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Abstract

As a huge threat to the public health, China’s air pollution has attracted extensive attention

and continues to grow in tandem with the economy. Although the real-time air quality report

can be utilized to update our knowledge on air quality, questions about how pollutants evolve

across time and how pollutants are spatially correlated still remain a puzzle. In view of this

point, we adopt the PMFG network method to analyze the six pollutants’ hourly data in 350

Chinese cities in an attempt to find out how these pollutants are correlated temporally and

spatially. In terms of time dimension, the results indicate that, except for O3, the pollutants

have a common feature of the strong intraday patterns of which the daily variations are com-

posed of two contraction periods and two expansion periods. Besides, all the time series of

the six pollutants possess strong long-term correlations, and this temporal memory effect

helps to explain why smoggy days are always followed by one after another. In terms of

space dimension, the correlation structure shows that O3 is characterized by the highest spa-

tial connections. The PMFGs reveal the relationship between this spatial correlation and pro-

vincial administrative divisions by filtering the hierarchical structure in the correlation matrix

and refining the cliques as the tinny spatial clusters. Finally, we check the stability of the corre-

lation structure and conclude that, except for PM10 and O3, the other pollutants have an over-

all stable correlation, and all pollutants have a slight trend to become more divergent in space.

These results not only enhance our understanding of the air pollutants’ evolutionary process,

but also shed lights on the application of complex network methods into geographic issues.

Introduction

Since 2012, the Chinese government has invested a huge amount of resources in establishing

more than 1500 air pollution monitoring centers to dynamically record and publish the air

quality index [1]. However, it still remains a challenge in effectively quantifying how these pol-

lutants evolve across time and cities [2], how the occurrence of environmental pollution is

temporally and spatially correlated. Nevertheless, measuring the temporal and spatial correla-

tion patterns of air pollutants has a profound significance in understanding cities’ connections
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as well as pollutants’ shifting patterns, thus providing a marvelous channel to analyze geo-

graphical, meteorological conditions as well as social-economic spillover effect and most

importantly, curbing the air pollution with correct remedy [1, 3].

To achieve this end, we resort to complex network methodologies and try to quantify the

correlations from two aspects. When it comes to the time side, we resort to the fractal analysis

to examine city’s self-similarity of the six pollutants. As for the space side, we try to view these

cities as scattered nodes and cities’ cross correlations of the pollutants time series as the edges

in a graph. We then work on extracting the hierarchy structures and refining small correlated

groups (known as cliques) in the constructed graph using planar maximally filtered method.

Finally, we test the stability of distance and correlation relationship to consolidate our previous

analysis. Both correlations are of particular importance in enhancing our understanding of

each pollutant’s temporal and spatial patterns.

This is one of the few papers trying to understand pollution’s correlated patterns from the

complex network perspective. Most papers about air pollution have two focuses: Air pollu-

tion’s causes [4, 5] and effects [6, 7]. However, our starting point is different in that it serves to

deepen the knowledge of each pollutant’s evolutionary patterns. In this regard, [3] do similar

work, they also analyze the pollutants’ temporal distribution properties at the city level. Our

intraday pattern results are partially consistent with theirs. However, their work is like a basic

statistical mechanism analysis, which inspires us to deeply mine the latent information. [1]

study the spatial oscillation patterns of six air pollutants. Their research attaches great impor-

tance on meteorological conditions and satellite observations, therefore providing reasonable

explanations for some of pollutants’ intraday patterns and long-term correlations. However,

their work differs from ours in several aspects. First, they only analyze air pollution in eastern

cities of China in winter, while our analysis covers all the cities of China and four seasons. Sec-

ond, they successfully explain the air pollution from both geographical and meteorological

conditions, while due to data availability we only research the pollution’s correlation from geo-

graphical distance. Third, they are trying to unveil the spatial oscillation patterns, while our

targets are the temporal and spatial correlation structures. In spite of these differences, some of

their spatial oscillation patterns are well-identified in our research. Regional-scale temporospa-

tial correlations of air pollutants in China have also been investigated intensively in recent

years [8–11]. It is found that the spatial and temporal correlation structure is based on regional

variations or part of pollutants’ variations [8, 11]. To some extent, the methods used among

these papers are quite conventional. Compared to these papers, we transform spatial correla-

tion into spatial network to quantitatively measure the spatial agglomeration or separation. As

noted before, our research is the first time to cover almost every medium-sized Chinese cities,

making the findings more general and complete.

This paper, on the other hand, is also one of the few trying to apply complex network meth-

ods into spatial correlation issues. Although these methods have achieved great success in

many areas such as stock market clustering [12] and gene decoding [13], they still remain rela-

tively new in pollution’s geographic issues. The physical distances directly or indirectly affect

the spatially embedded intercity correlations, making network’s architecture radically different

from that of random networks [14, 15]. In this sense, this paper casts a new light on the appli-

cation of network methods into the pollution’s spatial correlation issues.

Materials and methods

Data sets

We obtained the hourly pollutant data from Shanghai Qingyue Open Environmental

Protection Data Center (QOEPDC), and the hourly data contain about 400 observed
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mainland cities and from 2015-01-01 to 2015-12-31. The six pollutants are PM2.5, PM10, CO,

O3, NO2 and SO2.

For pollutant k (k = 1, � � �, 6 are PM2.5, PM10, CO, O3, NO2 and SO2 respectively), city i
(i = 1, � � �, 350)’s observed hourly time series xðkÞi;t spans the entirety of 2015. Ideally, each time

series should have an identical length T = 365 × 24 = 8760 hrs. However, due to monitor sta-

tion recording errors, the actual time series have different lengths less than 8760. In order to

preserve data completeness and improve analysis accuracy, we select 350 cities which have

more than 8000 observations. Before proceeding to the data analysis, we first check the data

quality and find that zeros comprise less than 1% of the time series. These zeros obviously

result from the recording errors and we replace them with the average of corresponding previ-

ous and next hour’s concentrations. Same alterations are also done to a few extremely high

and impossible values.

The temporal correlation structure

Hurst exponent is a critical variable to quantify whether the trends of air pollutants revert to

the mean (low long-term correlations) or to the cluster (high long-range correlations) [16–21].

It’s defined in terms of the asymptotic behavior of the rescaled range as a function of the time

span of a time series,

E½RðnÞ=SðnÞ� ¼ CnH as n!1; ð1Þ

where R(n) is the range of the first n values, S(n) is the deviation, E[�] is the expected value and

C is a constant. Theoretically, the Hurst exponent H lies between 0 and 1, and is cut off by 0.5:

When 0<H< 0.5, the time series is switching between high and low values alternatively

(mean-reverting process); while when 0.5 <H< 1, it is a long-term dependent process featur-

ing the trend that high value is followed by another higher value. Quantifying the long-range

correlation has multiple implications. First, Hurst exponent is an indicator of autocorrelation,

which enables us to explore the fractal structure of the evolutionary process. Second, from the

policy-making perspective, when one pollution event occurs, more serious pollution events are

more likely to happen afterwards, and policy makers thus have a hint to restrict outdoor activi-

ties and accordingly fight against the pollution. Last, our estimation of pollutant’s Hurst expo-

nent not only enhances our knowledge about air condition’s autocorrelation structure but also

draws a complete picture about how the strength of autocorrelation of each pollutant in each

place differs from the others.

Considering the influence of intraday patterns and possible seasonal variations, we prepare

three data sets: The raw data, the normalized data by dividing the hourly average

rðkÞi ðd; hÞ ¼
xðkÞi ðd; hÞ

1

365

X

d
xðkÞi ðd; hÞ

; ð2Þ

and the normalized data by dividing the each season S’s hourly average

rðkÞi ðd; hÞ ¼
xðkÞi ðd; hÞ

1

NS

X

d2 Season S
xðkÞi ðd; hÞ

;
ð3Þ

where xðkÞi ðd; hÞ is pollutant k’s concentration level in city i at h on day d, Ns is the number of

days in season S (S = 1, 2, 3, 4). Because rðkÞi ðd; hÞ is computed on the basis of each city, it auto-

matically eliminates our concerns of the trend issues. In the following part, detrended moving
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average (DMA) algorithms [22–30] is applied to compute H. The basic idea for DMA algo-

rithms is to remove the trend by considering the second order difference between original time

series and its moving average function (detailed procedures can be seen in Refs. [27, 28, 31]).

To consolidate how the Hurst exponents are spatially heterogenous, we follow the scheme

in Ref. [32] to calculate the spatial stratified heterogeneity. All cities’ Hurst exponents His are

stratified into h = 1, 2, � � �, L stratum based on socioeconomic factor or geographical factor

Hi,h, and the spatial stratified heterogeneity is defined as

q ¼ 1 �

PL
h¼1

PNh
i¼1
ðHi;h �

�HhÞ
2

PN
i¼1
ðHi �

�HÞ2
ð4Þ

where Nh is the number of cities in stratum h and �Hh is the average Hurst exponent of stratum

h. As proven in Ref. [32], a test statistic is constructed as q follows a non-centered F distribu-

tion. In this paper, we clarify two kinds of spatial stratified heterogeneities. The first one is

stratified by socioeconomic status, where the studied cities are partitioned into 6 groups based

on their social economic ability (more information can be retrieved at http://www.stats.gov.

cn/english/). The second one is based on geographical locations using the 31 administrative

partitions.

The spatial correlation structure

The Pearson cross correlation is used to quantify the similarity between city i and city j for pol-

lutant k and is defined as

cðkÞi;j ¼

XT

t¼1
ðxðkÞi;t � �xðkÞi Þðx

ðkÞ
j;t � �xðkÞj Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1
ðxðkÞi;t � �xðkÞi Þ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1
ðxðkÞj;t � �xðkÞj Þ

2

q ð5Þ

where �xðkÞi is the average concentration of pollutant k in city i.
The air quality correlation matrix typically serves as a connection form between these inves-

tigated cities which can be viewed as a complex system with interactions and entangles. The

correlation matrix has provided crucial information about the system structure. In recent

years, the network method and graph theory that incorporate the correlation matrix have

increasingly been used to study the complex system from the perspective that observed indi-

vidual is as the node and the correlation is as the edge linking these individuals [12, 33, 34].

The correlation based upon clustering procedure allows us to dig into the hierarchical struc-

ture of the system [12, 35–37]. Generally, clustering practically will reduce the dimensions of

the researched multivariate time series, and enable us to group the individuals according to the

similarity. In this section, we will scrutinize the spatial patterns and cities’ intra-cluster struc-

ture of each pollutant using the network clustering algorithms based on the correlation matrix.

Tumminello et al. proposed the correlation filtering algorithms by maximizing the planar

structure and named it planar maximally filtered graph (PMFG, hereafter) [12]. Tumminello,

Lillo and Mantegna have compared the several clustering procedures and concluded the

PMFG as an extension of minimum spanning tree (MST) that allows loops and cliques in the

graph to provide richer information about the correlation structure [36]. The construction

procedure for correlation based upon PMFG is rather direct: Starting from the descending

sorted list of pair wise correlations ci,j, then adding each link between the two cities i and j if

and only if the resulting graph can still be embedded on the surface of genus g� k after such

insertion. The generated simple, undirected, connected graph will have the same hierarchical

structure of the minimum spanning tree, but admit loops to retain more relevant information.

Temporal and spatial correlation patterns of air pollutants in Chinese cities
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Fig 1 plots the large graph layout for the six pollutants’ PMFGs and colors the cities (nodes)

in the same province with same color. Same-colored cities tend to be close in geographic dis-

tance, and this spatial affinity property is pervasive in the six pollutants. The PMFGs refine

many small loops and connected structures known as cliques [12]. These cliques are viewed as

small clusters of cities that share high correlations in pollutant’s evolutionary dynamics. In the

following part, we work on identifying and analyzing these cliques that embedded in the

PMFGs.

We also conduct a moving window scheme to analyze how these cliques evolve across the

whole year motivated by the fact that the air pollution across the whole country features in

dynamics and rebalance resulting from a bunch of geographic, climatic as well as human

behavior factors. This study acts as a robustness test over the time stability of refined cliques.

To reduce the uncertainty of data length and mitigate the influence of outliers on our final

results, we set the window length w = 720hr and move forward as m = 24hr in each step.

Within each window, we compute the Pearson correlation matrix as

cðkÞi;j ðtÞ ¼
1

d
ðkÞ
i d

ðkÞ
j

Xt

l¼t� wþ1

½xðkÞi;l � hx
ðkÞ
i i�½x

ðkÞ
j;l � hx

ðkÞ
j i� ð6Þ

where d
ðkÞ
i is the standard deviation of city i’s time series of pollutant k. In each window we

obtain the corresponding correlation-based PMFG networks.

Fig 1. Large network layout of correlation based upon PMFG. From (a) to (f) are PM2.5, PM10, CO, NO2, O3 and SO2

respectively. To construct the network, we use the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 � 2ci;jÞ

q
as a transformed notation for the correlation.

https://doi.org/10.1371/journal.pone.0182724.g001
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Results

Intraday patterns

Understanding the time trend of each pollutant will give us a general view of each pollutant’s

evolutionary process and help us effectively detrend the time series so as to draw the real corre-

lations [38]. It’s natural to start from the intraday patterns due to the fact that the pollutants

may be significantly influenced by diurnally cyclical temperature and illumination changes

[39, 40]. These intraday patterns showed in a daily periodical phenomenon have been found

pervasive in natural sciences such as temperature variability [41, 42], rainfall perception [43]

and social sciences such as market trading activities [44–46], human mobilities [47]. In this

section, we begin with parsimonious models to display the intraday patterns of the six

pollutants.

Let x(k)(d, h) denote the 350 cities’ averaged concentration of pollutant k at the h-hour on

day d. The normal definition of intraday patterns is as follows:

xðkÞðhÞ ¼
1

365

X365

d¼1

xðkÞðd; hÞ; ð7Þ

which averages the pollutant concentrations at the same hours of all the days.

An alternative definition reads:

xðkÞðhÞ ¼
1

365

X365

d¼1

xðkÞðd; hÞ
max

h
fxðkÞðd; hÞg

; ð8Þ

where max
h
fxðkÞðd; hÞg is the maximum value of pollutant k on day d. This definition takes into

account the seasonal variation of pollutant concentration and rescales the concentration with

respect to the maximum value on each day.

A third definition reads:

xðkÞðhÞ ¼
1

365

X365

d¼1

xðkÞðd; hÞ
1

24

X24

h¼1
xðkÞðd; hÞ

; ð9Þ

where 1

24

P24

h¼1
xðkÞðd; hÞ is the average value of pollutant k on day d. This definition also takes

into account the seasonal variation of pollutant concentration, but rescales the concentration

with respect to the average value on each day.

These three definitions commonly present the intraday patterns but differ in relative mag-

nitude. Eq (7) retains the original unit and magnitude, while Eqs (8) and (9) scale the raw data

by dividing that day’s maximal or mean concentration.

Fig 2 shows the three defined intraday patterns by averaging the 350 observed cities’ con-

centrations in each hour. Generally, each pollutant’s averaged concentration time series is fea-

tured in cyclical patterns within one day. Except for O3, the other five pollutants’ intraday

patterns are composed of two contraction periods (from 12 AM to 5 AM and from 10 AM to

15 PM) and two expansion periods (from 5 AM to 10 AM and from 15 PM to 23 PM). These

five pollutants’ concentrations simultaneously hike to the peak level around 10 AM and then

reduce to the lowest level around 15 PM. These fluctuations imply the “periodic” daily human

activities because NO2 and SO2 mainly come from vehicles and coal combustion. However,

O3’s concentration continues reducing until 9 AM and then bounds to the peak level around

15 PM due to the photochemical reaction [48]. The peak time for O3 is a trough time for the

other five pollutants. After 15 PM O3 is on the way to decline until midnight. The three

Temporal and spatial correlation patterns of air pollutants in Chinese cities

PLOS ONE | https://doi.org/10.1371/journal.pone.0182724 August 23, 2017 6 / 24

https://doi.org/10.1371/journal.pone.0182724


definitions share almost identical intraday patterns and differ in relative magnitudes. Another

conspicuous discrepancy lies in the relative volatility within one day. In Fig 2(c), the concen-

tration of O3 has the highest volatility, and NO2 ranks the second while other four pollutants

have only ±0.1 relative change around the mean level.

There are still two concerns about the robustness of air pollutants’ intraday patterns. One is

whether each individual city shares the same intraday trends as the aggregated does in Fig 2,

the other is whether the aggregated intraday patterns are persistent during the four seasons.

Fig 3(a) displays four typical cities’ intraday patterns: Shanghai, Chongqiong, Shijiazhuang

and Urumchi (the four cities are in different geographic areas and economic zones, also repre-

sent the four development levels of Chinese cities) and (b) averages the hourly level within

each season. Both figures show a consistent framework with the previous studies. They specifi-

cally differ in relative magnitudes. For example, Fig 3(a) shows that the six pollutants in Shang-

hai generally fluctuate more steadily than other cities do and Shanghai also has a relatively low

pollutants level. To a large extent, this is determined by Shanghai’s location and its service-ori-

ented economy. Shijiazhuang and Urumchi are both highly polluted cities, but the sources of

Fig 2. Intraday patterns of six pollutants measured by three definitions. The results in plots (a), (b) and (c) correspond respectively Eqs

(7), (8) and (9). Each hour is averaged using 350 cities’ sample across the 365 days in 2015. In (a), except CO’s unit is mg/m3, other five

pollutants’ units are all μg/m3, and from I to VI are PM2.5, PM10, CO, NO2, O3 and SO2 respectively.

https://doi.org/10.1371/journal.pone.0182724.g002
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pollutants in the two cities are quite different. Shijiazhuang’s intensive heavy industry is the

leading cause and Urumchi’s location and climatic causes outweigh others. Fig 3(b) shows the

intraday patterns across the four seasons are almost identical. The subtle difference resides in

the minimum NO2 level, which is a bit lower in summer and autumn than that of spring and

winter. These findings, both at the city level and the season level, are quite consistent to

Ref. [3]’s summarized results regardless of adopting different data sets and sample cities. These

roughly-constructed but well-identified intraday patterns inspire us to scrutinize each pollut-

ant’s time series periodicity in a detailed way.

Lomb power analysis

In this section, we introduce the normalized Lomb power [49, 50] to confirm the cyclic pat-

terns that have been captured in Figs 2 and 3. Similar to Fourier transformation, Lomb power

analysis works on converting the cyclic time series into frequency domain so as to obtain the

periodical parameters. For evenly sampled time series, Lomb power is equivalent to conven-

tional Fourier transformation spectrum analysis. For unevenly sampled time series, Lomb

power analysis performs better by effectively mitigating the long-periodic noise caused by long

gapped records [49]. The Lomb power PT(f) is defined as

PðkÞT ðf Þ ¼
1

2sðkÞ
2

½
P

sðx
ðkÞ
s � �xðkÞÞ cos 2pf ðts � tÞ�

2

P
s cos 22pf ðts � tÞ

þ
½
P

sðx
ðkÞ
s � �xðkÞÞ sin 2pf ðts � tÞ�

2

P
s sin 22pf ðts � tÞ

� �

; ð10Þ

where xðkÞs ðs ¼ 1; � � � ; 8760Þ is the averaged time series of pollutant k with size T = 8760, �xðkÞ

and σ(k) are the mean and standard deviation of the time series, and the time offset τ is deter-

mined by

tan ð2pf tÞ ¼

P
s sin ð2pftsÞP
s cos ð2pftsÞ

: ð11Þ

Fig 3. Intraday patterns defined in Eq (9) of air pollutants in four selected cities (a) and four seasons (b). Each city’s intraday

patterns (a) are averaged using the sample across the 365 days in 2015. The four cities are Shanghai (I), Chongqing (II), Shijiazhuang (III)

and Urumchi (IV); Each season’s intraday patterns (b) are averaged using the 350 cities in the three season months (spring (I) is from

January to March, summer (III) is from April to June, autumn (II) is from July to September and winter (IV) is from October to December). The

meaning of the line types refers to Fig 2(b) and 2(c).

https://doi.org/10.1371/journal.pone.0182724.g003
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Fig 4 displays the Lomb periodograms of six pollutants time series. Obviously, the six time

series share an almost identical peak power around f = 11.58 μHz and PT(f) = 68.31 dB/HZ,

which equals to a period of 23.99 hrs and is corresponding to the diurnal pattern of the pollut-

ants [50]. Except for O3, 2f is also a peak level for the Lomb power, and even higher than the

first peak, which is explained by the intraday cycles noted before: Within one day, the evolu-

tionary characteristic of the pollutants is viewed as two cycles, and the second peak is corre-

sponding to such an approximately half day period. Another straightforward feature shown in

Fig 4 is the evenly spaced harmonic peaks, they serve to consolidate the intraday patterns and

these patterns can be safely decomposed into two contraction and two expansion periods.

Moreover, this decomposition is both statistically significant and intuitively reasonable.

In this section, we have satisfactorily uncovered each pollutant’s intraday patterns: From

both city level and season level, two regimes within one day are identified. However, O3 is an

exception because of its asynchronous changing time with other pollutants. The Lomb power

analysis enhances our understanding of this periodicity from power spectrum peaks. Practi-

cally, these intraday patterns recognized as important air quality evolutionary clues may be of

great value in scheduling outdoor activities [51] and controlling air pollution [3].

Temporal correlation structure

We adopt the DMA method to estimate the Hurst exponent of each pollutant time series in

each place. Then, we project these Hurst exponents into the Chinese map and also plot the his-

tograms to illustrate their distributions. Fig 5 shows the raw data’s Hurst exponents distribu-

tions both in geographical style (left panel) and histogram style (right panel). Generally, most

of researched time series have Hurst exponents significantly higher than 0.50, which signals

strong long-term correlations for air pollution. This provides solid evidence for the

Fig 4. Normalized Lomb power spectrum PðkÞT ðf Þ for each averaged pollutant concentration time series x(k).

https://doi.org/10.1371/journal.pone.0182724.g004
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phenomenon that smoggy days are always followed by one after another. Geographically

neighboring cities tend to share similar long-term correlations in Fig 5’s left panel of each plot.

The six pollutants’ exponents show the feature of unimodal and asymmetric distributions in

the right panel. Specifically, Fig 5(a) and 5(b) apparently display that PM2.5 and PM10 enjoy

the highest average Hs ( �HPM2:5
¼ 0:85 and �HPM10

¼ 0:83) and the distributions are left-skewed

with the mode around 0.87. The highest long-term correlated areas span from Bohai Bay to

Fujian Province vertically and from Heinan Province to Shanghai horizontally. The average

exponents of CO, NO2, O3, SO2 are 0.78, 0.73, 0.66, 0.75 respectively and have more symmetric

distributions. The most strongly long-term correlated areas for the four pollutants locate in the

east coastal part and center on the Yangtze River Delta. However, most cities’ Hs of O3 lie

between 0.50 and 0.60, much lower than other pollutants, especially for the north part of

China. It’s rather difficult to distinguish most cities’ O3’s concentration time series from ran-

dom walk process. In other words, it’s not easy to track O3’s long-term dynamic patterns.

Finally, although the estimated exponents are sensitive to parameters used in DMA algorithms

and even sensitive to the algorithms used [52], there are still five cities’ Hs are appreciably

lower than 0.50: Haikou (in Hainan Province, 110.32˚E, 20.03˚N) and Ali Area (in Tibet

Province,80.10˚E, 32.50˚N)’s CO series; Zhongwei (in Ningxia Province, 105.18˚E, 37.52˚N)

and Turpan Area (in Xinjiang Province, 89.17˚E, 42.95˚N)’s O3 series; Jiujiang (in Jiangxi

Province, 116.00˚E, 29.70˚N)’s SO2 series.

Fig 5. Hurst exponent distribution of the six pollutants for the 350 observed cities in 2015. From (a) to (f) are PM2.5,

PM10, CO, NO2, O3 and SO2 respectively. The left panel for each subfigure are the Hurst exponents projected into the China

maps, in which the the filled circles in different colors (red, blue, green, orange, yellow, brown and pink) are 7 equal Hurst

intervals ranging from 0.3 to 1. The right panel for each subfigure are the histograms of the exponents.

https://doi.org/10.1371/journal.pone.0182724.g005
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The high long-term correlations of the pollutants (except for O3) are partly consistent with

the successive random dilution (SRD) explanation [53, 54]. An initially concentrated pollutant

will experience a random dilution and mixing process in the air, of which the process is log-

normally distributed. As stressed in Ref. [54], the extreme concentration variability in time,

with intensity peaks many times higher than the average, may be viewed as a consequence of a

multiplicative dilution process. On the other hand, the air pollution time series possess high

long-term correlations like other natural phenomenon such as river overflow and rainfall per-

ception, since the periodic impact originated from human activity is bound to contribute some

long-term correlations. In view of this, it’s quite important to restrict the emissions once a pol-

lution event happens, and sufficient time for the random dilution process will change the

long-term structure of air pollutants.

As observed from Fig 5, two fine particulate matters share similar spatial and probabilistic

distribution properties of Hs. To find out how the pollutants’ Hs are correlated, we tabulate the

correlation coefficients of any two pollutants’ Hurst exponents in Table 1. The table shows that

one pollutant’s long-term correlation properties have a positive link with that of another pol-

lutant, especially for the two fine particulate matters. This high correlation between pollutants

stems from two possibilities: First, all the observed cities are commonly influenced by the wave

of pollution with another wave of pollution following after, which results in positive correla-

tions between the pollutants. Secondly, even if the pollution doesn’t occur simultaneously, the

regional and asynchronous pollution periods are linked with each other through some meth-

ods or driven by some common causes. For example, PM2.5 and PM10 have the highest correla-

tion of all the pairs due to the similar source of the two pollutants. O3’s Hurst exponents

generally correlates weakly with other pollutants, which is consistent to the previous finding

that the peak time of O3 is the trough time of other pollutants and O3’s distribution is quite dif-

ferent from others. In other words, this asynchronism reduces correlation between the O3’s

Hurst exponents and that of other pollutants. However, there are still some overlapped con-

traction and expansion periods between O3 and other pollutants, which ensures the correla-

tions are still positive. Except for above-mentioned pollutants, the other three pollutants’

Hurst exponents maintain the correlation level ranging from 0.4 to 0.5, a moderate strength of

positive correlation.

Inspired by [32, 55], we measure the heterogeneity stratified by the social economic indica-

tor (labeling each city 1-6 based on its socioeconomic development level) and the geographic

indicator (using administrative partition as the indicator). The results show that the Hurst

exponents are more spatially homogenous in terms of the socioeconomic partitions than geo-

graphic partitions. In other words, cities belong to the same development level tend to share

Table 1. Correlations and spatial stratified heterogeneity of the six pollutants’ Hurst exponents.

Pollutants PM2.5 PM10 CO NO2 O3 SO2

Panel A: Correlations of Hurst exponents

PM2.5 1.00 0.88 0.53 0.57 0.19 0.52

PM10 0.88 1.00 0.54 0.61 0.23 0.48

CO 0.53 0.54 1.00 0.60 0.29 0.52

NO2 0.57 0.61 0.60 1.00 0.41 0.55

O3 0.19 0.23 0.29 0.41 1.00 0.22

SO2 0.52 0.48 0.52 0.55 0.22 1.00

Panel B: Spatial stratified heterogeneity of Hurst exponents

Socioeconomic stratum 0.09 0.06 0.01 0.07 0.00 0.09

Geographical stratum 0.57 0.60 0.41 0.55 0.52 0.40

https://doi.org/10.1371/journal.pone.0182724.t001
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similar long-term correlation structure in pollutant time series. This conclusion has several

implications. First, cities within the same development level are more likely to share similar

energy-intensive heavy industry structure [56]. Second, the geographical closeness means a

similar air pollution mixing and diluting ability. Therefore, to curb the emission, this heteroge-

neity will inspire us to choose a cooperative model in an effective way.

As noted before, Hurst exponent is a critical statistic to measure the long-term memories of

the air pollutants. As other commonly used basic statistics, Hurst exponent could reflect the

trend of the time series. Many papers have documented the potential relationship between

Hurst exponent and some summary statistics [57]. Here we assess the connections between

Hurst exponents and four basic statistics (mean, standard deviation, skewness and kurtosis) so

as to consolidate air pollutants’ temporal correlations.

Table 2 reports mixed results about the relationship between Hurst exponents and the four

basic statistics. The Hurst exponent is strongly correlated with the first and second moments

of raw data, but if the pollution concentration’s daily pattern is detrended (in Panel B and C),

the correlation reduces to a very low level (even anti-correlation). Another interesting finding

is the correlation between Hurst exponents and skewness or kurtosis. Skewness is a measure of

the asymmetry of distribution and kurtosis measures the tailedness of the distribution. Except

O3, the other pollutants show a negative relationship between Hurst exponents and the two

statistics, in terms of the skewness. It can be interpreted as for more negative skewed pollutants

distributions (more high pollutant levels than low levels), the time series tend to be higher in H
due to higher likelihood of one polluted day is followed by another more polluted day. How-

ever, O3 is an exception due to the commonly low levels of Hurst exponents and its disordered

spatial distribution. As for the kurtosis, it’s similar to the skewness in that most of the variance

results from infrequent extreme deviations, thus leading to a lower Hurst exponent in pollut-

ant level.

So far, we have concluded the pollutants’ temporal characteristic as long-term correlation

with variations existing between cities and pollutants. This long-term correlation trend is a

reasonable explanation for the fact that the polluted days always recurred in clusters. By

Table 2. Correlations between Hurst exponents and mean, standard deviation, skewness and kurtosis across 350 cities of each pollutant. This

table reports the raw pollutants data results (Panel A), the intraday detrended data results (Panel B) and seasonal adjusted detrended data results (Panel C).

PM2.5 PM10 CO NO2 O3 SO2

Panel A: Raw data

c(Mean,H) 0.41 0.36 -0.12 0.46 0.20 0.07

c(Std,H) 0.25 0.15 -0.21 0.47 -0.14 -0.14

c(Skewness,H) -0.23 -0.20 -0.05 -0.15 0.03 -0.28

c(Kurtosis,H) -0.20 -0.20 -0.08 -0.07 0.09 -0.21

Panel B: Intraday detrended data

c(Mean,H) 0.03 -0.07 0.01 0.07 -0.06 -0.04

c(Std,H) -0.04 -0.16 -0.22 -0.01 0.02 -0.18

c(Skewness,H) -0.18 -0.24 -0.03 -0.11 0.08 -0.30

c(Kurtosis,H) -0.15 -0.23 -0.09 -0.11 -0.04 -0.23

Panel C: Intraday detrended and seasonal adjusted data

c(Mean,H) -0.02 -0.10 -0.26 -0.05 0.09 -0.33

c(Std,H) -0.14 -0.18 -0.42 -0.19 -0.13 -0.48

c(Skewness,H) -0.27 -0.31 -0.09 -0.15 0.05 -0.42

c(Kurtosis,H) -0.20 -0.23 -0.09 -0.06 0.13 -0.32

https://doi.org/10.1371/journal.pone.0182724.t002
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linking with time series’ basic statistics, we find except for O3, the other five pollutants’ skew-

ness and kurtosis are negatively related with their Hurst exponents.

Spatial correlation structure and refined cliques

Fig 6 presents the spectrum and probability distribution of the correlation coefficients of raw

data. Obviously the correlation spectrum are featured by clusters. As we arrange our city label

sequence according to provincial administrative divisions, cities in the correlation spectrum

agglomerate based on their short geographic distance or identical administrative division.

These clusters reflect a similar evolutionary process between cities and this similarity is a inte-

grated result of natural conditions and human activities. Generally, neighbouring cities are

more likely to share similar meteorological and terrain conditions, as well as development lev-

els. Therefore, the spectrum shows very straightforward squared clustering patterns. Another

point for the overall correlation is they are all appreciably positive which shows the general co-

movement of the air pollution across the major cities in China [58]. Even so, the six pollutants

still possess specific different correlation patterns: The overall average correlation of O3

(�c ¼ 0:45 in Table 3) is much higher than the other pollutants, which implies that O3’s evolu-

tionary patterns all over Chinese cities is much homogenous. Second to O3, the NO2’s averaged

correlation is about 0.32 and the other three pollutants share nearly similar average correla-

tions from 0.20 to 0.26.

The unimodal distribution for the six correlations presents us the scenario that for the cor-

relation structure, both independent and perfect correlation are unlikely to happen. The mode

correlations varies from 0.25 to 0.50, when checking the lowest correlations, we find these low

Fig 6. Correlation spectrum (left panel) and probability density (right panel) of the six pollutants in 350 observed cities. In

each subfigure, from (a) to (f) are PM2.5, PM10, CO, NO2, O3 and SO2 respectively.

https://doi.org/10.1371/journal.pone.0182724.g006
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correlated areas are usually in Yunnan Province and Ningxia Province, of which the cities in

these regions enjoy advantageous natural conditions that free them from the outside pollution.

In addition, these cities have a relative low percentage of industrialization, preventing them

from releasing excessive pollutants. Therefore, they take on an isolated effect from other areas

in terms of the air pollution.

Table 4 reports the percentages of 3-clique and 4-clique structures that distribute within 1

identical province or among 2-4 different provinces. It measures the diffusion power of the

small similar structures. In the six pollutants, except SO2, about half of three highly correlated

cities are just limited to one province and another 40% spreads to another province, very few

of which (only around 10%) have the far reaching power to expand to the third province. Cit-

ies’ SO2 cliques, however, are more likely to stay in adjacent two provinces. The 4-clique has a

similar pattern to the 3-clique: The percentage of 4-cliques distributed in 4 distinguished prov-

inces comprises less than 10%, and most of the 4-cliques stay in the same province or their

adjacent province. Cross-sectionally, PM2.5 and PM10 have the most 1-province cliques and

SO2 the least, which is consistent with the previous correlation spectrum that SO2 is the least

localized pollutant due to its source of fossil fuel combustion at power plants. The clique distri-

bution, to some extent, resulting from integrated results of local emissions and global trans-

mission. In this sense, the six pollutants can be sorted into 3 groups. First, particulate matters

(PM2.5 and PM10) have the lowest transmission power. The most correlated community for

these matters to transfer is within 2 provinces, considering that these matters mainly come

from traffic emission and dust [59]. It’s vital to restrict traffic emission and improve city green

land area [9]. O3 and NO2 come as the second group in terms of the dispersion power. As

noted before, sunlight is tightly associated with the two pollutants [48, 60]. Hence, controlling

the concentration of these two pollutants should mainly focus on its heavy industry emission

Table 3. Summary statistics of the correlation coefficients of pollutants.

Pollutant Max Min Mean Median Std Skewness Kurtosis

Panel A: Raw data

PM2.5 0.94 -0.25 0.26 0.24 0.16 0.73 3.70

PM10 0.93 -0.16 0.22 0.19 0.15 0.95 4.08

CO 0.84 -0.33 0.26 0.26 0.14 0.14 3.25

NO2 0.90 -0.15 0.32 0.32 0.13 0.24 3.26

O3 0.95 -0.36 0.45 0.46 0.17 -0.41 3.24

SO2 0.87 -0.24 0.21 0.19 0.15 0.50 3.00

Panel B: Intraday detrended data

PM2.5 0.94 -0.27 0.25 0.23 0.16 0.68 3.59

PM10 0.93 -0.17 0.21 0.18 0.16 0.93 4.01

CO 0.84 -0.35 0.25 0.25 0.15 0.12 3.24

NO2 0.89 -0.23 0.28 0.28 0.14 0.15 3.19

O3 0.93 -0.52 0.24 0.24 0.19 -0.03 2.92

SO2 0.86 -0.26 0.21 0.19 0.16 0.49 2.99

Panel C: Intraday detrended and seasonal adjusted data

PM2.5 0.92 -0.43 0.13 0.11 0.18 0.73 3.73

PM10 0.93 -0.36 0.12 0.09 0.17 0.84 3.91

CO 0.83 -0.59 0.11 0.11 0.19 0.07 3.19

NO2 0.86 -0.42 0.20 0.19 0.17 0.14 3.08

O3 0.96 -0.46 0.48 0.50 0.21 -0.69 3.41

SO2 0.79 -0.19 0.12 0.11 0.10 0.99 4.62

https://doi.org/10.1371/journal.pone.0182724.t003
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locally. As for the other two pollutants, regional control is far from enough, interregional coop-

eration would be more effective than the local’s effort.

Table 5 tabulates the strongest correlated 3-clique and 4-clique of each pollutant. In panel

A, the highest correlated 3-cliques of PM10, NO2 and O3 are in the same province, and the

three cities in 3-clique of PM2.5 and CO actually belong to the city group in Yangtze River

Delta. Interestingly, the highest correlated 3-clique for SO2 is composed of the three capital cit-

ies in Northeast China, which are viewed as historical industrial bases, as evinced that SO2 is

not a local pollutant and its variations are highly connected because of industrial activities.

The extended 4-clique results of Table 5 panel B differ from 3-clique in the newly added city

except for O3. This additional city surrounds the existing 3-clique geographically, setting the

PM2.5 for an example, the PMFG filters the Taicang, Kunshan and Shanghai as the highest

strong 3-clique, and the added Changshu in 4-clique is very close to the previous three cities.

These cities are the manufacturing centers and energy-intensive centers of the Yangtz River

Delta. Moreover, the amount of private cars ranks high in China, resulting in a strongly corre-

lated clique in terms of the most localized pollutants. The 4-clique for O3 has been switching

from Hunan Province to Liaoning Province rather than append another city on the basis of

3-clique, showing the unstable structure of O3’s 3-clique, One possibility is that Liaoning Prov-

ince has more industrial companies to accommodate more individuals when the correlated

community expands. In Table 5, we also tabulate each strongest clique’s averaged correlations

(measured by the average of 3 pair-wise correlations in 3-clique and 6 pair-wise correlations in

4-clique) and the extension from 3-clique to 4-clique reduces the average correlation by about

Table 4. Statistical properties of 3-clique and 4-clique structure. This table reports the summary statistical properties of the 3-clique and 4-clique sub-

graphs extracted from the correlation matrix based upon Planar Maximally Filtered Graph (PMFG). For each pollutant we report the number of the 3-clique

and 4-clique subgraphs belongs to 1-4 administrative provinces respectively.

Pollutant 1 province 2 provinces 3 provinces 4 provinces

Panel A: 3-clique summary

PM2.5 588

(56.43%)

404

(38.77%)

50

(4.80%)

PM10 569

(55.73%)

394

(38.59%)

58

(5.68%)

CO 408

(39.65%)

417

(40.52%)

204

(19.83%)

O3 530

(51.06%)

425

(40.94%)

83

(8.00%)

NO2 482

(47.07%)

453

(44.24%)

89

(8.69%)

SO2 309

(29.71%)

505

(48.56%)

226

(21.73%)

Panel B: 4-clique summary

PM2.5 175

(50.43%)

142

(40.92%)

29

(8.36%)

1

(0.29%)

PM10 160

(49.69%)

131

(40.68%)

29

(9.01%)

2

(0.62%)

CO 110

(33.43%)

123

(37.39%)

61

(18.54%)

35

(10.64%)

O3 150

(43.86%)

145

(42.40%)

41

(11.99%)

6

(1.75%)

NO2 129

(39.94%)

142

(43.96%)

48

(14.86%)

4

(1.24%)

SO2 77

(22.38%)

150

(43.60%)

85

(24.71%)

32

(9.30%)

https://doi.org/10.1371/journal.pone.0182724.t004
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0.02 for each pollutant. The last column displays the averaged disparity measure yi:

yi ¼
X

j6¼i;j2clique

cij
si

� �2

ð12Þ

where si = ∑j 6¼ i, j 2 clique cij. If the correlation is uniform across each intercity pair within the cli-

que, 3-clique’s yi = 1/2 and 4-clique’s yi = 1/3. The last column shows an overall uniform corre-

lations within each strongest correlated clique.

In this section, we resort to the administrative divisions as a rough measure of the cities’

geographic distance, although the results that most highest correlated cliques are centered

within one or two provinces are pretty straightforward. Critics may point out that two cities in

different provinces are even closer than two cities in the same province. In an ongoing

research, we are quantitatively measuring the spatial correlated structures with their mutual

distances.

Cliques’ wan and wax

The moving window scheme from Eq (6) shows how the percentages of the nodes in a clique

belonging to one province, two provinces, three and four provinces evolve all over the whole

2015. Fig 7(a) show the 3-clique dynamic patterns. Among all the cliques, except the O3, the

other five air pollutants’ one province 3-clique percentages commonly have a declining trend,

which acts as a strong signal for the anti-localization and diffusion of the pollutants. However,

the percentages of cliques that belong to two different provinces are rather stable varying from

40% to 50%. And the reduced part in one province percentages flows into the three provinces

percentages. Especially for the SO2, the higher correlated 3-clique is more pervasive in three

different provinces, and up to 60% of all 3-cliques at the end of 2015. On the other hand, the

localization of O3 is quite straightforward: 45% of 3-cliques are in one province and another

45% are in two different provinces, leaving only 10% dispersion in three different provinces.

When we extend the 3-clique to 4-clique in Fig 7(b), the scenario is quite different. O3’s locali-

zation is not stable any more and the mutation period occurs around September. Before Sep-

tember, the percentage of 4-clique whose cities are in the same provinces stabilizes at around

40%. However, after September the 4-clique structures become more diversified. Another

Table 5. Strongest correlated clique. This table reports the strongest correlated 3-clique or 4-clique for each pollutant.

Pollutant City 1 City 2 City 3 City 4 hci hyi

Panel A: 3-clique strongest correlated clique

PM2.5 Taicang (Jiangsu) Kunshan (Jiangsu) Shanghai (Shanghai) 0.92 0.5000

PM10 Changzhou (Jiangsu) Wuxi (Jiangsu) Jiangyin (Jiangsu) 0.90 0.5002

CO Suzhou (Jiangsu) Shanghai (Shanghai) Jiaxing (Zhejiang) 0.80 0.5004

O3 Zhuzhou (Hunan) Xiangtan (Hunan) Changsha (Hunan) 0.92 0.5011

NO2 Xiangtan (Hunan) Hengyang (Hunan) Changsha (Hunan) 0.82 0.5001

SO2 Harbin (Heilongjiang) Changchun (Jilin) Shenyang (Liaoning) 0.82 0.5000

Panel B: 4-clique strongest correlated clique

PM2.5 Taicang (Jiangsu) Changshu (Jiangsu) Kunshan (Jiangsu) Shanghai (Shanghai) 0.90 0.3335

PM10 Changzhou (Jiangsu) Zhangjiagang (Jiangsu) Wuxi (Jiangsu) Jiangyin (Jiangsu) 0.88 0.3337

CO Jimo (Shandong) Jiaozhou (Shandong) Laixi (Shandong) Qingdao (Shandong) 0.79 0.3338

O3 Benxi (Liaoning) Shenyang (Liaoning) Liaoyang (Liaoning) Anshan (Liaoning) 0.89 0.3340

NO2 Zhuzhou (Hunan) Xiangtan (Hunan) Hengyang (Hunan) Changsha (Hunan) 0.80 0.3336

SO2 Harbin (Heilongjiang) Changchun (Jilin) Benxi (Liaoning) Shenyang (Liaoning) 0.80 0.3339

https://doi.org/10.1371/journal.pone.0182724.t005
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evident breakpoint happens to PM10 around late May. Before May, most of the 4-cliques per-

tain to same province or two provinces, indicating the strong local effect of PM10. However,

after May this tide has been reversed to the extent in which three provinces and four provinces

individuals dominate the 4-clique. The rest four pollutants are slightly decreasing the local ten-

dency and increasing the diverging correlations. How climatic conditions and human activities

influence the divergent trend needs to be evaluated further. One thing is for sure that the two

breakpoints are both climate change points and industrial activity peak time in China [61]. To

sum up, we are fine to conclude that the correlation structure of the pollutants are in a course

of slightly divergent dispersion in space. This finding, to some extent, consolidates the hypoth-

esis that Chinese air pollution’s diffusion power is further reaching.

Consisting with the previous static analysis, we plot the evolutions of the most strongly cor-

related cliques across each sliding window and find that even though different strongest cli-

ques will occur in different windows, only limit to the several individual cities labeled in Fig 8.

By and large, both Shanghai-centered and Beijing-centered city groups are ubiquitous in each

pollutant’s cliques. Although the two cities are service-oriented economy, this result is not sur-

prising because there are thousands of state-run and private-owned manufacturing industries

distributed along the two economic belts and the density of population is among the highest as

shown in Fig 9, resulting in highly correlated spatial community of air pollutants in these cities.

On the other hand, the policy implication is straightforward, collaborative management and

joint monitoring will be more effective in controlling the pollution in these two areas. The

4-clique generally has boarder coverage than 3-clique and the connections labeled as solid

Fig 7. The time evolution of the percentages that all the cities in a clique belong to one province, two

provinces, three or four provinces. (a) is 3-clique’s evolutionary results with (I)-(III) corresponding to one

province, two provinces and three provinces respectively, (b) is 4-clique’s evolutionary results with (I)-(IV)

corresponding to one province, two provinces, three provinces and four provinces respectively. Legend of

each pollutant refers to Fig 2(b) or 2(c).

https://doi.org/10.1371/journal.pone.0182724.g007
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lines are denser. Moreover, the length of these edges connecting cities signals the exterior

extension degree. In this sense, O3’s strongest cliques display visibly localized properties, while

strongest correlated cliques of CO and SO2 even connect extremely western and eastern cities

of China. The strongest correlated cliques’ occurrence probability (measured by the number of

clique’s lasting days and labeled with five colors) reveals that the above-mentioned two city

groups are more likely to be encompassed into these highly correlated cliques.

To gross all the stable strongest correlated cliques using cities evolution tree [62], we find in

Fig 9 that five parts of China are of great significance in understanding the dynamic spatial

structure. The Beijing-centered Jing-Jin-Ji belt and the Shanghai-centered Yangtze-River Delta

as well as the Guangzhou-centered Pearl-River Delta are strongly correlated because of distrib-

uted intensive manufacturing firms [58]. The cities in Northeast China and Northwest China

are strongly correlated, which is mainly caused by the large amount of pollutants emitted due

to the heating supply in winter [1]. Moreover, particulate pollution in these parts is under the

common influence of regionally accumulated pollutants due to the lack of strong winds.

In brief, the dynamic analysis above allows us to check the stability of both these cliques

themselves and their relationship with geographical distances. Except one or two particular

pollutants, PMFG filters these correlated cliques which is characterized by an overall stable but

slightly divergent trend in space. In addition, the most strongly correlated cliques apparently

center around some developed areas for rather a long period. These findings will encourage us

to think about a cooperative management model to curb the localized cliques and decentral-

ized method to control divergent pollutants such as SO2.

Fig 8. The residence time for the most strongly correlated PMFG filtered 3-cliques and 4-cliques. The filled circles

in different colors (blue, red, green, orange, purple) are 5 equally increased segments of the number of days the clique

lasts throughout the year. Left panel is the six pollutants graphed from the most strongly correlated 3-cliques and right

panel is based on the most strongly correlated 4-cliques. In each plot, from (a) to (f) are PM2.5, PM10, CO, NO2, O3 and

SO2 respectively.

https://doi.org/10.1371/journal.pone.0182724.g008
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Fig 9. Cities’ evolution tree based on the dynamic strongest correlated cliques. After plotting the frequency of the strongest correlated cliques

in Fig 8, we classify the strongest correlation structure into six parts. The area of circle roughly represents the population, and the cities in the top of

tree have higher GDP. Each branch is a city group.

https://doi.org/10.1371/journal.pone.0182724.g009
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Discussion

Chinese air pollution arises rapidly along with the economic development and is torturing the

whole country [58]. It requires tenacious determination to fight against the air pollution. This

paper serves to deepen our understanding of the air pollutants evolutionary process from tem-

poral and spatial correlations.

To begin with, we depict the intraday patterns for five pollutants in terms of two contrac-

tion periods and two expansion periods. O3, as an exception, shows its asynchronism. More-

over, this trend is pervasive all over Chinese cities and across all four seasons. The Lomb

spectrum analysis proves that these intraday patterns are daily periodical across the whole

year. These results help us overview the general structure of air pollutants’ time series and lay

foundations for the understanding of temporal and spatial correlations.

From the temporal side, most cities’ air pollutants’ time series show strong long-term corre-

lations, which is consistent with the trend that smoggy days are always followed by one

another. This finding can be partly explained by the successive random dilution model [53],

where the air pollutants undergo a random dilution and mixing process and accumulate again,

resulting in a multiplicative dilution process [54]. To further explore the spatial heterogeneity

of these Hurst exponents stratified by socioeconomic and geographical indicators [32, 55], we

find that the Hurst exponents are more heterogenous partitioned by the geographical indica-

tor, which shows that the long-term structures of air conditions are closer in cities at similar

development levels. This finding also partially shows that human factors outweigh natural fac-

tors in determining the long-term trend of air pollution [54]. We also find two particulate mat-

ters share the similar temporal trends; other three pollutants (CO, NO2 and SO2) also behave

similarly in the long-term correlations. This particularity of O3 is largely due to its asynchro-

nous changing process with other pollutants. The relationship between Hurst exponents and

several basic statistics is also displayed, although the results are mixed, we capture a negative

correlation between H and skewness or kurtosis.

The policy implication of the long-term structure is twofold. First, except for O3, the other

five pollutants’ long-term correlations inform us that weakening the multiplicative dilution

and accumulation process of air pollutants requires a comprehensive set of actions based on

an integrated approach to make substantial improvements [63]. Second, assessing the spatial

stratified heterogeneity, the relationship between Hurst exponents and other statistics makes

regional variations of pollutants’ long-term structure clear, providing an empirical support in

the prediction of pollutants’ evolution [64].

On the spatial side, starting from the Pearson correlation structure, we are the first to cover

almost every medium-sized Chinese cities to unveil the spatial correlations compared to previ-

ous researches [65, 66]. It’s shown that O3 tops the six pollutants in terms of overall correla-

tions. All the six correlation spectrum are featured with clusters. We then successfully refine

small cliques in the correlation structure aided by PMFG [12]. These cliques reflect how the

spatial similarity of the pollutants’ evolutionary process looks like and show how the six pollut-

ants disperse spatially. We confirm that neighbouring cities are more likely to form clusters

[58]. Based on the spatial correlations of each pollutant, we classify the pollutants into three

groups with increasing dispersion power: Particulate matters (PM2.5 and PM10), O3 and NO2

which merely spread to the third or forth provinces, SO2 and CO which are easy to form cli-

ques with cities far away. The tabulated highest correlated cliques show that manufacturing

centers are more likely to form strong correlation structure [1, 36, 58]. These well-identified

small cliques are of great value in understanding the pollution’s spatial correlations [12, 67].

Finally, we test the correlation’s dynamic stability across the year through a moving window

scheme. It is found that O3 has breakpoints in both 3-clique and 4-clique around September,
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and PM10 also shows its breakpoint around late May, while other pollutant present a general

stable divergent and diffusive trend in spatiality. These two breakpoints can be partly explained

by climate change points and industrial activity peak times in China [61]. The finding that the

correlation structure of pollutants is slightly divergent serves a piece of solid evidence that air

pollution in China is reaching further away, making the environmental issue severer [1, 58].

Although these conclusions are carefully drawn and cautiously presented, we still have huge

potential to improve. First, the causes of a decaying correlation between two cities are rather

complicated, with the distance being one of the many factors. Other meteorological conditions

such as wind largely account for this spatial correlation patterns. Modelling this spatial correla-

tion with distance, possibly leads to a unilateral conclusive result. In the future study, we

should try to collect other meteorological data to enhance the causes of spatial connections.

Second, although we unveil the pollutants’ spatial patterns from both static and dynamic analy-

ses, the shifting patterns remain a puzzle. To achieve this end, two difficulties are ahead. The

first is to introduce a diffusion model among so many cities and the second is to identify the

correlation directly coming from pollutants’ shifting rather than data noise. Anyway, it pro-

vides a promising direction for future research.
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