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Abstract

Idiopathic epilepsy is characterized by generalized seizures with no apparent cause. One of

its main problems is the lack of biomarkers to monitor the evolution of patients. The only

tools they can use are limited to inspecting the amount of seizures during previous periods

of time and assessing the existence of interictal discharges. As a result, there is a need for

improving the tools to assist the diagnosis and follow up of these patients. The goal of the

present study is to compare and find a way to differentiate between two groups of patients

suffering from idiopathic epilepsy, one group that could be followed-up by means of specific

electroencephalographic (EEG) signatures (intercritical activity present), and another one

that could not due to the absence of these markers. To do that, we analyzed the background

EEG activity of each in the absence of seizures and epileptic intercritical activity. We used

the Shannon spectral entropy (SSE) as a metric to discriminate between the two groups and

performed permutation-based statistical tests to detect the set of frequencies that show sig-

nificant differences. By constraining the spectral entropy estimation to the [6.25–12.89) Hz

range, we detect statistical differences (at below 0.05 alpha-level) between both types of

epileptic patients at all available recording channels. Interestingly, entropy values follow a

trend that is inversely related to the elapsed time from the last seizure. Indeed, this trend

shows asymptotical convergence to the SSE values measured in a group of healthy sub-

jects, which present SSE values lower than any of the two groups of patients. All these

results suggest that the SSE, measured in a specific range of frequencies, could serve to fol-

low up the evolution of patients suffering from idiopathic epilepsy. Future studies remain to

be conducted in order to assess the predictive value of this approach for the anticipation of

seizures.

PLOS ONE | https://doi.org/10.1371/journal.pone.0184044 September 18, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS
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Introduction

Epilepsy is a disorder of the brain characterized by an enduring predisposition to generate

unpredictable seizures. It is one of the most common neurological disorders affecting approxi-

mately 1 in 200 people. About 70% of patients are usually well controlled with antiepileptic

drugs, but still 30% of them show seizures that are resistant to medication and continue suffer-

ing from them [1].

Within the spectra of epileptic syndromes, primary generalized epilepsy or idiopathic epi-

lepsy is characterized by generalized seizures with no apparent cause. The general idea is that

they are genetic and not caused by any brain physical abnormality as the brain is anatomically

normal. One of the main problems in the management of these patients is the lack of reliable

biomarkers or the impossibility to predict the occurrence of new seizures. Diagnosis is based

on parameters like frequency of occurrence, severity and characteristics of the seizures. Tools

such as the electroencephalogram (EEG) [2] offer excellent temporal and spatial resolutions

for the assessment of brain activity and their study allows to characterize the seizures, fre-

quently detects the presence of abnormal inter-ictal activities (such as spikes, spike-wave com-

plexes, sharp waves, or mono-rhythmic activity [3]) and provides important parameters that

are used as prognostic information to guide the therapeutic treatment. Nevertheless, seizures

and epileptiform transients are not always present in EEG recordings and, in such situations,

the development of techniques that help evaluate and follow up epileptic patients may be criti-

cal. To date, differentiating subjects by visual inspection or by applying signal processing

methods on background EEG activities is still quite unreliable, mainly within the clinical

framework. Thus, no consistent markers exist and therefore a more precise prevention and fol-

low up is not possible.

EEG analysis has been approached from different perspectives; traditionally, basic linear

analyses in time and frequency domains were used. More recently, and motivated by the stud-

ies about the inherent non-linearity of the brain, some advanced features have been proposed

[4, 5]. Changes in EEG signal such as peak-to-peak amplitude, distance and energy ratio

between seizure and non-seizure intervals or entropy of ictal states versus baseline periods

have been used as metrics for the evaluation of epileptic activity [6, 7]. However, parameters

are often developed or selected under customized and case-specific schemes and thus lack the

suitability to be generalized. Here we focus on Shannon spectral entropy (SSE), an entropy-

based measure widely used as a quantifier of the complexity of a signal [8]. As it does not

depend on absolute scales like the amplitude or the frequency of the signal, it is well suited to

deal with the variability of EEG rhythms across and among subjects.

In this study, we analyze background EEG activity of patients suffering from primary

generalized epilepsy. Segments of EEGs selected for the analyses did not include interictal

activities and were indistinguishable from normal recordings. Nevertheless, the first set of

data was obtained from video-EEG recordings of patients that contained epileptiform activi-

ties (epileptic markers) in other portions of their files. In contrast, the second set of data was

obtained from video-EEG recordings of patients that presented no epileptic markers for the

whole length of their files, thus hindering clinical evaluation. We employed the SSE together

with a cluster-based statistical framework to identify the set of frequencies that differentiate

such sets of data and find that the SSE computed in the [6.25–12.89)Hz range allows to sepa-

rate (or classify) these two group of patients. Interestingly, we observe that, measured in

such range, this local spectral entropy (LSE) estimate shows a trend that is inversely related

to the elapsed time from the last seizure and, more importantly, that it approaches asymptot-

ically to the values shown by a control group of healthy subjects monitored in the same

conditions.
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Materials and methods

Subjects

We study EEG recordings from 20 patients with generalized epilepsy who had been monitored

in our video-EEG Unit at the Clı́nica Universidad de Navarra. The recordings correspond to

interictal periods. Patients comprise 14 women (f) and 6 men (m), aged between 11 and 70.

Among them, 16 have primary generalized epilepsy (pge), 1 suffers from primary generalized

epilepsy with hyperactivity (pge+h) and 3 where diagnosed of likely suffering from primary

generalized epilepsy (lpge). Clinical, EEG and treatment features of epileptic patients are sum-

marized in Table 1. In addition, a control group of 10 healthy subjects with no history of neu-

rological or psychiatric disorders were also investigated (3 women and 7 men, aged between

23 and 60).

The study was carried out in a retrospective way, by using data coming from routine tests

conducted in the Hospital following clinical instruction. Every patient signed an informed

consent indicating that recorded signals could be stored and later on used for teaching or

research purposes after being properly anonymized. As a result, the use of this dataset does not

need approval by an ethics committee but precludes their public sharing since no clause for

data sharing was included (data could be available upon request to one of the specialist, J.I.).

Only one of the authors (J.I.) had access to the personal data of the patients, but only in order

to remove them from the recordings and to assign a random alphanumerical code to each final

EEG file. Once patients were anonymized, they could not be identified by any means by none

of the authors of the study, since they all merely had access to the final EEG files.

Table 1. Group 1 include the patients with abnormal EEG (although we analyze only normal periods).

File Sex Group Age Epilepsy Drugs Days from last crisis

a1 f 1 23 pge keppra, gardenal 30

b3 f 1 22 pge keppra, gardenal 13

b5 f 1 31 pge topamax, lamictal, rivotril 20

b7 m 1 16 pge depakine, concerta 365

c3 f 1 15 lpge depakine, lamictal 6

c5 f 1 60 pge luminal, noiafren 1

c7 f 1 21 pge zonegran, kepra 1

d7 f 1 47 pge depakine, etoxusimida, rivotril, escitalopram 30

g3 m 1 67 pge topiramato, rivotril 300

g5 f 1 22 pge no 1

c2 f 2 32 lpge keppra, zebinix

d6 f 2 70 pge fenobarbital 2555

e8 f 2 51 lpge zonegran, carbamazepina 45

e12 m 2 23 pge keppra 30

1-epgp-normal f 2 19 pge clonzacepam, zonegram, lamotrigina 500

2-epgp-normal f 2 20 pge clonzacepam, zonegram, lamotrigina 1800

3-epgp-normal f 2 16 egp lamotrigina 3285

4-epgp-normal m 2 36 pge topiramato 1825

5-epgp-normal m 2 11 pge no treatment 1825

6-epgp-normal m 2 15 pge valproato 730

Group 2 include patients with fully normal EEG. Here, pge stands for primary generalized epilepsy and lpge for likely suffering from primary generalized

epilepsy.

https://doi.org/10.1371/journal.pone.0184044.t001
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EEG recordings

The EEGs were acquired by using standard video-EEG equipment [32-channel digital EEG

with LaMont amplifiers (LaMont Medical, Madison, WI, U.S.A.) and Harmonie software

(Stellate, Quebec Canada)]. The sampling frequency was 200 Hz and acquisition filters were

set between 0.5 and 70 Hz. Electrodes were placed according to the 10–20 system and both

mastoids were linked and used as reference. The duration of the segments is at least 120 s

taken from interictal periods with no epileptiform patterns such as sharp waves, spikes, spike-

wave complexes (spike-and-slow-wave complexes), nor polyspike-wave complexes. Activity

was considered as normal and as such not representative of any neurological disease according

to the evaluation of the two experts in the study (J.I and J.A.). Segments for the analyses were

either obtained from recordings showing epileptiform activity in other portions of the video-

EEG (epileptic patients group 1) or from recordings with no epileptiform signatures at all (epi-

leptic patients group 2). Recordings for healthy subjects were acquired in the same conditions

than that of the epileptic patients.

Signal conditioning and preprocessing

EEG signals were bandpass filtered in between 0.5 and 70 Hz to cancel the main effect of physi-

ological artifacts and epochs with evident signs of additional contamination were removed by

means of an automatic approach for artifact rejection [2]. To do so, we first segmented the

EEG signals into non-overlapping epochs of 10.24 seconds (2048 samples). Then epochs con-

taining muscular, ocular or low-frequency artifacts were automatically detected by using the

jointprob and rejkurtMatlab functions implemented in the EEGlab toolbox [9, 10].

Segments were marked as non-valid when they either appear as transient and unusual (i.e.

their values were outliers relative to background activity), or when the absolute value of their

kurtosis is too large compared to that of background activity [10]. We used thresholds equal to

3 times the standard deviations, which tend to work well in practice [10]. Fig 1 shows two

examples of epochs automatically detected as artifacts and thus rejected for further analyses.

Fig 1. Epochs automatically marked to be rejected. The picture shows (a) one epoch (in red) of the first channel of one recorded EEG

signal that does not satisfy the limits for kurtosis (rejkurt) used to identify background EEG signal; and (b) two epochs of the second

channel of one recorded EEG signal that probably (jointprob) do not belong to background EEG signal.

https://doi.org/10.1371/journal.pone.0184044.g001
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Shannon spectral entropy and local spectral entropy

The Shannon spectral entropy can be used as an irregularity metric in terms of the flatness of
the spectrum: if SSE is high it means that the spectrum tends to be broader and flatter, such as

that of white noise; if it is low then the signal energy tends to be concentrated into few fre-

quency bins, such as less complex signals or into specific frequencies such as sinusoids. [11]. In

this way, the spectral entropy can quantify certain spectral patterns that correspond to intuitive

visual differences in between regular and irregular signals.

The SSE for each individual epoch is obtained from the normalized power spectrum,

defined by Snðf Þ ¼
Sðf ÞP

Sðf Þ
such that ∑Sn(f) = 1, as follows:

SSE ¼ �
P

Snðf Þ log Snðf Þ; ð1Þ

where all the sums comprise only the discrete bins of the frequency range for which the power

spectrum exists (or is calculated). The base of the logarithm is 2 and in such case the units of

SSE are bits. Note that, according to their definition S(f) and Sn(f) are always greater than or

equal to zero, the latter case contributing to zero in the sum Eq (1).

Even if the SSE has been widely used in similar contexts to ours, its calculation is usually

conducted for the entire signal spectrum or restricted to predefined frequency bands [6, 7].

However, nothing stops us from defining arbitrary spectral intervals in which the spectral

entropy might be of greater interest. Here we exploited such idea by defining the local spectral

entropy as a metric to quantify the variation of the SSE with respect to the frequency. In order

to detect frequencies that contribute to statistical significance in the comparison between the

two epileptic groups, we splited the spectrum of interest into contiguous, possibly overlapping

frequency bands and calculated the SSE at each window. We term this set of values the local

spectral entropy (LSE) of the EEG signal.

We define the LSE at frequency f0 as the SSE in the spectral window [f0, f0 + w), where w
determines the window size and is user dependent. Then, given a power spectrum S(f) for fre-

quencies [fa, fb), the LSE requires the calculation of the SSE in consecutive (or overlapping)

windows of size w over the entire range of frequencies of interest [fa, fb), incrementing by Δf at

each step (note that if Δf< w, then windows overlap). A practical example is shown in Fig 2.

The LSE allows us to consider those channels and frequencies at which the statistical effect

might be observed are unknown in advance, which is something we cannot do with the

SSE. Consequently, by comparing the LSE of the two groups of epileptic patients, our goal

was to find statistical differences at specific frequency bands for one or more electrodes

simultaneously.

In the experiments we estimated the power spectrum for every 10 second epoch of each

subject (10 per group) and channel (19 per subject) via the spectopoMatlab function,

implemented by the EEGlab toolbox. This function delivers an estimate of the power spectral

density of the input by employing Welch’s overlapped segment averaging estimator. We used

spectopowith a window size of 512 samples (which corresponds to an FFT length of 512)

and 25% overlap. Then, we computed the set of values that comprise the LSE of each epoch

from their power spectra and averaged them across epochs to characterize every subject and

channel by a set of average LSE values. We used a window size w of 5Hz and a frequency step

Δf of 1 bin (1 bin equals 0.39Hz for an FFT of 512 points, at 200Hz) and calculated the LSE in

between 0 and 45Hz. Thus, we obtained 115 values for the FFT of size 512, at the sampling fre-

quency of 200Hz.
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Statistical analysis

Initially, an exploratory analysis was carried out to test the statistical properties of the data. Sta-

tistical tests revealed that the LSE values did not meet the normality (Kolmogorov—Smirnov

test) and equality of variance (F-test) assumptions for parametric testing. Furthermore, and in

order to control type I error when the multiplicity of testing is large (in our case 19 chan-

nels × 115 frequency values), a multiple comparison permutation approach was adopted [12,

13]. Importantly, this framework was also meant to detect the channels and frequency ranges

at which the LSE may differ significantly among groups; values that are not known prior to

applying the permutation test.

The single threshold test computes the permutation distribution of the maximal channel-fre-

quency statistic [12] over the set of all channels and frequencies. This is based on the statistic

obtained by comparing the LSE at each channel-frequency pair of the original configuration of

subjects to the LSE at each channel-frequency pair of permuted configurations of subjects. How-

ever, rather than computing the single threshold distribution, we calculated the cluster threshold

[12] distribution which is normally better suited to EEG and MEG data [13–15]. Specifically, we

followed the approach given in [13], based on grouping together channel and frequency neigh-

bours characterized by an individual test statistic smaller than a predefined threshold to form

clusters. Then, a permutation test was conducted on the two groups by first performing random

partitions of the original configuration of subjects, then obtaining clusters for the random parti-

tions and finally comparing the cluster-level statistics with those of the original significant clus-

ter. The proportion of random partitions that have a larger cluster-statistic than the observed

one is called the permutation p-value. If it is smaller than the critical alpha-level, then it is possi-

ble conclude that the data in the two experimental conditions are significantly different.

Data validation

Once the significant channel-frequency pairs were found, we evaluated the classification

performance of the LSE for such frequency range by means of a two-class ROC (receiver

Fig 2. Local spectral entropy. Illustration of the proposed calculation of the LSE from the spectral entropy of consecutive

frequency bins.

https://doi.org/10.1371/journal.pone.0184044.g002
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operating characteristic) analysis. Classification statistics are summarized in terms of true sen-

sitivity (true positive rate), specificity (true negative rate) and accuracy (total proportion of

correct classification).

In addition to the ROC curves we performed a 5-fold cross-validation to determine the

reproducibility of our experiments, using a 80/20 split. The basic idea consists in sequentially

splitting the recordings so that each data point ends up in the 20% test set exactly once. Conse-

quently, we divide the recordings of the two groups into sets of lengths 80%–20%, define the

optimal ROC working point using 80% of the data and classify the other 20% based on the

threshold associated to the optimal point.

To finish, and in order to assess the usefulness of the LSE, we compared the LSE values

related to the recordings from both epileptic groups with those of the control group (healthy

subjects). To do that, differences in the the averaged value of the LSE for the three different

groups were assessed by using the Kruskal-Wallis non-parametric ANOVA followed by post-

hoc multiple comparison tests.

Results

Statistical evaluation of the LSE metric

The first step of the permutation test consist of determining the channel-frequency clusters of

the original configuration of subjects so that clusters corresponding to random partitions can

be compared to the original ones and their significance be assessed. We used a sum of t-values

as the cluster-level statistic. Fig 3 shows the clusters found prior to calculating the significance

for the two groups of epileptic patients. The x-axis indicates the corresponding frequency and

the y-axis the channel. There is only 1 main cluster, clearly visible in the figure, to which the

clusters found when performing the permutations are compared.

In Fig 4 we show the result obtained by running the cluster-based permutation test on the

LSE samples of the two groups of epileptic patients. The figure depicts the LSE values corre-

sponding to each frequency from 0 to 45Hz. We plot the mean and confidence interval of

the LSE for epileptic patients group 1 in red, the mean and confidence interval of the LSE for

epileptic patients group 2 in blue and the interval of significance (if it exists) in black. In this

test, only 42 out of 5000 partitions had a cluster-level statistic (summed t-values) greater

than or equal to that of the main cluster. The exact p-value is obtained as 43/5001, which

accounts for the original cluster configuration (there is at least 1 random configuration with

the same statistic as the original). From the figure, it is evident that all electrodes are signifi-

cant at p = 0.0086 at least in the range of frequencies [6.25–7.89 + w)Hz = [6.25–12.89)Hz,

well below the typically required Monte Carlo alpha-level of 0.025 (for a two-tail test). Con-

versely, by considering the entire spectrum to estimate the SSE (i.e. following the classical

approach) we do not detect any significant difference between groups (Mann-Whitney

U-test, z = 1.3229, p = 0.1859).

Classification analysis

Once the statistical analysis established the channel and frequency limits of significance when

comparing the two groups, we analyzed the classification potential of the SSE in the aforemen-

tioned limits, i.e. in between 6.25 and 12.89Hz for all channels. Fig 5 shows a boxplot represen-

tation of the averaged SSE (across the whole set of channels and frequencies in the detected

range) for both groups of epileptic patients. While patients in group 1 are characterized by a

median SSE value of 3.85, patients in group 2 present a median of 3.63, thus leading to statisti-

cally significant differences (Mann-Whitney U-test, z = 2.5324, p = 0.01137).
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We then evaluated the “diagnostic” ability of the LSE by carrying out a two-class ROC anal-

ysis to determine group discrimination. By directly using all channels, we obtained the ROC as

depicted in Fig 5(b) characterized by an AUC = 0.84 (area under the curve) and an accuracy of

85% at the optimal working point (0.3, 1.0) for a threshold T = 3.7423 (bits). However, it is pos-

sible to improve classification by carefully choosing a subset of all available channels. In fact,

by averaging the SSE at channels O1 and O2, we obtain better group separation as depicted in

the boxplot of Fig 6(a) and further corroborated by the ROC of Fig 6(b), which is characterized

by an AUC = 0.92 and an accuracy of 90% at the optimal working point (0.3, 1.0) for a thresh-

old T = 3.7876 (bits). In order to determine such best subset, we performed a two-class ROC

analysis per channel, as shown in Fig 7, where the optimal individual ROCs are found to be for

channels O1 and O2.

Fig 3. Clusters for the permutation test. Channel and frequency neighbors found by running the clustering stage of the

permutation test for the local spectral entropy.

https://doi.org/10.1371/journal.pone.0184044.g003
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Reproducibility

To further validate our results, we performed a 5-fold cross-validation. We tested the repro-

ducibility of our experiments, both for the entire set of channels and also for the optimal subset

of electrodes. In Table 2 we summarize the results obtained for the optimal set of electrodes

Fig 4. Result of the permutation test. Mean and confidence interval of the LSE for epileptic patients group 1 and group 2 in red and blue

respectively. Interval of statistical significance in black. We show zoomed windows of significant frequencies overlapping the entire spectral

range at each electrode. There exists significance in all channels at p = 0.0086 at least in the range of frequencies [6.25–12.89)Hz.

https://doi.org/10.1371/journal.pone.0184044.g004

Fig 5. Classification analysis based on all significant electrodes. (a) Boxplot and (b) ROC curve corresponding to the classification

analysis of the two groups of epileptic patients. Red lines in the boxes mark the median and edges the 25th and 75th percentiles of the data.

https://doi.org/10.1371/journal.pone.0184044.g005
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(O1 and O2), and show that all subsets are classified satisfactorily with average true positive

rate equal to 86% and true negative rate equal to 76% (i.e. 81% mean accuracy).

Dynamics of primary generalized epilepsy

Next, and motivated by the evidence that most patients from group 2 (patients without epilep-

tiform activities in the background EEG of any of the recordings available) had had their last

Fig 6. Classification analysis for electrodes O1 and O2. (a) Boxplot and (b) ROC curve corresponding to the classification analysis of the

two groups of epileptic patients using values from channels O1 and O2. Red lines in the boxes mark the median and edges the 25th and 75th

percentiles of the data.

https://doi.org/10.1371/journal.pone.0184044.g006

Fig 7. Results of the ROC analysis for all channels. The best channels are O1 and O2 since we want to minimize the false positive rate

while having a good true positive rate.

https://doi.org/10.1371/journal.pone.0184044.g007
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crisis longer ago than those from group 1 (patients with epileptiform activities in the back-

ground EEG of portions of recordings not used for this study), we inspected the correlation

between the SSE in the frequency band of interest and the time elapsed from the last crisis. To

do that, we employed a linear regression model to fit the SSE (in bits) to the time from last cri-

sis (in log days scale). Fig 8 suggests the existence of a significant correlation between the SSE

and the time elapsed from the last crisis, (R2 = 0.253, F1,17 = 5.77, p = 0.028; x1 = −0.057679 bits

/log10 days, p = 0.028; intercept = 3.9016, p< 0.001). Indeed, we observe that the SSE values

reduce from 3.85 bits to 3.65 bits from time 1 day to� 8 years after seizures, and asymptoti-

cally trend to the SSE values of the subjects in the control group (median *3.63 bits).

As expected, when comparing the SSE values for the three groups, the statistical analysis

shows a significant dependence of the group factor (Kruskal-Wallis one-way ANOVA test,

w2
ð29;2Þ
¼ 16:1832, p< 0.001). Post hoc analyses revealed that the epileptic group 1 is character-

ized by significantly higher values of SSE than the epileptic group 2 or the control subjects

(multiple comparison test, p< 0.05). In contrast, no significant differences between epileptic

patients from group 2 and control subjects were found (p> 0.05).

All these results suggest that the SSE, measured in the specific frequency range detected by

the permutation approach, allows to detect hidden features in the background activities that

could be related to the normalization of the EEG activity in those patients with well-controlled

epilepsies. Indeed, these values trend to match to those of control subjects recorded in the

same conditions.

Discussion

Several authors have studied detection and prediction of epileptic EEG signals when ictal activ-

ity is present in the recordings along with background EEG rhythms (see [4, 5] for specific

examples and [6, 7] for reviews on the subject). Traditional basic linear analyses in the time

and frequency domains have been complemented or even replaced by more advanced linear

and non-linear features, motivated by the inherent non-linearity of the brain. However, epilep-

tic activities are not always present in EEG recordings and, in such situations, the development

of techniques based on the analysis of background EEG may be critical. Nowadays, discrimi-

nating between healthy and epileptic subjects by visual inspection alone or by applying readily

available simple processing methods on EEG rhythms is indeed quite complex, more so in the

medical environment. This is likely the reason why, in contrast with the abundant work dedi-

cated to epileptic seizures, publications in the literature that concentrate on studying spontane-

ous EEG activity of epileptic subjects are scarce [16, 17].

The most relevant features for processing resting state EEG in recent literature are possibly

based on information theory. A variety of linear and nonlinear parameters such as spectral

Table 2. 5-fold cross-validation (80/20).

Fold TPR TNR T (bits)

#1 100% 60% 3.8486

#2 80% 70% 3.8063

#3 80% 80% 3.8042

#4 80% 100% 3.8121

#5 90% 70% 3.8409

Average 86% 76% 3.8224

TPR (true positive rate / sensitivity): percentage of epileptic patients from group 1 correctly identified. TNR

(true negative rate / specificity): percentage of epileptic patients from group 2 correctly identified

https://doi.org/10.1371/journal.pone.0184044.t002
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entropy [4, 6, 18], wavelet entropy [19], approximate entropy [20], fractal dimension [21] or

Lempel-Ziv complexity [5] have been used to study the complexity of magneto- and electroen-

cephalographic signals in patients with epilepsy, as well as in other neurological diseases

[22–25].

In this study, we have investigated EEG background activities of patients suffering from pri-

mary generalized epilepsy using periods of EEG recordings that presented no epileptiform

activity. We have concentrated on an entropy metric because it is an intuitive parameter to

measure the complexity of a signal and since it does not depend on absolute scales like the

amplitude or the frequency of the signal, which is vital in an EEG application. The SSE metric

was proposed by Powell et al. in [26] to calculate the entropy based on the distribution of the

power spectrum [27] and applied some 20 years later by Inouye et al. for quantifying irregular-

ity of EEGs [11]. Several authors have applied SSE to the analysis of ictal recordings [4, 18],

revealing that the SSE values seem to be lower during ictal periods (seizures) than in normal

EEG segments [28, 29].

Here, we have proposed local spectral entropy (LSE), computed as the SSE within a specific

range of frequencies, and investigated the convenience of such metric to quantify the complex-

ity of the EEG signal for consecutive spectral bands. The LSE, coupled with a cluster-based

Fig 8. Linear fit of SSE vs time elapsed (log10) from last crisis (left) and boxplot of the SSE of healthy subjects in

the band of frequencies of interest (right). The fit suggests that the SSE decreases as the time from the last crisis

increases. Moreover, it should be noted that the SSE values seems to asymptotically converge in time to the levels of

control subjects.

https://doi.org/10.1371/journal.pone.0184044.g008
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permutation analysis, has allowed us to detect the optimal combination of frequencies and

channels that better differentiates the two group of epileptic patients. More specifically, the sta-

tistical analysis conducted on the LSE-channel pairs revealed significant differences at all avail-

able channels when estimated in between 6.25 and 12.89Hz. Indeed, patients with EEG signals

containing epileptic markers in other portions of their recordings show significantly larger

LSE values than patients with apparently normal background activity. Moreover, by averaging

the LSE corresponding to the channels with greatest individual ROC values, (O1 and O2) we

were able to classify groups of epileptic patients with 90% accuracy.

When compared to the values estimated from a control group of healthy subjects, the LSE

values from both groups of epileptic patients are larger. However, differences only reach the

statistical threshold when compared with the LSE values of the patients with epileptic signa-

tures. Patients without apparent abnormalities in the EEG present LSE values in between those

of the control subjects and those of the epileptic patients with markers. Furthermore, when

considering the elapsed time from the last seizure, results suggest that the stage of primary gen-

eralized epilepsy can be related to the complexity of resting state brain dynamics in a direct

manner; there is a significant correlation between the LSE in the [6.25–12.89) Hz range and

the time elapsed from the last seizure. Specifically, the LSE measured in epileptic patients

decreases as the time from the last crisis increases and asymptotically trends to converge to the

LSE values measured in the control group of healthy subjects. This is a relevant finding on its

own because, even if we can not propose the LSE as a prediction metric for seizures (there are

no clues about a potential increase of the LSE right before the seizure), it could well assist clini-

cians in the follow-up the patients after the seizure.

Other studies have found that SSE values are lower in background EEGs/MEGs recordings

of patients compared to control subjects [5, 16, 17]. Our study differs from these in that our

control group of healthy subjects present lower SSE values. But, bear in mind that, on the one

hand, metrics are not exactly the same in our study compared to other studies and, on the

other hand, our analysis is restricted to a narrow band of frequencies that has been selected

within an statistical framework devoted to detect the most suitable combination of frequencies

and channels for the classification task. In fact, by considering the entire spectrum, we do not

detect any significant differences between groups. Future lines of research could consider other

complexity metrics that have been successful in the literature, such as approximate entropy,

fractal dimension, Lempel-Ziv complexity or the wavelet turbulence of [30] to further validate

our results and to assess the predictive value of this framework for the anticipation of seizures.

Conclusions

We have studied and compared the SSE estimated from background EEG activity of two

groups of patients suffering from primary generalized epilepsy and a control group of healthy

subjects recorded with the same setup. We have found that, computed in the [6.25–12.89) Hz

range, the SSE is able to detect hidden characteristics of the EEG complexity that allows to dif-

ferentiate between patients with epileptic markers in the EEG from patients with apparently

normal EEG. When compared with a group of healthy subjects, epileptic patients (1) showed

larger values of LSE that (2) were inversely related to the elapsed time from the last seizure.

These findings suggest that, when patients are well controlled after the seizures, the complexity

of the resting brain dynamics gradually evolves to a less complex state, with a trend to reach a

state that characterizes healthy subjects. Additional studies including a complete follow-up of

patients before, during and after an epileptic seizure could serve not only to confirm this

hypothesis but, potentially, also to assess the validity of the current approach in the task of

understanding and monitoring how the brain transits to and from seizures.
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24. Hornero R, Escudero J, Fernández A, Poza J, Gómez C. Spectral and nonlinear analyses of MEG back-

ground activity in patients with Alzheimer’s disease. IEEE Transactions on Biomedical Engineering.

2008 June; 55(6):1658–1665. https://doi.org/10.1109/TBME.2008.919872 PMID: 18714829
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27. Gómez C, Hornero R. Entropy and Complexity Analyses in Alzheimer’s Disease: An MEG Study. The

Open Biomedical Engineering Journal. 2010; 2010(4):223–235.

28. Kannathal N, Choo ML, Acharya UR, Sadasivan PK. Entropies for detection of epilepsy in EEG. Com-

puter Methods and Programs in Biomedicine. 2005; 80(3):187–194. https://doi.org/10.1016/j.cmpb.

2005.06.012 PMID: 16219385

29. Subha DP, Joseph P, Acharya U R, Lim C. EEG Signal Analysis: A Survey. Journal of Medical Systems.

2010; 34(2):195–212. https://doi.org/10.1007/s10916-008-9231-z PMID: 20433058
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