were

easily trapped in the burrow of Upogebia major, which are mainly considered to be filter feed-

ers. The present study gives an idea that the organic carbon content is significantly higher in

the burrow than the background and this might be a possible source of trophic energy for the

mud shrimp living inside.

Conclusion

The mud shrimp A. edulis selects specific particle sizes during their burrowing activity and this

way changes the sediment characteristics of mudflats. The ability to choose finer sediments for

building their burrow was noticed. The structure of the burrow wall differed greatly from the

burrow lumen. The burrow wall was thick with an accumulation of clayey particles. These

clayey particles formed the burrow wall, which showed a low void ratio, thereby indicating a

low permeability and higher sheer strength to protect the mud shrimp living inside the bur-

row. The burrow wall of A. edulis has almost 24 times higher organic content than one individ-

ual of mud shrimp. The shrimp might sustain its life with the available organic matter inside

the burrow. These findings about the behavior of the mud shrimp A. edulis reflect a change or

alteration of the mud flat characteristics with a probably substantial ecological impact. The

particular mechanisms of fine sediment acquisition while building the burrow and the quanti-

fication of burrow strength of the mud shrimp A. edulis demand for in depth follow-up

studies.
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