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Abstract

Adaptive management involves learning-oriented decision making in the presence of uncer-

tainty about the responses of a resource system to management. It is implemented through

an iterative sequence of decision making, monitoring and assessment of system responses,

and incorporating what is learned into future decision making. Decision making at each

point is informed by a value or objective function, for example total harvest anticipated over

some time frame. The value function expresses the value associated with decisions, and it

is influenced by system status as updated through monitoring. Often, decision making fol-

lows shortly after a monitoring event. However, it is certainly possible for the cadence of

decision making to differ from that of monitoring. In this paper we consider different combi-

nations of annual and biennial decision making, along with annual and biennial monitoring.

With biennial decision making decisions are changed only every other year; with biennial

monitoring field data are collected only every other year. Different cadences of decision

making combine with annual and biennial monitoring to define 4 scenarios. Under each sce-

nario we describe optimal valuations for active and passive adaptive decision making. We

highlight patterns in valuation among scenarios, depending on the occurrence of monitoring

and decision making events. Differences between years are tied to the fact that every other

year a new decision can be made no matter what the scenario, and state information is avail-

able to inform that decision. In the subsequent year, however, in 3 of the 4 scenarios either a

decision is repeated or monitoring does not occur (or both). There are substantive differ-

ences in optimal values among the scenarios, as well as the optimal policies producing

those values. Especially noteworthy is the influence of monitoring cadence on valuation in

some years. We highlight patterns in policy and valuation among the scenarios, and discuss

management implications and extensions.

Introduction

A well-known approach to learning-oriented decision making in natural resources is adaptive

management, in which learning occurs through recursive management and what is learned at

each time is used to guide future management actions (Williams and Brown [1–2]). Adaptive
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decision making is based on the recognition that resource systems are only partially under-

stood, and there is value in tracking resource conditions and applying what is learned as the

resources are being managed (Williams [3]). In the ongoing process of learning and adapta-

tion, adjustments to decision making occur as understanding improves, with the ultimate goal

of improved management (Walters [4]).

Adaptive decision making is by its nature flexible, and therefore is applicable to a wide vari-

ety of resource problems (Williams and Brown [5]). In some instances its focus is on the

improvement of understanding about the role of management in influencing resource dynam-

ics (Linkov et al. [6], Runge et al. [7]). In others it is on the social and institutional framework

supporting iterative decision making (Susskind et al. [8], Convertino et al. [9]). In yet others, it

is on the “architecture” of structured decision making, with the elicitation of values, objectives,

decision alternatives etc. (Johnson et al. [10], Linkov et al. [11]). Even if one is primarily con-

cerned about uncertainty and the improvement of technical understanding, the range of appli-

cability is extremely broad. An important challenge for an adaptive framework is to cover a

large number of decision problems, yet be flexible enough that it can be tailored to the details

of any particular problem.

Here we take a formal, decision-theoretic approach to adaptive management (Johnson and

Williams [12]), rather than more ad hoc approaches that sometimes are described in the litera-

ture (e.g., Schhreiber et al. [13]). In particular, we focus on an iterative sequencing of (i) deci-

sion making and taking actions, (ii) followed by monitoring of system responses, (iii) followed

by assessment of data, (iv) followed by incorporating what is learned into future decision mak-

ing (Fig 1). System state is typically monitored at fixed intervals, often annually, in order to

inform decisions that occur with the same frequency (Hauser et al. [14]).

Alternatives to the coincidence of decision making and monitoring involve different

cadences for the 2 activities. For example, the setting of migratory bird hunting regulations

often involves annual monitoring and decision-making, but a different sequence was adopted

for pink-footed geese (Anser brachyrhynchus) in Europe (Johnson and Madsen [15]). In the

latter case, administrative burden is reduced by fixing harvest quotas for three years, while

population monitoring occurs annually. Thus, while learning accrues annually, decisions are

based on system state only every fourth year. In the United States, the regulations setting pro-

cess for duck harvest has recently been modified so that current system state is not known

(monitored) at the time a decision must be made (Johnson et al. [16]). Decisions must there-

fore be conditioned on the previous system state and regulatory action.

The issue of timing in decisions and monitoring has arisen in other decision processes as

well. An example is the adaptive management program adopted by the Atlantic States Marine

Fishery Commission for the establishment of horseshoe crab harvest in Delaware Bay quotas

(Smith et al. [17]). State variables relevant to harvest decisions include not only the abundance

of the harvested species, but also the abundance of migratory shorebirds (red knots [Calidris
canutus]) that depend on horseshoe crab eggs as a food source at key migration stopover sites

in Delaware Bay. Harvest quotas for the fishing season of June-December, year t+1 are estab-

lished in the fall (e.g., November) of year t. The decisions are informed by estimates of system

state variables obtained in May of year t (red knots) and October-November of year t-1 (horse-

shoe crabs [Limulus polyphemus]). Debate has ensued about the feasibility of pushing the har-

vest decision forward (e.g., January, year t+1) in order to make use of the previous fall’s crab

survey data.

More generally, disconnecting the sequencing of decision making and monitoring is poten-

tially advantageous, in that cost-savings often can be obtained by reducing the frequency of

monitoring, or alternatively reducing the frequency of analysis and decision making. Of

course, an important question concerns the effect of such asynchrony, in particular as it relates
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to the value produced by decisions made when there is restricted decision making or an

absence of monitoring information. The issue can be framed in terms of the value produced

with management policy that is informed by monitoring. One approach is to identify a value

function, for example the expected accumulated harvest of a biological population, which

expresses the value associated with decision making given the status of the resource being

managed and some measure of understanding of it. If the resource is managed optimally based

on current information about it, the question at issue is whether and to what degree the value

produced through decision making is compromised by an asynchrony between decision mak-

ing and monitoring.

Our objective here is to provide a framework by which to consider the question of asyn-

chrony in monitoring and decision making, by describing and assessing valuation forms for 4

simple and plausible scenarios. These involve annual and biennial decision making in combi-

nation with annual and biennial monitoring. With biennial decision making, decisions are

changed only every other year; with biennial monitoring, field data are collected only every

Fig 1. Learning in adaptive management. Technical learning involves an iterative sequence of decision

making, monitoring, assessment, and feedback of what is learned into decision making. Institutional learning

involves periodic reconsideration of the components in decision making (Williams and Brown [5]).

https://doi.org/10.1371/journal.pone.0182934.g001
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other year. We acknowledge that other cadences are possible and could be considered. But we

believe that the 4 scenarios developed here serve to highlight relevant patterns.

We first summarize the technical framework for adaptive decision making, and then

describe value functions for each of 4 scenarios. For each scenario we describe optimal valua-

tions and policies under both active and passive adaptive management.

Decision making under structural uncertainty

A formal expression for adaptive management in the presence of structural uncertainty can be

given in terms of a resource system that changes through time in response to iterative decision

making, with models describing periodic change in resource status. The parameters and ele-

ments needed to characterize iterative decision making under uncertainty include:

t—time index for a range of times constituting the time frame. The index is assumed here to

take positive integer values, starting at some time t0 and ending at time T which may be infi-

nite. In what follows we also use τ as a time index, to represent forward aggregations of val-

ues conditional on some starting time t, as in
XT

t¼t
at.

xt—system state (size, density, spatial coverage, etc). Because the system is assumed to change

through time its state is time-specific. It is assumed for now that system state is fully observ-

able. We discuss the implications of partial observability below. In what follows we will

need to consider the summation of values f(xt) across all system states for a given time t,
which we abbreviate with the notation

X

xt
f ðxtÞ.

k—model index for k = 1,. . .,K models representing different hypotheses about system

dynamics.

qt—vector (qt(1),qt(2),. . .,qt(K)) of probabilities, with qt(K) the probability that model k best

represents the system at time t. The vector qt is referred to as the model state, and it evolves

through time as information accumulates via monitoring.

at—action taken as a result of decision making. Because they are taken through time, actions

are time-indexed.

At—policy that specifies a particular action for each system state and model state at each time

starting at time t in the time frame. A0 specifies actions over the full time frame {t0,. . .,T},

and At identifies the actions over a subset {t,. . .,T} of the time frame, starting at t� t0.

System dynamics

Here we assume that transitions among system states at any point in time are influenced by

the current state but not previous states, and by the action taken at that time. That is, state tran-

sitions can be described as Markovian (Puterman [18], Williams et al. [19]). If xt and at are the

state and action at a particular time t and xt+1 is the state at the next time, then the probability

of transition from xt to xt+1 is P(xt+1 | xt,at).
Structural uncertainty reflects an incomplete understanding of system dynamics, i.e., the

transition probabilities in P(xt+1 | xt,at) are uncertain (Williams [20], Williams and Brown [2]).

Different Markovian models Pk(xt+1 | xt,at) along with an evolving model state can be used to

account for structural uncertainty. Model-specific transition probabilities can be averaged

Decision frequencies in adaptive management
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based on qt, to produce

�Pðxtþ1jxt; at; qtÞ ¼
X

k
qtðkÞPkðxtþ1jxt; atÞ:

Decision making

In the presence of structural uncertainty, policy is a function of the state of the system at time

t and our understanding of system dynamics (and associated uncertainty) at time t, such that

A(xt,qt) = at. Policy At over a time frame {t,. . .,T} can be described sequentially by actions for

each system and model state at time t, followed thereafter by the remainder At+1 of the policy

over {t + 1,. . .,T}:

At ¼ fAðxt; qt Þ;Atþ1g ¼ fat;Atþ1g:

In what follows it will be useful to consider decision making over 2 time steps, in which

actions for 2 time steps are jointly determined. This situation is denoted by At = {at,at+1,At+2}.

Propagating uncertainty

Just as the system state evolves through time in response to management actions, so too does

the model state (Williams and Johnson [21]). The dynamics of the model state are driven by

the information produced through time with ongoing management, in the spirit of adaptive

management (Nichols and Williams [22]). With iterative management, decision making influ-

ences an evolving system state xt, with transitions that are recognized through ongoing moni-

toring in turn influencing the level of uncertainty. Bayes’ theorem (Lee [23]) is used for

updating uncertainty, based on system state transitions from xt to xt+1:

qtþ1ðkÞ ¼
qtðkÞPkðxtþ1jxt; atÞX

k
qtðkÞPkðxtþ1jxt; atÞ

¼
qtðkÞPkðxtþ1jxt; atÞ

�Pðxtþ1jxt; at; qt Þ
:

ð1Þ

Bayes’ theorem can also be used to determine the propagation of uncertainty across 2 time

steps, as

qtþ2ðkÞ ¼
qtðkÞ

X

xtþ1

Pkðxtþ1jxt; atÞPkðxtþ2jxtþ1; atþ1Þ
X

k
qtðkÞ

X

xtþ1

Pkðxtþ1jxt; atÞPkðxtþ2jxtþ1; atþ1Þ
;

which can be rewritten as

qtþ2ðkÞ ¼
qtðkÞ

P
tþ1
Pkðxtþ1jxt; atÞPkðxtþ2jxtþ1; atþ1ÞP

xtþ1

�Pðxtþ1jxt; at; qt Þ�Pðxtþ2jxtþ1; atþ1;qtþ1Þ
: ð2Þ

Optimal decision making

Smart decision making requires an objective or value function to guide decisions and evaluate

progress toward their achievement. Typically, valuation for adaptive management is based on

the accrual of returns R(xt,at) through time, with each return incorporating costs and benefits

corresponding to action at when the system is in state xt (Williams et al. [19]). A value function

Decision frequencies in adaptive management
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V(At | xt,qt) expresses the aggregation of returns associated with policy At, given system state xt
and model state qt:

VðAtjxt; qt Þ ¼ E
XT

t¼t
Rðxt; atÞjxt; qt

h i
; ð3Þ

where the expectation accounts for stochastic transitions among states through time as well as

the structural uncertainty represented by multiple Markovian models Pk(xt+1 | xt,at) and their

evolving probabilities qt(k). V(At | xt,qt) serves as an objective or value function by which to

compare and contrast the effectiveness of different management strategies.

Two important variations of adaptive decision making are active and passive adaptive man-

agement. Active adaptive management incorporates the potential for learning directly into the

process of decision making (Williams [24]). Thus, optimal active adaptive management

accounts for system state and structural uncertainty at each decision point, and it also accounts

explicitly for learning in the choice of strategy:

V xt; qt
� �

¼ max
At

VðAtjxt; qt Þ

¼ max
fat ;Atþ1g

Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1jxtþ1;qtþ1Þ
n o

¼ max
at

Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞV xtþ1;qtþ1
h in o

;

ð4Þ

where λ is a discount factor and the updated model state qt+1 in V[xt+1,qt+1] indicates the use

of learning in identification of strategy. That is, the consequences of learning are anticipated in

the decision making process itself. Active adaptive management via Eq (4) produces the opti-

mal value of the function in Eq (3), i.e., maximum valuation in the face of structural

uncertainty.

Active adaptive management can also be expressed in terms of 2 successive time periods by

V xt;qt
h i

¼ max
fat ;atþ1g

�

Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at;qtÞ

� Rðxtþ1; atþ1Þ þ l
2
X

xtþ2

�Pðxtþ2jxtþ1; atþ1;qtþ1ÞV xtþ2;qtþ2
h ih i�

:

ð5Þ

where the term in brackets in Eq (5) is simply another expression for V[xt+1,qt+1]. The 2-step

form for optimization in Eq (5) will prove to be especially useful in what follows for describing

valuations of scenarios involving biennial patterns in decision making and monitoring.

With passive adaptive management, decision making is again based on system state and

uncertainty at each decision point, but without explicitly accounting for learning in the choice

of strategy (Williams [24]). The effect on valuation is seen by

V xt; qt
� �

¼ max
At

VðAtjxt; qt Þ

¼ max
fat ;Atþ1g

Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1jxtþ1; qt Þ
n o

¼ max
at

Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞV xtþ1; qt
� �n o

;

ð6Þ

where the prior model state qt in V[xt+1,qt] indicates the absence of learning in the
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identification of decisions. The corresponding form for 2-step passive adaptive optimization is

V xt; qt
� �

¼ max
fat ;atþ1g

�

Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at;qtÞ

� Rðxtþ1; atþ1Þ þ l
2
X

xtþ2

�Pðxtþ2jxtþ1; atþ1; qt ÞV xtþ2; qt
h ih i� : ð7Þ

The only difference between active vs passive adaptive management as described above is

the direct incorporation of learning into decision making, as indicated by an updated model

state qt+1 in the valuation V[xt+1,qt+1] in Eq (4). In contrast, learning in passive adaptive man-

agement factors into future decision making only after the current decision is made. The

absence of anticipated learning in guiding decisions is indicated by the use of current model

state qt in the value term V[xt+1,qt] in Eq (6). We note that our description of passive adaptive

management extends beyond many descriptions in the literature, where passive adaptive man-

agement is held to involve actions based on the best available model, followed by post-decision

monitoring to revise or replace the model (Walters and Hilborn [25], Schreiber et al. [13], Wil-

liams [24]).

While the value V[xt,qt] produced by passive adaptive management is necessarily less than

that of active adaptive management, the passive form has the advantage of being computation-

ally tractable for relatively large problems, specifically because only the current model state

must be considered. In practice, policies and values may vary little between the active and pas-

sive forms (Johnson et al. [26], Hauser and Possingham [27]).

Valuation under different cadences of decision making and

monitoring

The learning-based approach described above involves iterative decision making through

time, utilizing monitoring information that is collected at each decision point. However, the

selection of decisions need not coincide with the monitoring of system transitions. In what fol-

lows we consider annual and biennial decision making along with annual and biennial moni-

toring, where biennial decision making involves changes in decisions only every other year

and biennial monitoring means the collection of field data every other year. The options for

decision making combine with those for monitoring to define 4 scenarios. Here we discuss

optimal valuations for each scenario, and compare/contrast the valuations among scenarios.

We acknowledge that variations in timing beyond the biennial cadences considered here are

possible, and we highlight other examples in the discussion below.

Given the scenarios defined by annual and biennial cadences, every 2 years a new decision

can be made and state information is available to inform that decision. In the subsequent year

after a new decision, however, in 3 of the 4 scenarios either the decision is repeated or moni-

toring does not occur (or both). The difference among scenarios becomes clear by focusing on

the arguments of the value function V(At | xt,qt).

• Scenario 1: Annual decision making and annual monitoring

• Every year (xt,qt) is known because of annual monitoring

• A new action can be taken every year

• Scenario 2: Annual decision making and biennial monitoring

• Every other year (xt,qt) is not known because of the lack of monitoring

• A new action can be taken every year

Decision frequencies in adaptive management
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• Scenario 3: Biennial decision making and annual monitoring:

• Every year (xt,qt) is known because of annual monitoring

• The same action is taken in successive years

• Scenario 4: Biennial decision making and biennial monitoring

• Every other year (xt,qt) is not known because of the lack of monitoring

• The same action is taken in successive years

The differences among scenarios are accentuated in non-monitoring years. In this situation

scenarios 1 and 2 produce different valuations, because the state is seen via monitoring under

scenario 1 but not under scenario 2. Scenarios 3 and 4 also produce different valuations, for

the same reason: the state is seen via monitoring under scenario 3 but not under scenario 4.

Finally, the valuations for the scenarios 1 and 2 differ from those for scenarios 3 and 4, because

actions in successive years are repeated in scenarios 3 and 4.

In the next sections we assume active adaptive decision making in the development of valu-

ation forms. We then describe valuation under passive adaptive management. In both cases we

use V(At | xt,qt) as in Eq (3) to represent the aggregate value associated with policy At given the

combination (xt,qt) of system and model states, and use V[xt,qt] as in Eqs (5) and (7) to repre-

sent the optimal valuation obtained by maximizing V(At | xt,qt) over all available policies.

Scenario 1: Valuation under annual decision making and monitoring

Here we describe the standard scenario for dynamic optimization (Williams and Johnson [28],

Bertsekas [29]), in which decisions can be changed every year and observations about resource

status are available to identify optimal actions and values (Fig 2). Thus, in any year t a new

action at can be selected based the system state xt and model state qt. Immediately before the

next decision point in year t+1 the system state xt+1 is identified through monitoring, and

model-specific probabilities Pk(xt+1 | xt,at) of transition from system state xt to xt+1 are identi-

fied. These transition probabilities are combined with the model state qt to produce an updated

model state qt+1 by Bayes’ theorem (Eq 1). The updated system and model states are then avail-

able to inform the selection of an action at+1 at year t+1.

Fig 2. Scenario 1: Annual decision making and annual monitoring. Action at is selected based on system state xt and

model state qt. Realized system state xt+1 is identified through monitoring in year t+1. Model state qt is updated to qt+1 with by

Bayes’ theorem. This sequence, with actions based on current system and model state, is repeated over the remainder of the

time frame.

https://doi.org/10.1371/journal.pone.0182934.g002
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The determination of optimal values and actions is facilitated with recursion approaches

(Puterman [18]). In a given year t the value function can be expressed recursively as

VðAtjxt; qt Þ ¼ Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1jxtþ1;qtþ1Þ; ð8Þ

and maximization

V xt; qt
� �

¼ max
at

Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞV xtþ1;qtþ1
h in o

ð9Þ

over At = {at,At+1} produces a�t and V[xt,qt] for each (xt,qt).
Because new actions can be taken every year and system status is always observed, valuation

in successive years t and t+1 have the same form, with the value function for t+1 replicating

Eq (8) simply by incrementing the time index by 1:

VðAtþ1jxtþ1;qtþ1Þ ¼ Rðxtþ1; atþ1Þ þ l
X

xtþ2

�Pðxtþ2jxtþ1; atþ1;qtþ1ÞVðAtþ2jxtþ2;qtþ2Þ: ð10Þ

An algorithm for determining optimal values and policies with scenario 1 is discussed in

the Appendix.

Scenario 2: Valuation under annual decision making and biennial

monitoring

In this scenario decisions can be changed each year as in the standard scenario 1, but the mon-

itoring by which system and model states are recognized occurs only every other year. If sys-

tem state is observed in a given year t, not observed in the subsequent year t+1, and observed

again in year t+2, a 2-step transition process is required (Fig 3). With state information xt and

xt+2 in years t and t+2, model-specific probabilities of transition from state xt to xt+2 can be

determined. These transition probabilities can be combined with model state qt to determine

model state qt+2 by Bayes’ theorem (Eq (2).

A 2-step value function

VðAtjxt; qt Þ ¼ Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1jxtþ1;qtþ1Þ; ð11Þ

with

VðAtþ1jxtþ1;qtþ1Þ ¼ Rðxtþ1; atþ1Þ þ l
X

xtþ2

�Pðxtþ2jxtþ1; atþ1;qtþ1ÞVðAtþ2jxtþ2;qtþ2Þ ð12Þ

Fig 3. Scenario 2: Annual decision making and biennial monitoring. Actions at and at+1 are jointly selected based on

system state xt and model state qt. Realized system state xt+2 is identified through monitoring in year t+2. Model state qt is

updated to qt+2 by Bayes’ theorem. This sequence, with actions at and at+1 jointly chosen for successive years, is repeated

over the remainder of the time frame.

https://doi.org/10.1371/journal.pone.0182934.g003
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allows optimal actions for year t and t+1 to be jointly identified. Maximizing V(At | xt,qt) over

At = {at,at+1,At+2} (Eq (5)) produces a�t ,a
�
tþ1

,A�tþ2
and V[xt,qt] for each combination (xt,qt).

Determining value in the subsequent year t+1 requires a somewhat different treatment.

Because there is no monitoring in year t+1, the states xt+1 and qt+1 in Eq (12) are unknown.

However, they are related stochastically to xt and qt, which are known through monitoring.

Averaging over the transition probabilities produces a valuation for year t+1 of

�V ðAtþ1jxt; qt ; atÞ ¼
X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1jxtþ1;qtþ1Þ; ð13Þ

and using a�t ,a
�
tþ1

and A�tþ2
from the 2-step optimization in Eq (11) produces the optimal valua-

tion

�V xt; qt ; a
�

t

� �
¼
X

xtþ1

�Pðxtþ1jxt; a
�

t ; qt ÞV xtþ1;qtþ1
h i

ð14Þ

For year t+1. Note that the function in Eq (13) describing valuation for year t+1 has argu-

ments that are indexed for the previous year t. The triple (xt,qt,at) in �V ðAtþ1jxt; qt ; atÞ, inher-

ited from �Pðxtþ1jxt; at; qt Þ, is needed to anchor the transition from the previous year t, when

system state xt is known, to year t+1 when system state xt+1 is not known.

Computations of values and identification of policies for scenario 2 are discussed in the

Appendix.

Scenario 3: Valuation under biennial decision making and annual

monitoring

In this scenario monitoring occurs every year, as in the standard situation involving annual

monitoring and decision making, but decisions can be changed only every other year. The

sequencing of actions is as described above for scenario 1, except that every other year the

action for the previous year is repeated (Fig 4). For a year t in which a new action can be taken,

valuation that includes the repetition of actions in successive years is

VðAt
0jxt; qt Þ ¼ Rðxt; atÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1
0jxtþ1;qtþ1; atÞ: ð15Þ

Fig 4. Scenario 3: Biennial decision making and annual monitoring. Action at is selected based on system state xt and

model state qt. Realized system state xt+1 is identified through monitoring in year t+1. Model state qt is updated to qt+1 with

Bayes’ theorem. Action at is repeated in year t+1. This sequence, with the same action taken in successive years, is repeated

over the remainder of the time frame.

https://doi.org/10.1371/journal.pone.0182934.g004
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The conditioning argument at in V(At+1
0 | xt+1,qt+1,at) is used here to emphasize that at+1,

the lead action in At+1
0 = {at+1,At+2

0}, is predetermined to be at+1 = at because of the biennial

decision making. Maximizing over At = {at,at,At+2} produces a�t , a
�
tþ1
¼ a�t , A

�
tþ2
0 and V0[xt,qt].

The “0” symbol in At0 and V0[xt,qt] distinguishes strategies and valuations in scenario 3 from

V(At | xt,qt) and V0[xt,qt] in scenario 1, where decisions can be changed annually. On inspec-

tion the only difference between the valuation V(At0 | xt,qt) here and V(At | xt,qt) in Eq (8) for

the standard scenario 1 is the replacement of at+1 in Eq (15) with at in the computation of

future returns. Of course, that seemingly marginal policy difference can have substantive con-

sequences for valuation, depending on the Markovian structure of the problem.

Assuming that a new action can be taken in year t and is repeated in the subsequent year,

the value function for year t+1 is

VðAtþ1
0jxtþ1;qtþ1; atÞ ¼ Rðxtþ1; atÞ þ l

X

xtþ2

�Pðxtþ2jxtþ1; at;qtþ1ÞVðAtþ2
0jxtþ2;qtþ2Þ: ð16Þ

Policy maximization for year t+1 then produces

V 0 xtþ1;qtþ1; a
�
t

h i
¼ max

Atþ1 0
VðAtþ1

0jxtþ1;qtþ1; a
�

t Þ

¼ Rðxtþ1; a�t Þ þ l
X

xtþ2

�Pðxtþ2jxtþ1; a
�

t ;qtþ1ÞV
0 xtþ2;qtþ2
h i

;

ð17Þ

where a�t in V 0 xtþ1;qtþ1; a
�
t

h i
is identified by optimizing in value function in Eq (15). The

action corresponding to the value V 0 xtþ1;qtþ1; a
�
t

h i
is of course a�tþ1

¼ a�t .

The determination of optimal values and policies with scenario 3 is discussed in the

Appendix.

Scenario 4: Valuation under biennial decision making and monitoring

Finally, decision making and monitoring can both be biennial, with decisions repeated and

monitoring conducted only every other year (Fig 5). Valuation in a year t where a new action

can be taken and monitoring occurs is given by

VðAt
0jxt; qt Þ ¼ Rðat; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1
0jxtþ1;qtþ1; atÞ; ð18Þ

With at in V(At+1
0 | xt+1,qt+1,at) again used as a conditioning argument to emphasize that at+1,

the lead action in At+1
0 = {at+1,At+2

0}, is predetermined to be at+1 = at because of biennial deci-

sion making. Maximizing V(At0 | xt,qt) in Eq (18) over At0 = {at,at,At+2
0} produces a�t , a

�
tþ1
¼ a�t ,

Fig 5. Scenario 4: Biennial decision making and biennial monitoring. Actions at and at+1 = at are selected based on

system state xt and model state qt. Realized system state xt+2 is identified through monitoring in year t+2. Model state qt is

updated to qt+2 with Bayes’ Theorem. This sequence, with the same action chosen in successive years, is repeated over the

remainder of the time frame.

https://doi.org/10.1371/journal.pone.0182934.g005
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A�tþ2
0 and V0[xt,qt]. This is the same form for scenario 3 with biennial decision making and

annual monitoring.

However, scenario 4 differs from the other scenarios in the subsequent year t+1, because

the conditioning states xt+1 and qt+1 are not known in the absence of monitoring. But their

linkage to xt and qt can be used with at and at+1 = at to produce the average value

�V ðAtþ1
0jxt; qt ; atÞ ¼

X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1
0jxtþ1;qtþ1; atÞ; ð19Þ

with an optimal valuation of

�V 0 xt; qt ; a
�

t

� �
¼
X

xtþ1

�Pðxtþ1jxt; a
�

t ; qt ÞV
0 xtþ1;qtþ1; a

�

t

h i
ð20Þ

In year t+1. Eq (19) differs from the corresponding Eq (13) for scenario 2 with annual

decision making and biennial monitoring, but only in that scenario 2 allows for different

actions at and at+1 in At = {at,at+1,At+2}, whereas scenario 4 uses the same actions at and

at+1 = at in At0 = {at,at,At+2
0}.

Computing forms for optimal values and policies with scenario 4 are discussed in the

Appendix.

Patterns in the optimal valuations

Several informative comparisons can be recognized among the scenarios, in terms of the

actions to be optimized and the state information that is available when actions are to be

selected.

Comparisons of annual and biennial monitoring

For the scenarios considered here, in a year t when monitoring is conducted and new decisions

are made the valuation of optimal policy is the same irrespective of monitoring frequency.

That is, the same expression for optimal valuation obtains under both monitoring regimes.

For annual decision making the optimal valuation for annual decision making is V[xt,qt] irre-

spective of the cadence of monitoring. For biennial decision making the optimal valuation is

V0[xt,qt]. Basically, if one knows the system and model states when decisions are made, there is

no additional value in collecting more information between decision points (but see below on

the potential influence of partial observability). This pattern holds for annual as well as bien-

nial decision making.

The situation is somewhat different for years when monitoring may not be conducted.

Assume that monitoring occurs in year t, and may or may not in year t+1 depending on the

scenario. With annual decision making and annual monitoring (scenario 1), in year t+1 one

optimizes

VðAtþ1jxtþ1;qtþ1Þ

as in Eq (10), whereas with biennial monitoring (scenario 2) one optimizes the average value

�V ðAtþ1jxt; qt ; atÞ ¼
X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1jxtþ1;qtþ1Þ

in Eq (13).

A similar pattern holds for biennial decision making. Under annual monitoring (scenario

3) one optimizes

VðAtþ1
0jxtþ1;qtþ1; atÞ
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in Eq (16), whereas under biennial monitoring (scenario 4) one optimizes the average value

�V ðAtþ1
0jxt; qt ; atÞ ¼

X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1
0jxtþ1;qtþ1; atÞ

in Eq (19).

On reflection, these results make sense. The averaging with biennial monitoring is essen-

tially a way to compensate for the lack of knowledge about system and model states at t+1. The

effect of averaging clearly distinguishes the scenarios with biennial monitoring from those

with annual monitoring, in their valuations as well as their policies.

Comparisons of annual and biennial decision making

Even for years in which system state is observed, valuation varies with the cadence of decision

making. As seen above, value is optimized for biennial decision making over At0 = {at,at,At+2
0}

rather than At = {at,at+1,At+2} for annual decision making. The use of identical actions in suc-

cessive years is definitive of biennial decision making. The same pattern holds for both annual

as well as biennial monitoring.

It also holds for years t+1 in which system state is not necessarily observed. Of course, with

biennial monitoring valuation involves the averaging of value functions in the absence of mon-

itoring information.

Passive adaptive management under different cadences

The value functions above are based on an active form of adaptive decision making, in which

at any particular point in time the effect of learning is factored into future decision making (Eq

(4)). An alternative to active adaptive management is passive adaptive management, in which

learning influences future decision making only indirectly, after the current decision is made

(Eq (6)).

Consider, for example, annual decision making and biennial monitoring (scenario 2) under

passive adaptive management. The associated value function differs from that for active adap-

tive management only in the use of a stationary model state. In a year t when the system is

observed the value function for passive adaptive management is

VðAtjxt; qt Þ ¼ Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1jxtþ1; qt Þ; ð21Þ

and in year t+1 when it is not the value function is

�V ðAtþ1jxt; qt ; atÞ ¼
X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1jxtþ1; qt Þ: ð22Þ

These are the same forms as for active adaptive management (Eqs (11) and (13)), except for

the use of a stationary model state in the transition probabilities and future values.

An analogous pattern can be seen for passive adaptive management under biennial decision

making and annual monitoring (scenario 3). The value function for scenario 3 again differs

from that for active adaptive management only in the model states used in the transition prob-

abilities and future values. Thus, for a year when a new action can be selected the value func-

tion is

VðAt
0jxt; qt Þ ¼ Rðat; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1
0jxtþ1; qt Þ ð23Þ

where the current model state qt is used in the transition probabilities and the future value

Decision frequencies in adaptive management

PLOS ONE | https://doi.org/10.1371/journal.pone.0182934 August 11, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0182934


V(At+2
0 | xt+2,qt). For a year in which the previous action is repeated the value function is

VðAt
0jxt; qt ; at� 1Þ ¼ Rðat� 1; xtÞ þ l

X

xtþ1

�Pðxtþ1jxt; at� 1; qt ÞVðAtþ1
0jxtþ1; qt Þ: ð24Þ

These again are the same forms as for active adaptive management (Eqs (15) and (16)),

except for the use of a stationary model state in the transition probabilities and future values.

In like manner, the value functions for scenarios 1 and 4 can be described on assumption

that decision making is passive rather than active. In each of the 4 scenarios the passive adap-

tive management forms can be derived by simply restricting the model states in active adaptive

management to be stationary. This reduces considerably the computational burden in identify-

ing optimal policies and values.

Discussion

As adaptive management continues to grow in its popularity and use in natural resources,

there is a trend toward being more flexible in its implementation. But greater flexibility in turn

creates new challenges in capturing an appropriate decision making “architecture” for individ-

ual problems. An important example concerns the frequencies of decision making and moni-

toring. In particular, an accounting is needed of the effects of different cadences on both

strategy and valuation. Here we have described a technical framework that allows for assess-

ment of differing combinations of annual and biennial decision making and monitoring.

In this paper we have highlighted substantive differences in value functions for varying

cadences of decision making and monitoring, recognizing that the differences are less pro-

nounced for years when a system is observed. Indeed, for a year t with observed status the

cadence of monitoring does not affect valuation (or policy) for either annual or biennial deci-

sion making. On the other hand, the cadence of monitoring does affect valuation and policy

for year t+1 in which the system is not observed.

These patterns provide insight into the value of the information that is added with more fre-

quent monitoring (Yokota and Thompson [30], Williams and Johnson [28]). For example, in

a monitoring year the valuations under less frequent and more frequent monitoring are identi-

cal, so no value is added by increasing the frequency of monitoring. But there is an added

value in the subsequent year, as a result of the need to average the valuations across system

states with less frequent monitoring. The gain in value with more frequent monitoring is the

difference between a valuation informed by knowledge of system state (annual monitoring),

versus an average valuation when system state is only known stochastically (biennial monitor-

ing). The results of such an assessment can be useful to managers as a metric in determining

whether to reduce annual to biennial monitoring, or to expand biennial to annual monitoring.

The assessment for annual and biennial cadences can be extended to include options for 3

or more years. Thus, one could consider the effect of decision making every 3 years rather

than every year, or the effect of monitoring every 3 years rather than every year (Johnson and

Madsen [15]). One way to assess such an extension would be to express returns in the value

functions in terms of 3 time steps rather than 2, and compute the corresponding expectations.

The practical effect would be to complicate the mathematical expressions for valuation, and

likely would make more difficult the comparative interpretation of patterns.

Other variations in the cadence of monitoring and decision making are possible. In the

above, biennial monitoring and decision making occur in the same years, which allows deci-

sions to be informed by system and model states at those times. Another variation is for moni-

toring and decision making to occur in alternative years, for example with decision making in

one year and monitoring to occur in the subsequent year. The overall effect of this cadence is

to require averaging based on prior year status each time a new decision is made. Yet another
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variation involves decision making prior to monitoring each year, so that the monitoring

results are not available to inform the selection of actions for that year (Johnson et al. [16]).

Under these conditions, possible actions must again be conditioned on the previous system

and model state and the action previously taken.

The lack of additional value in collecting information between decision points that is

highlighted here depends on the assumption that the resource system is fully observable. An

allowance for partial observability defines a partially observable Markov decision process

(POMDP), in which system status is approximated by a time-specific probability distribution

or “belief state” that is updated with monitoring data through time (Kaelbling et al. [31], Litt-

man [32]). A natural accounting of both partial observability and structural uncertainty con-

siders the updating of belief, whenever it occurs, as a factor in the updating of model state, so

that a change is belief affects the propagation of model state and in so doing may influence pol-

icy and valuation. Under these circumstances monitoring between decision times can have an

effect on decision making.

There is a very large technical literature on theory and applications of adaptive management

in natural resources for fully observable systems, and a much smaller but growing literature of

POMDP methods and applications in natural resources (e.g., Lane, D. [33], Chadés et al. [34],

Haight and Polasky [35], Tomberlin [36], Chadés et al. [37], Fackler and Haight [38], Regan

et al. [39], Nicol and Chadés [40]). However, there are very few expositions concerning natural

resources that include both (Williams [20], Fackler and Pacifici [41], Chadés et al. [42]), even

though structural uncertainty and partial observability are common in natural resources. The

limited documentation is no doubt a result, at least partially, of the formidable difficulties of

incorporating both factors in analytic and computational frameworks that are accessible to

natural resources specialists (e.g., Jaulmes et al. [43], Williams [20], Bertsekas [29]). One rather

ad hoc approach is to assume full observability, identify optimal policies and valuations as

approximations to the broader problem that includes partial observability, and explore the sen-

sitivity of the approximations to errors in state estimation.

Finally, a key determinant in the usefulness of comparative valuation with different

cadences is the ability to actually compute values with the forms of the value functions dis-

cussed above. Software is currently available for active and passive adaptive management

under annual decision making and monitoring (Lubow [44], Fackler [45]). It is straightfor-

ward to use this software for the case of biennial decision making and monitoring for passive

adaptive management, by utilizing the 2-step transition probabilities. Further software devel-

opment is necessary for the other scenarios, which involves a greater or lesser degree of diffi-

culty and programming effort depending on the scenario.

Appendix

In this appendix we outline computing algorithms and forms for the 4 scenarios. In each sce-

nario the determination of optimal values and actions can be determined recursively.

Scenario 1: Annual decision making and annual monitoring

In any given year t the value function can be expressed recursively as

VðAtjxt; qt Þ ¼ Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞVðAtþ1jxtþ1;qtþ1Þ;

and maximization

V xt; qt
� �

¼ max
at

Rðxt; atÞ þ l
X

xtþ1

�Pðxtþ1jxt; at; qt ÞV xtþ1;qtþ1
h in o
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over At = {at,At+1} produces a�t and V[xt,qt] for each (xt,qt). This algorithm typically is applied

sequentially throughout the time frame, starting at the terminal time T and stepping backward

in single time steps (Williams et al. 2002, Bertsekas 2017).

Scenario 2: Annual decision making and biennial monitoring

A recursive algorithm for identifying optimal valuation and strategy for scenario 2 involves a

2-step backward iteration to determine V[xt,qt] for a year t with monitoring, and with the

results used to determine optimal valuation for year t+1. In the first step, V[xt,qt] is computed

as above (Eq (9)), along with a�t and a�tþ1
for each combination (xt,qt). In the second step the

optimal strategy fa�t ; a
�
tþ1
;A�tþ2

g is used to compute the average valuation �V xt; qt ; a�t
� �

for year

t+1 as shown in Eq (14).

Scenario 3: Biennial decision making and annual monitoring

A recursive algorithm for identifying optimal valuation and strategy for scenario 3 again

involves a 2-step iteration for any year t in which a new decision can be made, to determine

V0[xt,qt] and A�t 0 ¼ fa
�
t ; a

�
t ;A

�
tþ2
0g, and then use the results to determine V 0 xtþ1;qtþ1; a

�
t

h i
in

year t+1. In the first step, V0[xt,qt] is computed for each combination (xt,qt) via the maximiza-

tion of Eq (15), and the optimal action a�t corresponding to (xt,qt) is identified. In the second

step a�t is used to compute V 0 xtþ1;qtþ1; a
�
t

h i
for year t+1 as in Eq (17), for each combination

(xt+1,qt+1) in the triple ðxtþ1;qtþ1; a
�
t Þ.

Scenario 4: Biennial decision making and biennial monitoring

A recursive algorithm for identifying optimal valuation and strategy for scenario 4 involves a

2-step backward iteration to determine V0[xt,qt] for each year t when monitoring occurs, and

then using the results to determine optimal valuation for year t+1. In the first step, V0[xt,qt] is

computed along with a�t and a�tþ1
¼ a�t for each combination (xt,qt), via the maximization of Eq

(18). In the second step the optimal strategy A�t 0 ¼ fa
�
t ; a

�
t ;A

�
tþ2
0g is used to compute the aver-

age valuation for year t+1 with Eq (20).
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