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Abstract

We present here results of a theoretical investigation of particle transport in longitudinally
asymmetric but axially symmetric capillaries, allowing for the influence of both diffusion and
convection. In this study we have focused attention primarily on characterizing the influence
of tube geometry and applied hydraulic pressure on the magnitude, direction and rate of
transport of particles in axi-symmetric, saw-tooth shaped tubes. Three initial value problems
are considered. The first involves the evolution of a fixed number of particles initially con-
fined to a central wave-section. The second involves the evolution of the same initial state
but including an ongoing production of particles in the central wave-section. The third
involves the evolution of particles a fully laden tube. Based on a physical model of convec-
tive-diffusive transport, assuming an underlying oscillatory fluid velocity field that is unaf-
fected by the presence of the particles, we find that transport rates and even net transport
directions depend critically on the design specifics, such as tube geometry, flow rate, initial
particle configuration and whether or not particles are continuously introduced. The second
transient scenario is qualitatively independent of the details of how particles are generated.
In the third scenario there is no net transport. As the study is fundamental in nature, our find-
ings could engender greater understanding of practical systems.

Introduction

In a recent paper [1] we investigated laminar hydrodynamic flow through infinite axi-
symmetric, periodic capillaries by means of a boundary element method. The flow field, even
while laminar, exhibited vortex behavior in certain regions of the undulating tube, whose
geometry was characterized by a narrow throat of specified radius and length, and a finite-
length expansion zone, whose radius was a function of the axial coordinate. We quantified the
onset of flow recirculation appearing in the expansion sections of the tube as a function of
throat and expansion zone dimensions, focusing the study on tube geometries that possessed
axial symmetry. We found that for a given geometric shape, a critical expansion zone dimen-
sion existed above which a flow vortex region developed and grew (in each repeat section of
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the periodic tube). The growth as a function of geometric parameter was limited by the appear-
ance of a second recirculation zone above the first.

The natural question we now ask is what influences, if any, do these recirculation zones
have on the net transport of particles suspended in the fluid. Assuming that the particles do
not alter the makeup of the flow field, we are specifically led to ask the question of whether
there is an interplay between flow recirculation and particle diffusion. Is recirculation in com-
bination with or in competition with diffusion, in the net transport of particles? To the best of
our knowledge this question has not been addressed. The study presented here may provide
some elemental physical understanding to achieve the goal of protein, DNA or other macro-
molecular separation, separation of biological cells, as well as fine mineral particle separation
[2-7] and their transport. There are many features of the current work which point to it com-
plementing the recent analysis on hydrodynamic particle transport in tubes by Herringer et al.
[8]. Considering a more direct application, the model and simulation results can facilitate
greater understanding of subcutaneous drug delivery. Drug molecules are introduced to a vas-
cular system either by direct infusion (injection) into a blood vessel or at the conclusion of a
diffusive process through extra-vascular tissue following topical (skin) application. The in vivo
transport is then dictated by vascular diffusion from the point of entry and influenced by con-
vective forces due to the action of the heart pump [9-14]. Although a direct comparison
between our model results and practical measurements in living tissues is not realistic, some
useful insight into the latter system may be derived.

We thus investigate the dynamic behavior of particle distributions in infinite, periodic
tubes filled with a viscous liquid, which is disturbed by the action of a periodic pressure field
that drives the fluid forwards and backwards with no net fluid flow. In this theoretical study
three scenarios are considered. First consideration is given to the initial value problem of a
fixed number of particles, initially distributed over one wave-section, and then allowed to con-
vect and diffuse into adjoining wave-sections. Second is an initial value problem with the same
initial state but to which is added a continual supply of particles in the same single wave-
section. Both scenarios represent transient states of the system and arguably have a correspon-
dence with localized drug introduction in a blood vessel (see, e.g., Fig 4 in Dancik et al. [13]).
Finally, we consider an initial value problem adopting the state of a completely filled tube,
with particles subjected to an ongoing oscillatory fluid flux. In the latter case the entire system
is spatially periodic. The dynamics of these systems is governed by a hydrodynamic set of
equations for the fluid flow and a diffusive-convective equation with a forcing of particles due
to the motion of the suspending fluid. In the second scenario, a particle generation term,
applied in one section only, appears in the diffusive-convective equation. The study, as a
function of tube geometry, is fundamental in that the questions posed above are answered by
monitoring the net direction and rate of transport of particles through the tube at subsequent
times.

We consider tube shape and geometry as primary factors influencing the transport phe-
nomenon. We establish the effect on transport of longitudinal asymmetry, amplitude and
wavelength of corrugation, sharpness of expansion regions as well as length and radius of the
throat regions. We concentrate on geometric variants of a smoothed saw-tooth profile. That is,
in contrast to the study reported by Islam, et al. [1], we focus on tube profile asymmetry. The
theoretical model is described in the next section, while in the Simulation Results section we
explore a sufficient extent of parameter space to characterize the contributions of diffusion
and convection as well as the effect of geometry on facilitating particle transport in the three
scenarios. A discussion of the phenomenon of particle transport within an asymmetric, peri-
odic capillary, based on our findings, is relegated to the Discussion section.
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Theoretical model and governing equations

We consider a dispersion of particles of number density ¢(X, ) suspended in an incompress-
ible fluid of density p and dynamic viscosity y confined to an infinite, periodic axi-symmetric
capillary. Gravitational effects are ignored, which is equivalent to assuming that the particle
density is equal to the density of the fluid. Many of the fluid and particle assumptions outlined
below are similar to the assumptions adopted in recent work on peristaltic transport of nano-
particles in micro-channels [15, 16] (note that the latter work involves a two-dimensional sys-
tem in contrast to our axi-symmetric system).

A point on the surface of the axi-symmetric tube is given by the vector position
¥ = zz + h(Z)#, where Z and # are unit vectors in the longitudinal and radial directions,
respectively, and /(z) defines the tube surface. By assumption, spatial periodicity implies that
h(z) = h(z + L) where L is the spatial period of the periodic profile. The geometric variables
implicit in & will depend on the shape assumed. However, characteristic to all shapes that we
consider is a throat region of radius, B, and an expansion region of maximum radius, A + B.
The shape we consider predominantly in this paper is that of an asymmetric saw-tooth profile.
However, for comparison we also consider the special cases of a symmetric triangular profile
and a straight cylinder. Both the saw-tooth and triangular profiles have been smoothed to
eliminate corners. Fortunately, this smoothing also appears in experimental studies. The pro-
files we study then have a differentiable surface tangent vector. A schematic of the periodic
tube in longitudinal section and an illustration of the smoothed saw-tooth profile with defining
parameters are shown in Fig 1. In the following sections we refer to “leading” and “trailing”
edges of the saw tooth profile as explained in the figure.

The suspending fluid is assumed to be in a state of flow, driven by a time-varying pressure
gradient AP(f)/L, where AP(%) is the instantaneous pressure drop across one wave-section.
We shall assume both low Reynolds number flow and a sufficiently slow time variation of the
pressure to neglect the transient and convective terms in the Navier-Stokes equations and
allow use of the time independent Stokes system of equations. The latter assumption implies
that relative to the time scale of the pressure variation, the flow is able to adjust immediately.

(b)

expansion region =
=
2“
5 kS
Pregt =
[l
2
0 z
—0.5 0.5

Fig 1. (a) Schematic of an infinitely long, periodic tube of longitudinally asymmetric profile exhibiting particles introduced (i) in the central wave-section and
migrating out under diffusion and convection. (b) Detailed schematic of an axi-symmetric, smoothed, saw-tooth tube. Non-dimensional geometric
construction particulars are indicated in the figure. The leading edge of the saw-tooth profile is that part in the positive z half of the wave-section having the
steeper sloped boundary. The trailing edge is the shallower sloped boundary.

https://doi.org/10.1371/journal.pone.0183127.9001
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We also assume that the flow is instantaneously responsive to the slowly varying applied pres-
sure so that the time dependence of the fluid velocity mimics that of the applied pressure.

We also assume that the particle dispersion is sufficiently dilute and particle size sufficiently
small that one can neglect particle-particle and particle-surface interactions. More impor-
tantly, as mentioned earlier, with these assumptions we neglect the influence of the particles
themselves on the development of the fluid flow field. Under these assumptions, the hydrody-
namic and particle transport problems are partially decoupled.

Hydrodynamic flow in an infinite periodic tube

Given the assumptions outlined above, the hydrodynamic problem is decoupled from the parti-
cle transport problem. The former problem can then be solved within a single wave-section of
the tube under the condition of periodicity. This is in fact the problem solved by Islam, et al. [1]
by a boundary element method applicable to an infinite periodic tube. The reader is referred to
that work for details. In summary, the governing equations are the time-independent, linear
momentum and continuity equations, respectively,

_ 1_-
Vzﬁ:;V[), V-a=0, (1)

with a stick boundary condition on the tube surface, S,
u(x) =0, X €S, (2)

and pressure difference AP = P(x) — P(X + Lz) applied across one wave-section of the tube.
zZ/L + p(X) where the
amplitude (AP),,, will later be replaced by a slowly varying function of time and where, mean-
while, p(X) = (X + Lz) is a periodic function of z. In Eq (1), commonly referred to as the
Stokes system, p(7, z) is the hydrodynamic pressure, y is the viscosity of the fluid and u(z, 7) is
the flow velocity.

Presuming comparable radial and axial characteristic length scales, in non-dimensional
variables,z =z/L, r =7/L, p=p/(AP),,,, u=1uu/(L(AP)

become

For flow in an infinite periodic tube one can write P(x) = —(AP)

amp

ump)> the Stokes equations

Vu=Vp, V-u=0. (3)

The above spatial non-dimensionalisation would not be applicable for channels with highly
disparate lateral and longitudinal characteristic lengths for which case the z and r variables
should be scaled differently (see, e.g., [15, 16]). In Islam et al. [1] we expressed the fundamental
solution of this system in boundary integral form,

w) = - [ dsty) Glxy) - E(y)
, @
-1 [ s Hey) uy), xes.
u) = o [ dsty) Glxy) E(y)
: (5)
5 [ sy uly). xev.

evaluated on the tube surface and interior, respectively. Here, dS is an element of surface area
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on the boundary S at y, V is the interior tube domain and F(y) = —X(y) - fi(y) is the force per
unit area exerted on the fluid by the boundary at position y (boundary force), with X(y) as the

stress tensor,
Ou. Ou.
Y. =—po. LR )
v P oyt <8x. + 8x.>

j i

The surface normal a(y) = (#,, #1,) is directed outward from the volume V. Also, G(x, y) and
H(x, y) are known functions of the sample point x and source pointy, defined as follows [17]:

05 XX, XXXy
G;(x,y) = Pl and Hi(x,y) = 66—

where e = |X|andx =y — x.

Eqs (4) and (5) can be simplified considerably for an infinite, axi-symmetric and periodic
tube. Axi-symmetry obviates the dependence on azimuthal angle. Consequently, integration
over this variable can be performed immediately, reducing the two-dimensional surface inte-
grals effectively to one-dimensional integrals over the boundary line defined by a single longi-
tudinal section. Periodicity can be utilized to reduce these integrals over the infinite tube to a
set of finite, one-dimensional integrals confined to one wave-section. Details of this procedure
can be found in Islam et al. [1].

Axisymmetric particle diffusive-convective transport

We consider the scenario of time and spatial scales that lead to diffusive effects that are com-
mensurate with the influence of fluid convection. We thus consider here a macroscopic, con-
tinuum description and solve the axi-symmetric convective diffusion equation for the particle
number density, ¢(7, z, f):

% =V {-V(D,5) +ca} + ), (6)

where particle size, a, is partially and indirectly taken into account through its appearance in
the Stokes-Einstein formula Dy, = kgT,,,/(67ua) for the diffusion constant, where kg is Boltz-
mann’s constant and Ty, is temperature in degrees Kelvin. This equation governs the distri-
bution of point particles assuming a fluid convection contribution that is driven by a fluid
velocity determined in the absence of particles, i.e., u(7, Z, f) is treated as known in this
equation.

The final term in Eq (6), ¥ (Z, £), which only appears in the second initial value problem
considered here, is a particle generation term that is nonzero only in the central wave-
section, —L/2 < z < L/2 (details are given later). It represents the uniform (in 7) and contin-
ual (in ¢) production within that wave-section of particles that are subsequently transported
into neighboring sections. This term has been added with little consideration for how it could
be engineered in practice although one can imagine it to model approximately the introduc-
tion of particles (under adequate pressure) through a porous central section boundary. Main-
taining an ongoing generation term fortuitously also ensures that derivative calculations
remain significantly greater than numerical error by one to two orders of magnitude, or
greater. Given that we are interested in transport through an infinite periodic, axi-symmetric
capillary of longitudinal cross section, 4(Z), it suffices to consider particles introduced by
means of a smooth function that possesses the properties of (a) being non-zero only within the
central wave-section, W), approaching zero smoothly asz — £L/2, (b) being a differentiable
function of z, and (c) resulting in a zero first moment (see Simulation results) when integrated
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over the length of the central wave-section. A function satisfying these conditions is

¥(Oh,,, [ (—)4—1] P>05EW
Uz i) ={ h@)’ \T PR e (7)
0, otherwise,

where h,,;,, = B,
= {(7,2);7 € (0,h(2)),—L/2 <z < L/2}

and W(0) = co, W(t) = ¢/ T for t > 0 and ¢, is a prescribed scalar. This assumes a constant
(in t) and uniform (in 7) supply of particles in Wy; over a period of the pressure oscillation,
T, the function \/ (Z, f) generates a constant particle number, nc,Lh?,,. Including Egs (7) in (6)
allows particles to be introduced without preventing movement across W,.

Having thus described this functional form and associated initial state, we demonstrate in
S1 Appendix (Section C) that qualitative behavior of this initial value problem remains
unchanged if we instead invoke a simpler and cruder initial state, ¢(7,z,0) = ¢, forx € W, 0
otherwise, and a different functional form,

- %COS(RZ/L), t>0,xeW,
Y(z.1) = (8)

0, otherwise.

Using Eq (6) we follow the time development of the particle distribution through all wave-
sections.

Eq (6) is clearly an approximate representation for finite sized particles (with partial
account through Dy;,) [18]. For particles of finite size, higher order contributions arising from
(a) collisions of two or more particles, (b) reduced available volume for diffusion and (c) a
modified flow field, would have to be considered. Nevertheless, we expect that zeroth-order
behavior (addressing the questions of whether or not there is net transport, the relative influ-
ences of diffusion and convection, and the role of recirculation) can be represented by such a
description.

The boundary conditions that complement Eq (6) are the conditions of no particle flux
through the tube wall and of axi-symmetry, respectively:

n-Vec=0, x = (h(2),2), (9)
and
oc
—_— = O7 r = O 10
o7 ’ (10)

Using the same normalisation procedure that led to Eq (3), complemented by the density
normalisation ¢ = ¢/c, and time normalisation ¢ = /T, the convective diffusion equation,
Eq (6), becomes

Oc

% = —V - {=V(ac) + fcu} +

0 ( Oc e 8c Jc
oo (o) 4] Ao ] 4o

where the dimensionless constants are defined as o = D, T/L* and 8 = (AP) gy Tl ie., ratios

(11)
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of diffusive and convective strengths, respectively, to system-intrinsic values. The ratio §: a is
the mass transfer Peclet number, p,, viz, the ratio of convective to molecular mass transfer. The
non-dimensional particle generation term in Eq (7) is

2

bet) = s

for t > 0, and appears only in one wave-section of the tube and only in the second initial value

[cos (2nz) + 1], (12)

problem.

In this work we consider the numerical solution of Eq (11) for a range of values of & and 8
to ascertain the relative importance of diffusion versus convection for transport in longitudi-
nally asymmetric capillaries, for a range of different tube geometries.

In S1 Appendix (Section C) we complement the analysis and simulation results presented
herein with an analogous numerical study adopting the generation function in Eq (8) for t > 0
and the simpler initial condition ¢ = 1 in Wj,. A comparison of the two sets of results will show
that the qualitative behavior found is independent of the detailed nature of the chosen v/ (Z, 7)
function and of the initial condition, ¢(7, z, 0), although this scenario is different to the sce-
nario of no particle generation.

Numerical approach

To solve the one-dimensional, simplified version of integral Eq (4) (which is not reproduced
here due to its size and complexity), the tube boundary curve over which integrals are per-
formed is partitioned into N elements according to a grid defined along the z-axis; the integrals
are then re-expressed as a sum of integrals over these small elements. For a sufficiently fine grid,
the unknowns, which are the surface forces, are assumed constant over the elements and
extracted from under the integral signs; the segmented line integrals over the remaining known
quantities are then approximately evaluated using the trapezoidal rule. The equations making
up this boundary element approximation, together with boundary condition (2), comprise a lin-
ear system of 2N algebraic equations for the 2N unknown components of the force distribution
on the tube surface, f = (f,, f,). These equations are solved using an International Mathematics
and Statistics Library (IMSL) routine in Fortran. More numerical details are given in Islam et al.
[1]. Within the creeping flow approximation, given a slowly varying pressure difference, AP(f),
the fluid velocity field is assumed to adapt instantaneously to changes in the pressure.

Once the force distribution on the tube surface is known, it is used to calculate the fluid
velocity profile in the tube interior via the one dimensional version of Eq (5). It follows from
the assumption that the particle distribution does not influence the fluid flow field and the
condition of periodicity, that a velocity evaluation at position X, in the central wave-section is
periodically reproduced in all wave-sections at points modulo L of the central point, i.e., at
points X, = X, + kLZ for k € Z.

The assumption of an instantaneously responsive flow field to a slowly varying pressure dif-
ference implies that the time dependence of u corresponds to that of AP(t). Defined over a sin-
gle period only, the non-dimensional pressure differences which we consider here are,

AP (t) = P,sin(2xnt), 0<t<1,
AP,(t) = P,cos(2nt), 0<t<1,
AP (t) = —P,sin(2nt), 0<t< 1.
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In the above, Py = 1 (normalized by (AP),p,,) is a fundamental, constant pressure ampli-
tude; the dimensional angular frequency, w = 271/T, is prescribed with corresponding period,
T (with  scaled by T, the argument of the sinusoidal functions involves only the factor of 27).

In contrast to the method used to solve the fluid dynamic problem, we solve Eq (11), with
accompanying boundary and initial conditions, by an explicit discretization scheme applied to
a finite number of wave-sections. In the majority of cases, 61 wave-sections in all were consid-
ered to be the simulation domain; with K = 30 sections on either side of a central section. The

spatial domain was partitioned into a rectangular grid {(z;, rj)}fjfl based on uniform linear
grids of size Ar and Az, respectively, established for given tube dimensions, where N(M) is the
number of grid points in the z(r)—direction in one wave-section. Although it may have been
sensible to invoke a nonuniform grid in order to get better resolution near corner regions, we
found that if the grid was sufficiently fine, no accuracy issues emerged. Details of the numerical

approach can be found in S1 Appendix (Section A).

Simulation results

Neglecting particle-particle and particle-surface forces, the only physical mechanisms that con-
tribute to the transport of particles through a channel are (Brownian) diffusion and convec-
tion. The factors that may influence the extent of transport include the channel shape, the
relative geometric dimensions of the channel, fluid viscosity g, particle size a, the flow charac-
teristics (specifically, the existence or absence of fluid recirculation and the applied pressure
profile) and the applied pressure. The model adopted here takes account of these features to
varying degrees of approximation. For example, particle size is indirectly taken into account
through its appearance in Dy,. This level of approximation is consistent with Eq (6).

The two main theoretical questions we address here are, firstly, does net transport occur in
channels of nonuniform cross-section and, secondly, what factors do then contribute? A sec-
ondary question concerns the influence of the particle generation term itself. Our principal
results, used to answer these questions, are expressed in terms of the cross-section and wave-
length-averaged partial moments of the particle distribution:

(e (1) = / e < / " e, t)2nrdr) iz, (13)

(2k—1)/2 0

forn=0,1,2,...,k=-K,...,K
In particular, the accumulated measure

K

Co(t) = D (e (1), (14)

k=—K

is used to track the total number of particles in the tube as a function of time. The second
important quantity we employ is the time dependent first moment overall:

K

C\(t) = Z {ei(1), (15)

k=—K

which is a measure of the asymmetry of the distribution evaluated over the entire simulated
tube. For future reference we point out that for the choice of generation function, Eq (7), for
both longitudinally symmetric and asymmetric tubes, the initial value, C,(0), is zero. This is to
be contrasted with the case presented in S1 Appendix (Section C) (and shown in Fig 2), in
which we consider an alternative initial condition and generation function.
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Fig 2. Results of first moment calculations for the first initial value problem of a fixed number of confined particles. Fig (a) is based on initial
condition Eq (7) evaluated at = 0, while results in (b) are based on the simpler state ¢(r,z, 0) = ¢, forx € W, and zero otherwise. Two different tube profiles
are shown, both with the same throat radius, B=0.2. Solid lines are for A= 0.24 (no recirculation), dashed lines are for A = 0.48 (recirculation). Results are
displayed for 8 =0, 100, 200, 300; Peclet numbers are p, =0, 1000, 2000, 3000 as indicated by arrows. In (b), results for the A = 0.24 tube (solid lines) are all
but indistinguishable on the scale of the figure. The dependence on S is indicated by the arrow. In all cases, simulations were performed with a=0.1 and
AP,(f). The physical significance of positive and negative values of the first moment are schematically represented by the insets to Figs 3(a) and 7(a),

respectively.

https://doi.org/10.1371/journal.pone.0183127.9002

Transient behavior: No particle generation

Considering the dynamic behavior of a fixed number of particles initially confined to a section
of a long tube, it is expected that under diffusive influences alone and for a longitudinally sym-
metric tube profile (including a straight cylindrical tube) particles would disperse to equal
degrees in both directions. Such is not the case for a periodically asymmetric tube as illustrated
by the two = 0 cases in Fig 2(a) and 2(b); the tube having the larger expansion regions results
in a larger distribution asymmetry (larger first moment, C;(¢)). In Fig 2(a) the state of the dis-
tribution asymmetry is apparently established by ¢ = 1 (time point measured in pressure oscil-
lations) and maintained constant thereafter for the tube with the larger expansion regions and
decreasing for ¢ > 1 for the tube with the smaller expansion regions. As already mentioned the
initial particle distribution in (a) was chosen to give a zero first moment regardless of tube shape,
which contrasts it with (b) where different shapes (A = 0.24 and A = 0.48) result in different ini-
tial first moments. Since diffusion is governed by concentration gradients it is not surprising to
find the different dynamic behavior in Fig 2(a) and 2(b) brought about by the different initial
distributions. For the system depicted in Fig 2(a), oscillatory convection effects, superimposed
on diffusion, alter the dynamics quantitatively in the tube with the larger expansion regions
(which also possess recirculation zones), and qualitatively in the case of the tube with the smaller
expansion regions (no recirculation). In the latter case there is clearly a switch in net particle
transport (from positive z, to negative z) which appears for a 3 value between 100 and 200 (Pec-
let number, 1000 < p, < 2000). In contrast, for the case of Fig 2(b) there does not appear to be
any variation (with f) in the first moment at any anniversary of the pressure oscillation.

Transient behavior: Particle generation in central wave-section

Diffusion only: Profile asymmetry as a necessary condition for transport. The data
depicted in Fig 3 readily answers the first main question of whether it is possible for
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Fig 3. Results for different expansion region to throat radius ratios, A/B in the case of diffusion only (8 =0, a=0.1). Solid lines are for different
expansion amplitudes, A with fixed throat radius B= 0.2, while the dashed lines are for different throat radius, B with fixed expansion amplitude A= 0.48. The
solid and dashed lines with the same colour indicate the same ratio A/B. (a) Shows the first moment and gives an indication of asymmetric transport, (b)
shows the zeroth moment or total mass in the tube and (c) shows the ratio of the two. The inset to (a) depicts schematically the physical significance of
positive values of the first moment.

https://doi.org/10.1371/journal.pone.0183127.g003

preferential transport to occur. Fig 3(a)-3(c) show representative results of the first moment,
C, (1), of the particle distributions, the total particle numbers, i.e., the zeroth moment Cy(¢),
and the ratio of the two, respectively. Although no convection is yet assumed (3 = 0) the data is
plotted as a function of time measured in units of equivalent cycles of the pressure. The curves
in all three panels reflect the response to increases in expansion region (increasing A) or
increases in the throat region (increasing B). The zeroth moments have been normalized by
the particle numbers initially contained within the central wave-section. That the C; curves do
not remain constant over time signifies a disparity between the amount of material transported
to the right compared with what has been transported to the left (by diffusion alone). The pre-
cise conditions under which the results in Fig 3 are derived are given in the caption. Of partic-
ular note is the fact that the direction of net transport is in the direction of the leading edge of
the saw tooth profile (see Fig 1(b)).

If we modify the tube shape by displacing laterally the position of the expansion peak to
give a symmetric triangular wave-section, while maintaining the same throat width (B) and
height of expansion peak (A), we obtain results (data not shown) for the condition of geomet-
ric symmetry. In this special case we find no difference in the amount of material transported
to the right or left. That is, we find no net transport of particles: C,(t) = 0 for all t > 0. Asym-
metry in shape is clearly a critical factor. However, another critical factor is the aspect ratio of
the tube profile, A/B. A decrease in this ratio diminishes the importance of the expansion
region, placing greater emphasis on the influence of the throat. However, since this can be
achieved in two ways, different consequences ensue for transport (Fig 3(a)-3(c)). As men-
tioned earlier, with our choice of y the particles are deliberately distributed unevenly at ¢ = 0 to
counter the profile asymmetry so as to give a zero first moment initially. Thus, the density of
particles is greater in the negative z—half of the central wave-section. Given the relatively larger
volume available immediately to the right of center, the concentration gradient results in a
greater number of particles finding their way to the positive z-half of the tube domain.

In the first set of curves of Fig 3 (dashed lines) the height of the expansion zone is kept fixed
(A = 0.48) for two values of the throat radius, B: 0.4 and 0.8. The second set (solid lines) fea-
tures a constant throat radius (B = 0.2) and decreasing expansion zone height: 0.24 and 0.12.
These specific combinations of A and B constrain the geometric ratio A/B to the common val-
ues of 1.2 and 0.6, respectively. A more important reason for this choice will become apparent
in a later section. Since the two sets of curves do not superimpose, this ratio is not a universal
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number, which suggests that different experimental designs will necessarily have different
transport characteristics.

Note that decreasing either B or A decreases the wave-section volume. However, the nature
of y is such that the number of particles contained within the tube decreases only in the former
case but remains constant in the latter case (Fig 3(b)). On the other hand, decreasing either B
or A decreases the first moment, C;(#), as the profile adopts a more symmetric shape. Not sur-
prisingly, the zeroth moment (Fig 3(b)) increases with time in all cases as more particles are
injected into the system, with the largest increases appearing for the larger systems (A = 0.48
and B=0.4, 0.8).

Considering the time development, one of the most important conclusions to draw from
(Fig 3(a) and 3(c)) is that, under the simulated conditions, the action of diffusion alone results
in a net distribution of particles in the positive z-direction, i.e., in the direction of the leading
edge of the saw-tooth profile. Taken in conjunction with the qualitatively similar results given
in S1 Appendix (Section C), we conclude that the movement towards the positive z-direction
is not due specifically to our choice of particle generating function, even though y(z, t) does
influence the quantitative degree of propagation. When the throat is sufficiently narrow, the
expansion region has the dominant influence, with the concentration gradient driving more
particles in the positive z-direction. This influence increases with increasing A. Increases in B
at fixed asymmetric A not only increase the total volume in the tube, but also the total particle

number generated through y (1 > k2, /h*(z) > B*/(A + B)* — 1 for B> 1). There will thus
be an increasing proportion of particles produced in the leading edge half of the central wave-
section with increasing B, which will promote a larger degree of diffusion in the positive z-
direction. As A is decreased, the slopes of the first moment profiles decrease in magnitude. In
the limit A — 0 for fixed B, we obtain a straight cylindrical tube for which there is no net direc-
tion of transport of particles (C; = 0).

Thus, we arrive at our fundamental proposition that tube asymmetry is a necessary condi-
tion for net particle transport by the process of diffusion. The associated conclusion, given that
we arrive at the same outcome with two choices of generating function (Eq (7) here and Eq
(526) of S1 Appendix (Section C)) is that the qualitative behavior is not governed by the
method of introducing particles. It is worth noting that for ¢ > 1, the large expansion zone
results A = 0.48 in Fig 3(c) (with analogous outcomes in the convective case, see later) indicate
the linear relationship C,(f) = kCy(t), with the proportionality coefficient, k, being a positive,
time-independent, decreasing function of B, while for the narrow throat case (B = 0.2), the
proportionality coefficient is a linear decreasing function of time but increasing function of
expansion height.

We remark, finally, that the end points of the curves in Fig 3(a) and 3(b) are indicative of
the times taken for the particle distributions to reach the 10” wave-section on one or other
side of the central wave-section in our simulated system, W, . These are also the ordinate axis
intercepts of the curves in Fig 4 (measured in equivalent cycles of a pressure oscillation, T).
The latter figure summarizes the fact that for constant expansion zone dimensions, the system
with the greatest (smallest) throat opening, facilitating (restricting) passage through the tube,
has the shortest (longest) transport time. However, it is also apparent that the more accentu-
ated is the expansion zone, the slower the progression of the particles. From a design perspec-
tive, these results suggest that the slower progress with an accentuated expansion zone can be
offset by a sufficiently large throat. This is discussed further in the next section.

Diffusion and convection: Positive or negative reinforcement of transport?. As the
ratio A/B can be altered either by increasing the throat radius at a fixed expansion dimension
or by exaggerating the expansion zone at a fixed throat size, it is not surprising that different
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convective behavior can result. The different effects are, moreover, compounded by the cou-
pling of convection with diffusion. Fig 5(b) depicts the system’s response (C,()/Co(t)) to
increasing strength of convection (8 > 0) for an applied pressure of AP,(¢) = sin(2nt) at con-
stant oscillation period. Two profile combinations (A = 0.48, B=0.2 with A/B= 2.4 and

A =0.24, B=0.2 with A/B = 1.2), are considered. In the cases shown, convection biases the par-
ticle distribution toward negative z-values, the effect of which is reinforced with increased f.
Although both tube shapes resulted in positive first moments in the case of diffusion alone (see
Fig 3(a) and 3(c)), with convection present (specifically developing as sin(27t)), a greater pro-
portion of particles now advance in the negative z-direction. The near-horizontal asymptotes
of the ratio of moments (Fig 5(b)) again imply proportional relationships, C; = x¥Cy, this time
with ¥ < 0in all non-zero f cases. Since the total particle number Cy is an increasing function
of time as a result of the constant injection of particles (all cases lie on a single curve since B

is kept constant (data not shown)), the first moment increases in magnitude at a proportional
rate (Fig 5(a)). That is, the peak of the particle distribution moves progressively toward

z = —00, i.e., in the direction of the profile’s trailing edge. We remark here that we get qualita-
tively similar behavior (see Fig C of S1 Appendix) using our alternative choice of y(z, t), which
supports the impression that this trend is independent of how particles are introduced into the
tube.

As to the results themselves, in the case of convection and diffusion, with a pressure differ-
ential AP, = sin(27t) driving the fluid initially in the positive direction, the net particle motion
is in the negative z-direction. The counterintuitive behavior (featured in Figs 5-8) is due to the
interplay between the continual addition of particles in the central wave-section and the
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Fig 5. (a) The first moment, and (b) the ratio between the first and zeroth moment. Two different tube profiles are shown, both with the same throat
radius, B=0.2. Solid lines are for A= 0.24 (no recirculation case), dashed lines are for A =0.48 (recirculation). Results are for various f values, 8 =0, 100,
200, 300 as indicated by arrows; a = 0.1 in all cases. In all cases, simulations were performed with AP({).

https://doi.org/10.1371/journal.pone.0183127.9005

specific form of the pressure gradient. It can be understood by appeal to the following argu-
ment. Consider the simpler system of particles in a straight tube subjected only to convection
(o =0), and assume that the fluid displacement amplitude is less than one cell in length. In this
case, the sinusoidal flow will first convect the particles initially present, forwards and then
backwards, returning them to their initial location after one complete pressure cycle. However,
all through this oscillation, particles are being generated in the W, wave-section. Thus, in the
first half-period of oscillation, particles are present in the zeroth and first wave-sections only.
During the second half-period of fluid oscillation, all particles are convected in the negative z-
direction. At the conclusion of the first pressure oscillation (at t = 1) particles will be present in
the Wy and the W_; wave-sections only. Thus, at t = 1, the first time point plotted in the fig-
ures, the first moment of the distribution will be negative. The process is repeated during the
second and subsequent pressure cycles, with particles continually being added to these two
“blocks”. The net result, with more particles specifically and progressively added to wave-
section W_y, steadily shifts the balance of the particle distribution to negative z. Including the
effect of diffusion only smears this pristine state of a two-wave-section concentration to
include particles in neighboring wave-sections, on either side: k positive and negative. Simi-
larly, allowing for expansion regions (nonzero A) modifies the picture further, but the underly-
ing convective process remains the dominant influence. Some further qualifying comments on
this phenomenon appear in the next section.

A summary of the times the particles first reach either wave-section W_;, or W, as a func-
tion of convection strength, f, for some different geometric conditions is provided in Fig 4. As
already remarked, the greater the throat dimension, the quicker the particles are transported
to the ends of the simulated system.

At this point it is worth drawing attention to the different behavior demonstrated by the
two transient scenarios (i.e., the case of no particles generated in the tube’s central wave-
section versus the case of particles continually added in that wave-section). In absolute terms,
the inclusion of particle generation in one wave-section (irrespective of form, see S1 Appendix
(Section C)) is sufficient to change the nature of particle transport: compare Figs 2(a) and 3(a)
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and 5(a). However, in relative terms there is less distinction. Since particles are continually
produced in time in this second transient scenario and as we have found C; = kC, in this sce-
nario, the most appropriate comparison is between the C, results shown in Fig 2(a) and the
C,/C, results of Fig 3(c), and more clearly those of Fig 5(b).
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Fig 7. Comparison of results for different expansion amplitudes, A, with fixed B = 0.2. All results are for a= 0.1, 8=200. The solid lines are cases with
no-recirculation (A= 0.12, 0.24), while the dashed lines are for cases with recirculation (A = 0.36, 0.48). (a) The first moment and (b) the ratio between the
first and zeroth moments. The inset to (a) depicts schematically the physical significance of negative values of the first moment.

https://doi.org/10.1371/journal.pone.0183127.g007
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According to the findings reported in Islam, et al. [1], beyond some critical amplitude, A*,
of the expansion region, which depends to varying degrees on other geometric factors (throat
width, the degree of asymmetry and width of the expansion region, and somewhat on the
degree of smoothing of the profile), the flow field can exhibit one or more zones of recircula-
tion in the expansion regions. It is not unreasonable then for particles that diffuse into one
such region to become caught in a recirculation flow, provided the strength of the hydrody-
namic flow is sufficient to dominate over diffusive motion. Thus, for sufficiently large 3 there
will be regular periods within which trapped particles will circulate in these zones and not

propagate from one wave-section to the next. However, for a temporal oscillatory flow field
there will always be periods when the velocity field will be “weak” in some sense compared to
diffusion, allowing the particles to diffuse out of these zones into or near to the throat region
where they can be convected out of that section in the next cycle. The natural question to ask is
whether this process assists or hinders the general diffusive movement of particles. That is, the
question is whether recirculation opposes or reinforces diffusive transport. A partial answer

can already be deduced from the results discussed earlier. The data shown in Fig 5, referring to
the convective behavior in tubes whose shape proportions have the ratio A/B of 1.2 or 2.4,
shows that although convection opposes the diftusive trend toward positive z values, forcing
the mean of the distribution to negative z, recirculation, which is present in the case A/B = 2.4,
reduces this influence.
Plots of ratios of instantaneous particle numbers in the recirculation regions of wave-

sections W_, and W, to particle numbers in the remainder of those wave-sections are shown
in Fig 6. Data points correspond to quarter periods of pressure oscillation (symbols at odd
numbered quarter periods have been removed for improved clarity). The smooth continuous
curve in Fig 6(a) is the diffusion-only result (a = 0.1, 8 = 0), while the two other series of data
points refer to convective diffusion conditions of & = 0.1, and = 200 and § = 300. For com-
parison we include (as red dashed lines) the value of the ratio of the volumes of the two regions
concerned (V,oe/ Vyonree = 0.1976). Wave-sections k = —2 and k = 2 were chosen somewhat
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judiciously to ensure sufficient advance to steady state conditions within a reasonable number
of oscillations, yet be representative of what would transpire in all sections. In (a) the ratio
maxima appear at completions of pressure oscillations, while ratio minima appear during pres-
sure lulls midway through oscillations. With time there is an obvious increasing trend toward
steady state both for the = 0 case as well as for the (common) bottom envelope through
points of minima for the nonzero f values. The (different) upper envelopes through the points
of maxima appear to plateau to constant values sooner than do the minima. It is not clear from
the figure but the upper envelopes actually have a slight negative slope with time. As a whole,
the results suggest the tendency to converge toward the asymptotic value given by the volume
ratio, which is consistent with the picture of a uniform distribution at steady state, to be dis-
cussed shortly. In (b) the dynamic situations on either side of the central wave-section are con-
trasted; most obvious is the 180° phase difference between the results, which is not surprising
given the oscillatory nature of the pressure. But what is also clear is the particle distribution
asymmetry between k = 2 and k = -2 underlying the net negative first moment shown in Fig 5.

Complementary information is found in the results shown in Fig 7 where we compare
transport in tubes with a common throat dimension, B = 0.2, but with subcritical and super-
critical expansion zone dimensions. These results reinforce the idea that recirculation reduces
the tendency of convection to transport particles in the negative z-direction; particles become
trapped in regions of recirculation flow and are thus unavailable for convective transport dur-
ing a significant proportion of a pressure cycle. Recirculation is thus an important design char-
acteristic to consider in the fabrication of micro- and nano-channels. Moreover, within the
class of non-recirculation flows, a factor of two difference in expansion amplitude does not
result in a proportionate change in net transport. On the other hand, within the class of recir-
culation flows, a 50% change in expansion zone amplitude results in a two fold change in the
first moment (Fig 7(a)). Note again that since the throat dimension is kept constant at B = 0.2,
the total number of particles generated increases linearly with time but is independent of A
(data not shown).

Finally, in Fig 8 results of the somewhat elementary consideration of different time depen-
dent pressure gradients, AP,(t), AP,(t) and AP.(t) are presented. With both mechanisms of dif-
fusion and convection acting within either a symmetric (triangular) or an asymmetric (saw-
tooth) tube, one would expect a non-zero mean distribution of particles, with the direction of
bias being determined by the sign of the pressure gradient. Naturally, the total particle count
does not display any dependence on pressure profile (data not shown), which is a feature that
can be utilized to check on the numerics. By construction, both symmetric and asymmetric
profiles have zero ordinate intercepts (C;(0)) in Fig 8(a) and 8(b). However, for pressure oscil-
lations of AP,(t) and AP(t), all cases immediately depart from zero thereafter.

According to our earlier theoretical explanation, with AP.(t) the convective field couples
with diffusion to promote propagation toward positive z, while with AP,(t) the convective field
opposes diffusion to result in propagation toward negative z. Although this is captured in the
results shown in Fig 8(a) and 8(b), the all but reflective symmetry about the time axis suggests
that for the cases of low (A/B = 0.6) or no (A/B = 0) expansion region, for which no recircula-
tion zones appear, diffusion does not play a decisive role, even though it remains an active par-
ticipant, spreading the particles along the tube (the simulations are terminated when the
particles have reached wave-section W_., which indicates that diffusion is still important). It
is interesting that compared with the case of a straight cylindrical tube, the presence of an
expansion region, whether symmetrically positioned or asymmetrically positioned, enhances
the transport slightly (particles reach W..,o sooner). However, for the case of a significant
expansion region, A/B = 2.4, for which recirculation zones appear, the reflective symmetry is
broken, suggestive of a more significant cooperation between diffusion and recirculation in
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the manner described previously, biasing the transport in the direction of the leading edge of
the saw-tooth tube (positive z-direction), but delaying transport somewhat (the lines for these
cases are terminated at larger T values, indicating that particles reach W, later).

From an experimental perspective, it is significant that both AP,(t) and AP(t) are experi-
mentally reasonable temporal functions. The influence of AP,(t) is midway between the other
two, with C;(¢) being very close to zero for the symmetric tube systems and even for the low
A/B = 0.6 case of an asymmetric tube. For the asymmetric tube with an exaggerated expansion
region, A/B = 2.4, the cosine time dependent pressure amplitude is still midway between the
other two, but non-zero. The results for the alternative initial state and generating function
(data not shown) are qualitatively consistent indicating a lack of dependence on the form of
function assumed.

Initial state of a uniform particle distribution

We imagine that particle generation has persisted sufficiently long or that conditions have
been so manufactured that the tube has become filled with particles to a uniform concentra-
tion (¢ = 1) prior to the application of fluid flow. The system in this uniform condition is
assumed the initial state for subsequent convective diffusion calculations; the system and its
dynamics are then periodic in space, at all times. Consequently, the following conditions of
periodicity apply at any location, z,, along the tube:

{ c(r,zy, t) = c(r,z, + L, t),

16
Vel = V¢ (16)

zp+L*

It is intuitive that when the tube is then subjected to an applied oscillatory hydraulic pressure
wave, there will not be any change in the total number of particles in any wave-section (S1
Appendix (Section B)). Superimposing a symmetry argument one would then conclude that
for a straight tube as well as for a periodic tube of longitudinally symmetric profile there is no
net particle flux in either direction. It does not necessarily follow, however, that no net trans-
port of particles occurs in one or other direction for a periodic tube with an asymmetric pro-
file. To address this question we have undertaken a simulation study of the latter case using, as
quantitative measure, the time-averaged particle flux through the throat cross-section at zo =
1/2,

i = /ll(t; 1/2)dt

1 b
= / / {ﬁcuz sin (27t) — ocg} 2nrdrdt (17)
o Jo 0z

For all asymmetric profile cases considered, varying the strength of convective strength (), the
strength of diffusion (o) and the amplitude of the expansion region in the profile (4, to capture
the cases of recirculation and non-recirculation), the time averaged particle flux through the
throat cross-section was zero. This means that not only is the total particle number within
each wave-section conserved over a period of sinusoidal pressure oscillation (what exits on the
right, enters on the left), at this level of approximation there is also no net movement of particles
in either direction when averaged over a period of oscillation; what exits on the right during
one half of an oscillation, enters again from the right during the other half. Consequently, only
under the transient situations considered in and prior to achieving steady state is there net par-
ticle movement.
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Naturally, this conclusion is based on the model we have employed. It may therefore need

revising should an alternative model, that includes higher order particle size effects or noniso-
tropic diffusion [18], be employed.

Discussion

Our numerical findings show that different transport characteristics are possible depending on
the system characteristics. For the reader’s convenience we summarize our findings in point

form.

1. For the transient case tracking the evolution of an initial distribution of a finite number of

particles, the initial distribution plays an important role. Distributed to counterbalance the

tube shape, the particles are transported in the direction of the leading edge, predominantly

by diffusion. Convection reduces the degree to which this occurs and can redirect the trans-
port in the direction of the trailing edge.

2. For the transient case of an initial distribution supplemented by a steady supply of particles
in one wave-section:

» With straight cylindrical and longitudinally symmetric tubes:

an oscillatory convective flow field alone will not result in net transport;
diffusion alone will ot result in net transport;

net transport is possible, even in straight cylindrical tubes, when both an oscillatory
convective flow field and diffusion act. However, for cylindrical tubes and periodic
tubes of shallow expansion regions, net transport is dominated by convection.

» With longitudinally asymmetric tubes:

diffusion alone will result in net transport, in a direction that is dependent on the geom-
etry of the tube, i.e., on both the relative and absolute dimensions of the expansion and
throat portions. In our set up, the direction of net transport is in the direction of the
leading edge of the saw tooth;

regardless of the direction of diffusive particle transport, the superposition of an oscil-
latory convective flow field driven by a positive (negative) sinusoidal pressure gradient
will convect the particles in the direction of the trailing (leading) edge of the tube,
opposing (supporting) the flow direction established by diffusion;

diffusion couples with flow recirculation in highly distended, expansion regions of a
tube of a given throat radius to modify the degree of transport relative to the case of no
recirculation in favor of the direction preferred by diffusion.

« In the case of both asymmetric and symmetric tube profiles:

- when both diffusion and convection act, the direction of net transport is strongly

dependent on the oscillatory pressure gradient driving the fluid flow.

3. For a tube uniformly filled with particles, the model adopted here predicts that particle
number per wave-section is conserved and, moreover, that there is no net transport on

average over one period of pressure oscillation.

Our results are arguably conditional on the specific conditions of our simulations, namely
tube geometry, initial distribution of particles and finally on the assumed generation of
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particles in the central wave-section. Although we have demonstrated throughout that qualita-
tive behavior is not dependent on the details of either the initial particle distribution (initial
condition) or how particles are introduced in the central section (the generating function)—
compare Figs 3-8 and Figs B-D of S1 Appendix—it is reasonable to ask whether the observed
qualitative behavior itself is predicated on the existence of any generating source of particles.

In Fig 2 we presented results of calculations of the first moment C; (¢) for the case of no par-
ticle generating function, with particles initially distributed in two ways, giving rise to either a
zero initial first moment 2(a) or a nonzero first moment 2(b). For tubes with small expansion
regions, the convection-free case has the particles diffusing out of W, according to Eq (6) in
such a way that the first moment decreases linearly (after the first oscillation). In this situation,
without a continual source of particles to influence behavior, diffusion subsequently drives
more particles in the negative z-direction. The effect of a superimposed convection (under a
positive sinusoidal pressure difference, AP,(1)) is to shift this trend, in the physical manner dis-
cussed earlier, and under sufficiently high flow rates to establish a net negative first moment
from the outset. For tubes with large expansion regions, particles diffuse to the right creating a
net positive first moment, which is again counteracted, but to a lesser extent, by fluid convec-
tion (compare differences between dashed lines and solid lines in Fig 2(a)).

We have not investigated the first initial value problem for any greater number of oscilla-
tions due to limited numerical accuracy (dispersed particle concentrations and moment calcu-
lations quickly become comparable to the numerical error). Nevertheless, one can reasonably
conclude that, while the particular details of a source function y(z, t) may not matter qualita-
tively, the existence of a continual source of particles is itself influential in determining net
transport behavior. The follow-up question to ask is: which scenario, with its accompanying
physical response, is the most relevant? Presuming that to achieve particle transport, some
form of particle reservoir is required, it would seem more appropriate to consider the condi-
tion of a source of particles, represented here by y(z, t), and the response shown in Figs 3-8.
This is certainly the more relevant case to drug infusion in the vascular system [13, 14].

In view of our findings, we conclude that there is a strong dependence on experimental
design, not only regarding the shape and dimensions of the tubes.

Concluding remarks

Particle transport through macroscopic vessels can occur under the action of gravity (sedimen-
tation) [19, 20], of an applied electric field (electrophoresis) [21, 22] or of a fluid flow (convec-
tion) [23]. We have investigated particle transport in longitudinally asymmetric capillaries
assuming the action of both diffusive and convective mechanisms. We have undertaken a
study primarily of the influence of tube geometry on magnitude, direction and rate of trans-
port of particles in axi-symmetric tubes of saw-tooth shape. Assuming a physical model of
forced diffusion where the convective element, an underlying fluid velocity field, is assumed
unaffected by the presence of the particles, we find a range of transport outcomes depending
explicitly on tube geometry and applied pressure profile. In particular, we have considered the
effect of replacing a pressure gradient that is a simple sine function of time with a negative sine
and a cosine time dependent pressure gradient, with important consequences on the direction
of preferred transport. One area still to be explored is the effect of the relative differences
between characteristic times of particle diffusion, particle convection and temporal oscillation
of the pressure gradient. This consideration is with the view to a more detailed study of the
influence of recirculation flow in the expansion regions of the tube. In a future publication we
hope to report on this aspect, as well as a more direct comparison with experimental results.
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