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Abstract

Chimera states, which consist of coexisting domains of spatially coherent and incoherent

dynamics, have been intensively investigated in the past decade. In this work, we report a

special chimera state, 2-frequency chimera state, in one-dimensional ring of nonlocally

coupled Brusselators. In a 2-frequency chimera state, there exist two types of coherent

domains and oscillators in different types of coherent domains have different mean

phase velocities. We present the stability diagram of 2-frequency chimera state and study

the transition between the 2-frequency chimera state and an ordinary 2-cluster chimera

state.

Introduction

Chimera state refers to a type of fascinating hybrid dynamical states in which identically cou-

pled units spontaneously develop into coexisting synchronous and asynchronous parts.

Since its discovery in nonlocally coupled phase oscillators in 2002 [1], chimera state has

become a very active research field [2, 3]. It has been extensively observed that chimera states

can occur in globally coupled [4, 5] and locally coupled oscillators [6], periodic and chaotic

maps [7], Stuart-Landau models [8, 9], Van der Pol oscillators [10], FitzHugh-Nagumo

(FHN) oscillators [11], Hindmarsh-Rose models [12], Hodgkin-Huxley models [13] and

Delayed-Feedback Systems [14]. Chimera states on random networks and on multiplex net-

works have been investigated [15–17]. Recently, chimera states were realized experimentally

in chemical [18, 19], optical [20, 21], electronical [14], mechanical and electrochemical sys-

tems [22–25].

Different types of chimera states such as breathing chimeras [2], multi-cluster chimeras

[26–28], and spiral chimeras [29, 30] have been discovered and investigated in details. How-

ever, in these chimera states, coherent oscillators always have the same mean phase velocity. In

this work, we will report a new type of chimera state in which coherent oscillators may have

different mean phase velocities.
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Materials and methods

We consider a one-dimensional ring of N nonlocally coupled Brusselator [31] in which the

individual unit is coupled to R neighbors on each side with coupling strength �:

_Xk ¼ A � ðBþ 1ÞXk þ X2
k Yk

þ
�

2R

XkþR

j¼k� R

DuuðXj � XkÞ þ DuvðYj � YkÞ;

_Yk ¼ BXk � X2
k Yk

þ
�

2R

XkþR

j¼k� R

DvuðXj � XkÞ þ DvvðYj � YkÞ

ð1Þ

The subscript k refers to the unit index, which has to be taken module N (or period boundary

condition). Following Ref. [11], the coupling matrix is modelled as:

D ¼
Duu Duv

Dvu Dvv

 !

¼
cos� sin�

� sin� cos�

 !

: ð2Þ

Brusellator is a theoretical model for a type of autocatalytic reaction. Isolated Brusselator

allows for an equilibrium at X = A and Y = B/A. When B> 1 + A2, the equilibrium becomes

unstable and leads to a limit cycle.

To require that the Brusselator units work in the oscillatory regime, we set A = 1, B = 2.1. It

is convenient to consider the ratio r = R/N, the coupling radius, which ranges from 1/N (near-

est-neighbor coupling) to 0.5 (global coupling). In addition, we let ϕ = π/2 + θ. Throughout

the paper, we numerically simulate Eq (1) by using the fourth-order Runge-Kutta method with

a time step δt = 0.01. The total number of the Brusselator units is set to N = 1000.

Results and discussion

We report a peculiar chimera state at r = 0.35, θ = −0.1, and � = 0.02 in Fig 1. The snapshot

of the variable Xk in (a) and the snapshot of the phase of oscillator Θk, defined as

eiYk ¼ ð _Xk þ i _YkÞ=j
_Xk þ i _Yk j, in (b) show the coexistence of spatially coherent domains, in

which oscillators distribute their variables in space in a continuous way, and incoherent

domains, in which the variables of oscillators are scattered. There exist two large and several

small coherent domains. Oscillators in the same large coherent domain are nearly in phase

while those in different large coherent domains have a phase difference between them at

around π. In contrast, coherent oscillators in small coherent domains may disperse their

variables over a large range such as the phase in the range of 2π. The snapshot of the oscillators

in the (X, Y) plane in Fig 1(c) shows that oscillators do not fall onto the orbit of isolated

oscillators.

Coherent and incoherent domains can be identified more clearly by the mean phase veloc-

ity of oscillators which is defined as ωk = limt−t0 ! 1[Θk(t) −Θk(t0)]/(t − t0) with t0 the transient

time. Oscillators in a same coherent domain share the same mean phase velocity while those in

a same incoherent cluster have different mean phase velocities. As shown by the profile of ωk

in Fig 1(d), there exists two large coherent domains and six small coherent domains. In an

ordinary view on chimera state containing multi-coherent-cluster, all coherent oscillators

share the same mean phase velocity. However, Fig 1(d) shows an extraordinary feature: oscilla-

tors in the two large coherent domains share a same mean phase velocity O1 while those in the

other six small coherent domains share another mean phase velocity O2. O1 6¼ O2 suggests that
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there are no fixed phase difference between oscillators in the large and the small coherent

domains. From now on, we call the chimera state as 2-frequency chimera state. The profile of

the mean phase velocity shows that the six small coherent domains are partitioned evenly into

two groups and spatially separated by the large coherent domains. Regardless of the antiphase

between the two large coherent domains, the 2-frequency chimera state is symmetric in space

under the transformation, k! 2k0 − k with k0 the location of the center of the large coherent

domain or the location of the center of the middle one among the three adjacent small coher-

ent domains (For convenience, we call the middle one in the adjacent three small coherent

domains as M-domain and others as S-domains). Thereby, the coherent domains are classified

as the large domain, the M-domain, and the S-domain. Within the same type of coherent

domain, different domains have the same domain size.

To further characterize the 2-frequency chimera state, we consider two other

measures. One is the difference between adjacent oscillators, defined as Dk ¼ hDkðtÞit ¼

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXk � Xkþ1Þ
2
þ ðYk � Ykþ1Þ

2

q

it with h�it the time average and the other is the variance σk of

Δk(t). The profile of Δk in Fig 1(e) shows that Δk reaches its minima in coherent domains. Δk is

nearly zero in the two large coherent domains, which confirms that coherent oscillators in the

Fig 1. Two-frequency chimera state. (a) Snapshot of the variable Xk. (b) Snapshot of the phaseΘk. (c) Snapshot of oscillators in the (X, Y) plane (in

black). Red curve denotes the orbit of isolated Brusselator. (d) The profile of the mean phase velocityωk. (e) The profile of the difference between

adjacent oscillators Δk. (f) The profile of the variance σk. (g) The spatiotemporal plot of the variable Xk after transient time. A = 1, B = 2.1, r = 0.35, θ =

−0.1, and � = 0.02.

https://doi.org/10.1371/journal.pone.0187067.g001
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same large domain are almost in phase. On the other hand, Δk stays at nonzero values in both

M-domains and S-domains, which is in agreement with the observation that oscillators in

small coherent domains are off phase as shown in Fig 1(a) and 1(b). Actually, Δk fluctuates

with the locations of oscillators in the incoherent domains and the strongest fluctuation

appears at the center part of each incoherent domain. Accordingly, Fig 1(f) shows that the

variance σk stays at its highest value at the center part of the incoherent domains. Furthermore,

Fig 1(f) shows σk = 0 in the two large coherent domains while nonzero σk in the M- and S-

domains. Fig 1(g) shows a typical spatiotemporal plot of the variable Xk for the 2-frequency

chimera state. To be mentioned, synchronous state is stable at the parameters in Fig 1. That is,

the 2-frequency chimera state coexists with the synchronous state. Moreover, the attraction

basin of the synchronous state is overwhelmingly larger than that of the 2-frequency chimera

state. Consequently, Eq (1) always builds up the synchronous state for arbitrary initial condi-

tions and the establishment of the 2-frequency chimera state requires deliberately prepared ini-

tial conditions. However, at certain range of θ such as θ 2 [0.6, 1.1], the synchronous state

might be unstable in Eq (1) and chimera states can be easily built up for random initial condi-

tions (The results on that are beyond the scope of this work and are not presented here.).

Using these chimera states as initial conditions, we find that the 2-frequency chimera states are

possible to be realized. For example, the 2-frequency chimera state in Fig 1 is generated using

the chimera state at σ = 0.09 and θ = 0.6.

To gain an overall view of 2-frequency chimera states, we explore the θ − � plane in the

range [−0.4, 0] × [0.005, 0.05]. We use the chimera state in Fig 1 as initial conditions and inte-

grate Eq (1) for 105 time units. After this interval, if the final state possesses a profile of mean

phase velocity with two different coherent frequencies, we classify the 2-frequency chimera

state as stable. The stability diagram of the 2-frequency chimera states is presented in Fig 2.

We observe a narrow stripe extending from θ’ −0.325 and �’ 0.04 down to θ’ 0 and �’

0.0125. Ordinary chimera state with two coherent clusters are developed on the right side of

the stable regime of the 2-frequency chimera state. In contrast, the coherent states including

synchronous state and travelling wave states appear on the left side of the stability regime

(To be noted, the synchronous state is always stable in Fig 2 if arbitrary initial conditions are

adopted.)

Now we investigate the transition between the 2-frequency chimera state and the 2-cluster

chimera state. The typical bifurcation scenario of the transition between them is presented in

Fig 3, where we fix θ = −0.1 and increase the coupling strength � from 0.02 to 0.03. Each row in

Fig 3 has been made for different coupling strengths, starting with the chimera state in Fig 1 as

initial conditions. The column A presenting the snapshots of the phases of oscillators after

transient time shows that increasing � turns a 2-frequency chimera state to a 2-cluster one.

During the process, the two large coherent domains remain while the other small coherent

domains are eliminated. Oscillators in different coherent domains are in anti-phase for the

2-cluster chimera state, which provides an explanation for the anti-phase between two large

coherent domains in a 2-frequency chimera state. The columns B and C, presenting the pro-

files of the mean phase velocity ωk and the profiles of Δk, respectively, suggest that the transi-

tion is a continuous one. With the coupling strength � increase, the sizes of the small coherent

domains vanish gradually and, interestingly, the small coherent domains in the 2-frequency

chimera state locate in the center part of the incoherent domains in the 2-cluster chimera state.

The phenomenon that new coherent domains emerge out of incoherent domain with parame-

ter change has been observed in Ref. [11]. Different from the 2-frequency chimera state, there

the new coherent domains share the same mean phase velocity with previous ones. The contin-

uous transition between the 2-frequency chimera state and the 2-cluster chimera state can be
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supported by using the 2-cluster chimera states at � = 0.03 as initial conditions. With the cou-

pling strength � decrease, Fig 3 can be reproduced.

Conclusion

In conclusion, we have investigated nonlocally coupled Brusselators in a ring. We reported a

new type of chimera states, 2-frequency chimera state. In a 2-frequency chimera state, there

exist two types of coherent domains and oscillators in different types of coherent domains

have different mean phase velocities. We explored the stability diagram of the 2-frequency chi-

mera state in the parameter θ − � plane. We studied the transition between the 2-frequency

chimera state and 2-cluster chimera state and found that the transition is a continuous one.

The discovery of the 2-frequency chimera state may shed light on the future studies on chi-

mera states.

Fig 2. Stability diagram. The stability diagram of the 2-frequency chimera state in the θ − � plane. The 2-frequency chimera state, the 2-cluster

chimera state, and the synchronous state are distinguished by the red squares, the cyan triangles, and blue circles, respectively. Other

parameters are same as in Fig 1.

https://doi.org/10.1371/journal.pone.0187067.g002
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Fig 3. Bifurcation scenario. Typical bifurcation scenario for the 2-frequency chimera state with θ = −0.1. For each value of the coupling strength �

(increasing from the top to the bottom, � = 0.02, 0.0225, 0.024, 0.025, 0.026, 0.0275, and 0.03, respectively) the snapshots ofΘk (column A), the profile

of the mean phase velocityωk (column B), and the profile of Δk (column C) are shown. Other parameters are same as in Fig 1.

https://doi.org/10.1371/journal.pone.0187067.g003
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11. Omelchenko I, Omelchenko OE, Hövel P, Schöll E. When nonlocal coupling between oscillators

becomes stronger: Patched synchrony or multichimera states. Phys. Rev. Lett. 2013 May; 110(22):

224101. https://doi.org/10.1103/PhysRevLett.110.224101 PMID: 23767727

12. Hizanidis J, Kanas V, Bezerianos A, Bountis T. Chimera states in networks of nonlocally coupled Hind-

marsh-Rose neuron models. Int. J. Bifurcat. Chaos. 2014 Mar; 24(3): 1450030. https://doi.org/10.1142/

S0218127414500308

13. Sakaguchi H. Instability of synchronized motion in nonlocally coupled neural oscillators. Phys. Rev. E.

2006 Mar; 73(3): 031907. https://doi.org/10.1103/PhysRevE.73.031907

14. Larger L, Penkovsky B, Maistrenko Y. Virtual chimera states for delayed-feedback systems. Phys. Rev.

Lett. 2013 Aug; 111(5): 054103. https://doi.org/10.1103/PhysRevLett.111.054103 PMID: 23952404

15. Zhu Y, Zheng Z, Yang J. Chimera states on complex networks. Phys. Rev. E. 2014 Feb; 89(2): 022914.

https://doi.org/10.1103/PhysRevE.89.022914

16. Ghosh S, Kumar A, Zakharova A, Jalan S. Birth and death of chimera: Interplay of delay and multiplex-

ing. EPL. 2016 Nov; 115(6): 60005. https://doi.org/10.1209/0295-5075/115/60005

17. Maksimenko VA, Makarov VV, Bera BK, Ghosh D, Dana SK, Goremyko MV, el at. Excitation and sup-

pression of chimera states by multiplexing. Phys. Rev. E. 2016 Nov; 94(5): 052205. https://doi.org/10.

1103/PhysRevE.94.052205 PMID: 27967153

18. Tinsley MR, Nkomo S, Showalter K. Chimera and phasecluster states in populations of coupled chemi-

cal oscillators. Nat. Phys. 2012 Sep; 8(9): 662. https://doi.org/10.1038/nphys2371

19. Schmidt L, Schönleber K, Krischer K, Garcı́a-Morales V. Coexistence of synchrony and incoherence in

oscillatory media under nonlinear global coupling. Chaos. 2014 Mar; 24(1): 013102. https://doi.org/10.

1063/1.4858996 PMID: 24697364
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