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Abstract

Despite availability of high quality medical records, health care systems often do not have

the resources or tools to utilize these data efficiently. Yet, hospital-based, laboratory-con-

firmed records may pave the way for building reliable surveillance systems capable of

monitoring temporal trends of emerging infections. In this communication, we present a

new tool to compress and visualize medical records with a local population profile (LPP)

approach, which transforms information into statistically comparable patterns. We provide

a step-by-step tutorial on how to build, interpret, and expand the use of LPP using hospital-

ization records of laboratory-confirmed cholera. We abstracted case information from the

databases maintained by the Department of Clinical Microbiology at Christian Medical

College in Vellore, India. We used a single-year age distribution to construct LPPs for O1,

O139, and non O1/O139 serotypes of Vibrio cholerae. Disease counts and hospitalization

rates were converted into fitted kernel-based probability densities. We formally compared

LPPs with the Kolmogorov-Smirnov test, and created multi-panel visuals to depict tempo-

ral trend, age distribution, and hospitalization rates simultaneously. Our first implementa-

tion of LPPs revealed information that is typically gathered from surveillance systems

such as: i) estimates of the demographic distribution of diseases and identification of a

population at risk, ii) changes in the dominant pathogen presence; and iii) trends in dis-

ease occurrence. The LPP demonstrated the benefit of increased resolution in pattern

detection of disease for different Vibrio cholerae serotypes and two demographic catego-

ries by showing patterns and anomalies that would be obscured by traditional methods of

analysis and visualization. LPP can be used effectively to compile basic patient informa-

tion such as age, sex, diagnosis, location, and time into compact visuals. Future develop-

ment of the proposed approach will allow public health researchers and practitioners to

PLOS ONE | https://doi.org/10.1371/journal.pone.0182642 August 18, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Cruz MS, AlarconFalconi TM, Hartwick

MA, Venkat A, Ehrlich HY, Anandan S, et al. (2017)

From hospitalization records to surveillance: The

use of local patient profiles to characterize cholera

in Vellore, India. PLoS ONE 12(8): e0182642.

https://doi.org/10.1371/journal.pone.0182642

Editor: Mohammad Ali, Johns Hopkins Bloomberg

School of Public Health, UNITED STATES

Received: January 31, 2017

Accepted: July 22, 2017

Published: August 18, 2017

Copyright: © 2017 Cruz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The authors received funding from Tufts

Institute of Innovation grant on Innovative Public

Health Engineering Strategies to Reduce Water-

Associated Disease Burden in Developing

Countries for this work. Tufts Institute of

Innovation supported data collection and analysis.

First author, MC, received salary support for data

analysis and preparation of the manuscript from

https://doi.org/10.1371/journal.pone.0182642
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182642&domain=pdf&date_stamp=2017-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182642&domain=pdf&date_stamp=2017-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182642&domain=pdf&date_stamp=2017-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182642&domain=pdf&date_stamp=2017-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182642&domain=pdf&date_stamp=2017-08-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0182642&domain=pdf&date_stamp=2017-08-18
https://doi.org/10.1371/journal.pone.0182642
http://creativecommons.org/licenses/by/4.0/


broadly utilize and efficiently compress large volumes of medical records without loss of

information.

Introduction

The vast quantity of data generated by biomedical fields and health care has spawned a whole

domain for data science. This emerging field seeks to gain insight from data through analysis

with statistical, mathematical, and computational tools [1]. The new data sources and streams

may offer solutions to pressing needs for disease prevention in data-rich and resource-poor

settings, such as hospitals in developing countries [2]. In fact, hospital-based laboratory-con-

firmed records, especially in light of increasing digitization, are at the forefront of building reli-

able surveillance systems for emerging infections and diseases of high concern [3–5]. The

focus on laboratory-confirmed hospital records is justified due to standardized testing proto-

cols and broad utilization of uniform case definitions by biomedical diagnostic laboratories,

ensuring high data quality, fidelity, and consistency [4, 6]. Such properties are very desirable

for modern surveillance as they allow for comparison of records across sources and identify

aberrations in various contexts, including infectious outbreaks [3, 4, 7, 8].

Medical records typically include patient characteristics such as date of admission, place of

residence, sex and age; these features represent information about time, location and demo-

graphics, respectively [9]. These data also offer sufficient quality and granularity through mul-

tiple aggregation options for time, location, and demographic properties providing choices

with varying levels of detail and complexity [2, 8–11]. Large amounts of laboratory records can

be analyzed through data aggregation by a specific data feature or compression factor. Any

trends or patterns, revealed by this process can be formally tested for statistical significance,

reviewed for clinical importance, and potentially inform actions, including prevention or

intervention programs [4, 6, 8]. Thus, in our communication, we rationalize and present a

new data compression approach, called a local population profile (LPP), which transforms

information into statistically comparable patterns.

We define LPP as the single-unit distribution of a variable of interest for a selected popula-

tion. The LPP aims to take full advantage of large data repositories for compilation of informa-

tion at very granular level while preserving data precision. In such situations, the LPP operates

on the whole range of plausible and available values for the variable of interest or compression

factor using the smallest reasonable unit of aggregation. The LPP thus enables a more refined

statistical analysis. In this tutorial, we illustrate how to construct and analyze LPPs using read-

ily available medical records with age distribution as the compression variable. We selected

age as the compression variable due to the uniformity of collection in patient data and the bio-

logical significance in relation to a health condition.

Medical records currently collect data on patients’ age quite reliably. Patient age can indi-

cate the subset of a population that is susceptible to specific infections and indicate changes in

disease patterns and herd immunity [12]. For example, the average age of rubella infection

changed from 10–19 years to 15–29 years due to the introduction of vaccination in urban

areas of Brazil [13]. Another example is the increase in the proportion of people 20 years or

older affected during a widespread measles outbreak over time from 17% in 2008 to 23% in

2009 and 38% in 2010 in France [14]. These examples show changes in herd immunity through

characterization of disease prevalence by age, time, and place of residence. Thus, coupling
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attributes such as age, disease, time of event, and place of residence can provide useful infor-

mation for characterizing or detecting changes in disease patterns.

The primary analytical method used to analyze the relationship between disease and patient

age lacks precision. Traditionally, population is stratified into age categories and disease pat-

terns are analyzed for each of those categories. One such example is the division of the popula-

tion into three age categories: children, adults, and elderly [15–17]. These broad categories

allow researchers to identify large-scale changes in disease incidences or mortality across a

population or a subset of the population [17]. However, broad age groupings do not allow for

the detection of differences within each group, often resulting in loss of data precision and res-

olution, leading to difficulties in accurately assessing, characterizing, and estimating disease

rates and populations at risk.

In this tutorial, we explore the use of single-year age distribution or LPP in place of age

categorization to demonstrate how patient characteristics can be used to describe disease inci-

dence for a group of patients sharing a reported place of residence. To examine the relation-

ship between patient’s disease, age, and sex using LPPs, we abstracted laboratory confirmed

cholera hospitalization records from the Christian Medical College (CMC) Hospital in Vellore,

India. The CMC Hospital is an internationally recognized medical facility with over 8,000 out-

patients and 2,000 inpatients a day [18] and has played an important role in documenting the

changing landscape of cholera on the Indian subcontinent. Cholera is an acute diarrheal illness

caused by toxigenic serotypes of Vibrio cholerae (V. cholerae) [19]. In endemic areas, infection

is mostly asymptomatic or results in mild to moderate diarrhea in the majority of cases. How-

ever, some individuals, particularly young children can develop severe and rapidly progressive

watery diarrhea and dehydration leading to death if treatment is not initiated in time. A recent

study reported that approximately 1.3 billion people are at risk for cholera in endemic coun-

tries, and an estimated 675,188 cases of cholera resulting in 20,256 deaths occur annually in

India [20]. The Department of Microbiology at CMC in Vellore, India provides the major hos-

pital-based laboratory service and has tracked the progression of V. cholerae O139 since its

first detection, documenting the virtual absence of O1 V. cholerae during 1992–1993, the even-

tual reappearance of serotype O1 in late 1993, and the concurrent prevalence of O1 and O139

serotypes in Vellore since then [21]. Out of 200 serotypes of V. cholerae, serotypes O1 and

O139 cause severe and wide spread epidemics [19]. Thus, readily available data allows us to

demonstrate the usage of LPP to detect the differences in age distributions of pathogenic chol-

era strains.

Cholera is endemic in India [22] and outbreaks occur regularly with peaks in July and

August [23]. Seasonality of cholera is partially controlled by environmental and climatic fac-

tors [21] in both endemic and epidemic scenarios [24]. Emerging changes in climate may thus

influence temporal fluctuations of cholera and increase frequency and duration of outbreaks

[21, 25, 26]. In Vellore, cholera is of particular interest due to the burden its environmental res-

ervoir possess on the local healthcare system, and opportunities for effective community-based

preventions [22]. The monitoring of cholera, caused by ingestion of V. cholerae from contami-

nated food or water, is expensive and labor intensive [27]. Clearly, a cost-effective approach to

outbreak detection on the local level via hospital-based surveillance would provide valuable

information for disease monitoring. As highlighted by the World Health Organization and

International Health Regulations, relevant information produced from a surveillance system

include but are not limited to: i) detection of epidemics or outbreaks, ii) estimation of the geo-

graphic and demographic distribution of disease, iii) detection in changes in infectious and

environmental agents [28–31]. We see future capabilities of the LPP for illustrating all three

main surveillance capacities. However, this work focuses primarily on illustrating the ability of
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hospital records expressed as LPPs as a tool for detecting differences in disease patterns by sex,

causal agent, and trend over time.

In this tutorial, we provide step-by-step instructions on how to compare single-year age dis-

tributions or LPPs across demographics, cholera serotypes, and time with the Kolmogorov

Smirnov (KS) test, to estimate disease rates using raw and adjusted census data, and to illus-

trate differences and changes in patient demographics through novel visualization tools,

including multi-panel plots. The specific aim of our work is to offer a tool that allows for visual

and formal comparisons of datasets of different sizes, yet preserving the refined resolution of

key variables.

Materials

Data sources

We abstracted all available hospitalization records of laboratory-confirmed cholera cases from

1992 to 2014 (over 1,900 records) from both paper logs (1992 to 2004) and digital entries

(2004–2014) from CMC in Vellore, India. Laboratory confirmation was conducted by the

Department of Clinical Microbiology [22]. Stool samples of patients in the Emergency Depart-

ment or admitted with a history of watery and frequent stools were registered for culture with

hanging drop, which was then processed for V. cholerae [22]. Only positive results of V. cho-
lerae were included in our analysis. Each record included patient age, sex, V. cholerae serotype,

place of residence, and hospitalization date. To illustrate the use of LPP, we selected only those

cases that listed the city of Vellore as the place of residence (n = 583, representing 41.6% of

1,401 cases reported between 2000 and 2014). All 583 records had hospitalization date, while

5 (0.86%) records were missing age, 1 (0.17%) record was missing sex, and 7 (1.20%) records

were missing serotype. Age for children <2 years old was recorded in months and converted

into decimal values. For patients 20 years old and older, we observed spikes in the single-year

age distributions at 5-year intervals, which indicates rounding in the recording of patient age.

We applied corrections for the spikes as detailed in the methods section.

We also used census data from 2011 for the district of Vellore obtained from the Office of

the Registrar General and Census Commissioner [32]. LPP applied to the census data also

demonstrated spikes at 5-year age intervals suggesting rounding by either the individual or

the census collector. Census data adjustment is also further detailed in the methods section

describing hospitalization rate calculations.

Ethics statement

Approvals for data use and analysis were obtained from the Christian Medical College Institu-

tional Review Board and by the Tufts Institutional Review Board. All data analysis was con-

ducted on de-identified records. Disease frequency data is available in S1 Dataset and Vellore

census data is available online from the Office of the Registrar General and Census Commis-

sioner [32] for analysis replication.

Methods

Construction of local population profile

The LPP is a single-unit distribution of a variable of interest for a selected population, in our

example it is equivalent to the single-year age distribution for which we convert frequency

units to probability estimates to allow comparison of samples of varying sizes. First, we selected

one year as our single-interval for single-year age distribution or LPP. We then generated a fre-

quency table of disease counts by age from the cumulative number of cases over the 15-year
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period. Disease frequency was then converted into probability units by applying a kernel den-

sity estimator on the age datum [33]. A kernel is a non-negative function with mean zero that

is applied to each age level and creates density estimates or kernels for each age level [33]. The

individual kernels are then coupled to create a smooth curve from minimum to maximum age

(i = 0 to N = 90 for cholera cases) by summing the overlapping individual kernels of each age

level with the constraint that the sum under the curve is one [33]. Eq 1 illustrates how the inte-

gral was modified to create a probability density function of single-year age levels. The integral

of f(Y)dY can be interpreted as the overall disease incidence, Y from age i to N:

P½i � Y � N� ¼
Z N

i
f ðYÞdY: ð1Þ

The kernel density estimator results in disease incidence probability estimates for each age

level. We applied the kernel density estimate method for multiple stratifications of our patient

data, which forms the visual aspect of the LPP.

We implemented the kernel density estimate through the readily available density function

in R, a freely available statistical software used throughout our analysis [34]. The available

parameters for the density method are the following: data from which the estimate is com-

puted, smoothing bandwidth, kernel type, weights for each observation, the number of equally

spaced points at which the density is to be estimated, and the first and last point where the den-

sity should be computed. Our input data was patient ages, no weights were added to the obser-

vations, a Gaussian distribution was selected for the kernel type, and the number of equally

spaced points for the grid was selected as 512, the default in R. The function creates kernel den-

sity estimates for each 512-grid point ranging from 0 to 90, the first and last point where the

density should be computed, which are the minimum and maximum ages found in our data

set. We also used default R parameters for the smoothing bandwidth, where the kernels are

scaled such that the bandwith is the standard deviation of the smoothing kernel.

Depending on the population at risk, a resulting LPP could have different distributions,

which are typically unknown a priori. The distribution could be uniform, when people at any

age have the same probability to be affected by a disease; or it could be bell-shaped, when there

is an age group most frequently observed in a study population; or it could have two or more

modes signifying most prominent age groups at risk, for example, children and elderly.

Comparison of LPP with Kolmogorov Smirnov test

While the visual inspection and estimation of local minimum and maximum values for age are

helpful for describing differences and similarities, a formal test comparing distributions solidi-

fies the findings. The use of single-year age distribution allows us to treat LPP as a continuous

distribution and formally compare LPPs using the KS test [35], which is a nonparametric test

that examines the difference between the two empirical distributions, as in Eq 2:

EN ¼ dðYiÞ=N; ð2Þ

where N is the total number of ordered data points or maximum age, and Yi is the number of

disease cases for the specific age i. The KS test works by calculating the maximum possible dif-

ference between two empirical distributions (the Kolmogorov distance) [35]. If the distribu-

tions are identical then the Kolmogorov distance is zero [35]. The empirical distributions are

judged to be different when the Kolmogorov distance between the two distributions is suffi-

ciently large [35]. The Kolmogorov distance between two distributions is estimated in Eq 3:

D ¼ max1�i�N ðF1ðYiÞ; F2ðYiÞÞ; ð3Þ
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where N is the total number of ordered data points, Yi is the number of disease cases for the

specific age i for compared distributions F1 and F2. Eq 3 calculates the maximum difference

between the two curves, or the test statistic D, to decide whether or not to reject the null

hypothesis. The null hypothesis states that the two curves being compared represent the same

distribution or come from the same distribution [35]. The R statistical software provides test

statistics D and corresponding p-values for KS test with specific methods described for p-value

calculations [34].

The KS test was also used to examine potential differences between the LPP of cumulative

number of cases over the 15-year period and LPP of cases for each individual calendar year.

An LPP can be constructed to reflect the age distribution among the patients admitted during

specific time periods, for example during a specific calendar year or during an outbreak. This

type of analysis allows us to assess temporal stability or variability of an age distribution and to

detect potential aberrations associated with particular events. By comparing a distribution

exhibited in one year to an overall distribution, one can see how a given year or pattern differs

or is similar to the rest of the data.

Calculation of hospitalization rates

We calculated single-year age specific rates using the 2011 Vellore census records and assumed

that from 2000–2014 the Vellore population stayed constant. Analyzing the census data, we

detected characteristic peaks and dips at every 5-year intervals, especially for older adults.

These peaks are likely to reflect rounding in collecting information when census takers

recorded person’s age by the nearest age group. If reported values were used directly, the peaks

would produce erroneous disease rate estimates. Therefore, we corrected them by applying a

dual-weighed interpolation scheme to smooth out and redistribute the values at the single year

age resolution. The scheme was implemented in three steps.

First, we redistributed the peaks observed at each 5-year mark using linear interpolation.

We applied the interpolation so that the value at each 5-year peak was evenly distributed to the

ages between the peaks. Redistribution between each 5-year point was accomplished using Eq

4:

ab þ ðabþ5 � abÞ �
e
5
; ð4Þ

where ab represents the total number of people at a given age b (b = 0, 10, 20, . . .90) and ab+5
the total number of people at the 5-year mark after ab. Variable e/5 represents the four steps

between each 5-year mark, with e ranging from 1 to 4 to represent the four numerical values

between ab and ab+5. After generating those numerical values, we replaced each 5-year peak

with the average of the values immediately before and after the peak (Eq 5):

ðadþ1 þ ad� 1Þ

2
; ð5Þ

where ad-1 and ad+1 represent the total number of people immediately before and after the

5-year mark, respectively. Eq 5 was applied to all d ages that are multiples of 5. The equation

was not applied to age 0, because census data does not exist before that age. In this manner, we

approximated the census values at the five-year mark to be in between the two surrounding

points.

Finally, we averaged the results from the two previous steps using segmented normaliza-

tion. This step adjusts the average of both interpolations so that it corresponds to the total

census population. We fitted individual segments c = 0–13, 14–23, 15–23, 24–33, . . .84–90

to correspond with the specific census total from the original census. The age interval
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corresponds to peak intensity, as it is likely that rounding occurred more often for people of

older age. Our population total in this equation is represented by h, with horig and hadj repre-

senting original and adjusted census values, respectively. To calculate the multiplication factor

for the adjusted census values, we used Eq 6 where c upper and c lower refer to the upper and

lower bound of individual segments:

Xc upper

c lower

horig

hadj
ð6Þ

We provide a detailed example of our steps taken to smooth the census population and redis-

tribute the spikes across the ages in S2 Table.

We also noticed peaks at 5-year intervals at the age of 50 in our Vellore patient data from

initial histograms during exploratory analysis. Thus, we applied the dual-weighted interpola-

tion scheme, as described above using census data, to correct hospitalization counts for ages 50

and over from our Vellore patient data. After applying the interpolation, we estimated age-spe-

cific hospitalization rates, z, by dividing the age specific adjusted disease counts by the adjusted

age specific census data, qi with the multiplier of M = 100,000 used to place the rate in units of

per 100,000 population.

Creation of multi-panel plots

To illustrate the temporal changes in population profiles we combined LPP plots, time series,

and image plots of disease rates to form a multi-panel plot, as introduced by Chui et al [36].

This multi-panel plot aims to represent the interactions between time, age, and disease occur-

rence. The LPP will share the age axis with that of the image plot of disease rates, while the

time series will share the same monthly axis as a heat map of disease rates.

We now describe step-by-step the construction of the multi-panel plot. The core or center

of the multi-panel plot is an image plot, where each square represents counts or rates of disease

cases for a selected time interval (daily, weekly, monthly or yearly) on the x-axis and a given

age interval on the y-axis (single-year age) for an observed study period. The time series is con-

structed as a needle-plot where each needle represents the total number of cholera cases or

rates for a specific time point. We combined the overall LPP, the time series plot, and the

image plot based on common or shared axis to form a multi-panel graph. The heat map shares

the time axis with the monthly time series plot. On the left of the heat map is a single-year age

distribution, or LPP, sharing the axis that reflects age. Since the y-axis of LPP shows frequency,

panel b describes the overall frequency of disease counts at a particular age for the heat map.

Thus, the multi-panel plot incorporates information shown in an LPP and image plot of dis-

ease cases. Visually this multi-panel graph highlights important age-related features of the

studied population: the most prevalent ages and the time period when the highest or lowest

disease occurrences are observed.

Results

Summary statistics and age distribution

Five out of the 583 cholera records had no age information, representing less than 5% of effec-

tive and actual size for all data subsets based on sex and cholera serotype (Table 1). Stratified

by single-year-age and sex, the minimum age in all subsets is 0 years except in the female

group infected with V. cholerae serotype O139, where the minimum age is 1. The maximum

age ranges from 65 to 90 for all subgroups. The positive coefficient of skewness indicates that

the mean age is higher than the median age and the distribution is skewed to the right. The
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coefficients of kurtosis are negative, which indicates that the age distribution spiked in younger

patients. Two groups deserve special attention: females infected with V. cholerae O1 serotype

and females infected with the O139 serotype were on average the youngest and the oldest sub-

groups, respectively.

Age distributions are traditionally depicted with histograms or bar graphs with regular (i.e.,

equally spaced) and irregular intervals. These graphs show the frequency with which values

within selected intervals occur in a data set. We used histograms with typically used uneven

(<1, 1–4, 5–14, 15–24, 25–39, 40–64, and 65–90) and even (0, 1, 2, 3, etc.) single-year age inter-

vals to demonstrate the effect of age groupings on the same age distribution for the cumulative

number of cases over the 15-year period (Fig 1).

A histogram of cholera cases with uneven age intervals (Fig 1a) shows a compact descrip-

tion of age distribution. The highest disease frequency appears within the 1-4-year-old

Table 1. Descriptive statistics* of cholera patient ages from Vellore.

Category Effective Size Actual Size Max Mean Std Lower Quantile Median Upper Quantile Skewness Kurtosis

Total 583 578 90 22.8 23.1 2.00 15.0 42.0 0.726 -0.739

M 328 324 90 23.4 25.0 1.56 10.0 47.0 0.719 -0.900

F 254 253 75 22.2 20.5 2.00 20.0 35.0 0.648 -0.722

O1 414 412 90 21.3 22.9 2.00 10.0 40.0 0.885 -0.454

M 232 230 90 22.5 25.1 2.00 8.00 46.0 0.835 -0.723

F 182 182 70 19.8 19.6 2.00 15.0 30.0 0.811 -0.473

O139 42 40 73 32.3 23.9 6.50 32.5 55.3 -0.001 -1.512

M 21 19 73 39.1 23.7 22.0 48.0 57.5 -0.373 -1.358

F 20 20 65 27.4 22.9 4.50 27.5 43.0 0.248 -1.491

Non O1/O139 114 113 78 25.1 22.9 1.25 25.0 43.0 0.468 -0.971

M 68 68 78 22.8 23.9 1.00 12.0 43.0 0.634 -0.968

F 46 45 75 28.6 21.0 6.00 29.0 44.0 0.252 -0.833

* Patients are grouped by sex, serotype, and then serotype and sex using age. Effective size: the total number of records (including NAs); actual size:

complete data with all patient age information and demographic information relevant to the group.

https://doi.org/10.1371/journal.pone.0182642.t001

Fig 1. Histograms for age distributions. a) with uneven age intervals; and b) with single-year age interval.

https://doi.org/10.1371/journal.pone.0182642.g001
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category, decreases concurrently with the 5-14- and 15-24-year-old age groups, picks up in the

25-39-year-old category and again among 40-64-year-old patients and, finally, decreases in the

65 plus category. The histogram of single-year age distribution of cholera cases (Fig 1b) eluci-

dates a different picture: a) the highest disease frequency is among 1-year-old patients with a

gradual decline not seen in Fig 1a in the first two age groups; b) disease frequency increases in

people aged 20–31 and 45–70, two age ranges that do not match the nearest aggregated groups

seen in Fig 1a, 15–24 and 40–65, respectively; c) unusual peaks are seen at 30, 35, 40, 45, 50, 55,

60, 65, and 70 year olds, which is obscured in Fig 1a due to aggregation; and d) case frequency

declines steadily after the age of 70, which is not apparent from Fig 1a. We will use LPP plots

on the cumulative number of cases over the 15-year period to further explore these features.

Local population profile construction and comparison

Visualization of age distribution as LPPs using probability units provides additional details on

how disease affects specific populations or ages. Fig 2a shows LPP for the reported Vellore

cholera cases for multiple stratifications of the data. By creating LPPs for specific data subsets,

we allow for direct comparison of LPP across groups, such as between males and females (Fig

2b), cholera serotypes (Fig 2c), and across sex and cholera serotypes (Fig 2d). In this section,

we further demonstrate the use of LPPs in spatial and temporal analysis of disease frequency

and rates.

Fig 2. Location-specific patient profile plots for cholera patients. a) plot highlights the inflection points of disease probability of all

Vellore patients; b) probability plots by sex with subscripts M and F referring to males and females; c) probability plot by serotype with

subscripts 1, 2 and 3 referring to serotype O1, serotype O139, and non O1/O139 serotypes; d) probability plot by sex and serotype with

subscripts as a combination from plot b and c. N is the total number of patients.

https://doi.org/10.1371/journal.pone.0182642.g002
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Fig 2a shows LPP plots for 578 Vellore cholera patients as a probability density with respect

to age. As expected, the distribution of cholera cases across the age range is not uniform and

has characteristic peaks and valleys. Finding those local maximum and minimum values

allowed us to characterize the distinct age groups with elevated or reduced disease occurrences.

S1 Fig shows that for all subgroups, except O139 males, young children were the most affected.

For the overall distribution (Fig 2a) we see three humps, the largest among children under

4 with a notable decrease after age 2.64. The second hump is among young adults between

ages 18.8 to 39.1 years old with a downward slope after age 24.5. The last hump is among adults

between 39.1 to 60 years old with a downward trend after age 49.7. The differences from the

first and second peak of the humps or local maximums is 21.9 years and 25.2 years between

the second and the third. This feature is even more prominent for female patients (Fig 2b),

who show a rise in disease frequency starting at age 15.5 until the age of 24.7 and with another

peak at the age of 42.6 until the age of 48.3. In contrast, male patients have the highest peak at

age of 2.99 with a modest increase between the ages of 28.2 to 50.5. Fig 2c contrasts cholera

serotypes, while Fig 2d contrasts all possible permutations of sex and cholera serotype. The

male patients infected with serotype O139 (N = 19) exhibited a main increase among older

adults while the female patients infected with the same serotype displayed no increase at a par-

ticular point but a slight downward slope with a dip around age 70.

We compared multiple stratifications of data for similarity with the KS test in Table 2. We

also formally compared annual LPPs with the LPP constructed for all data using the KS test.

The results of the comparison are featured in S1 Table, where we see that in year 2000 and

2002 the age distribution differed from that of the rest of the data. Additional information

gained from the LPP visualization comes from the confidence interval built using the LPP

Table 2. The results of Kolmogorov-Smirnov (KS) test.

Parameter (Sample size) D-statistic P-value

Sex (n)

Male (324) Female (253) 0.119 0.035

Serotype (n)

O1 (412) O139 (40) 0.255 0.017

Non O1/O139 (113) 0.168 0.014

O139 (40) Non O1/O139 (113) 0.205 0.166

Sex and Serotype (n)

O1, Male (230) O1, Female (182) 0.113 0.149

O139, Male (19) 0.403 0.007

O139, Female (20) 0.220 0.338

Non O1/O139, Male (68) 0.107 0.585

Non O1/O139, Female (45) 0.333 0.000

O1, Female (182) O139, Male (19) 0.447 0.002

O139, Female (20) 0.236 0.269

O139, Female (20) 0.137 0.312

Non O1/O139, Female (45) 0.304 0.003

O139, Female (20) O139, Male (19) 0.329 0.242

Non O1/O139, Male (68) 0.176 0.722

Non O1/O139, Female (45) 0.139 0.952

Non O1/O139, Female (45) Non O1/O139, Male (68) 0.248 0.071

Comparison for multiple stratifications of Fig 2 are shown in Table 2. A p-value less than .05 indicates that

the compared distributions are significantly different and are shown in bold.

https://doi.org/10.1371/journal.pone.0182642.t002
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(S2 Fig). The confidence intervals clearly show where the greatest variability lie on the age

spectrum: between children and adults. Teenagers and elderly exhibit the smallest variability.

The results suggest that the susceptibility of teenagers and elderly fluctuate the least from year

to year (S2 Fig).

Hospitalization rates estimation and visualization

The original census data from Vellore 2011 exhibited spikes at 5-year intervals from the age of

20 onward (Fig 3a). We also noticed peaks at 5-year intervals from the age of 50 onwards for

Vellore patients (Figs 1b and 3b). The results of the hospitalization rate adjustments are shown

in Fig 4a with a density smoother applied. Results of the dual-weighted correction as described

for records of patients over 50 can be seen in Fig 4b. Fig 4c shows the difference between hos-

pitalization rates calculated with and without adjustments. Overall, unadjusted rates have

higher variability, most likely due to rounding age during data collection.

Fig 5 shows heat maps or image plots of disease incidence and rates over 15 years with

months as our time unit. Fig 5a shows disease counts and Fig 5b disease rates for all cholera

cases. Fig 6 illustrates the heat map of age specific disease incidence for the specific serotypes

of V. cholerae. The pixels with a deeper color indicate higher disease counts. The heat map of

serotype O1 indicate diminishing number of cases of patients after age 70, with cases disap-

pearing after month 168 (Fig 6a). The heat map for serotype 0139 shows that disease cases are

present from age 0 to 73, with only one case present after month 48. Finally, cases for non O1/

O139 serotypes are present among patients under 10 at first and then after month 36 frequency

increased and included a broader age interval. All heat maps show a cluster of pixels with deep

color for age 0 to 5 in the first few months of the time series indicating all serotypes were

detected in this age group.

Each of these heat maps can be supplemented with a time series plot forming a multi-panel

plot. The multi-panel plot in Fig 7, consists of an image plot of disease counts, time series, and

LPP. The time series at the top of Fig 7 (Fig 7a) is constructed as a needle-plot where each nee-

dle represents the total number of cholera cases or rates for a specific time point. The time

Fig 3. Population and outcome pyramids. a) original census data for Vellore population in 2011 and b)

cholera patients, respectively.

https://doi.org/10.1371/journal.pone.0182642.g003
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Fig 4. Before and after data smoothing. a) probability density plots of original and adjusted census data for

2011; b) comparison of original Vellore cholera patient disease count by age and adjusted disease count by

age; c) original hospitalization rate calculated with original census data and patient values compared with

adjusted rate based on adjusted census and adjusted patient data.

https://doi.org/10.1371/journal.pone.0182642.g004
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Fig 5. Image plot by single year age intervals on a monthly scale all cases. a) disease counts; b) disease

rates are shown as the natural log of rate per 100,000 plus the constant 10 for positive values.

https://doi.org/10.1371/journal.pone.0182642.g005
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Fig 6. Image plot of serotype specific disease cases by single year age intervals on a monthly scale.

a) serotype O1; b) serotype O139; c) Non O1/O139 serotypes.

https://doi.org/10.1371/journal.pone.0182642.g006
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series shows a downward trend of cholera cases over the past 15 years. Major gaps, indicating

lack of recording of disease cases, can be seen roughly between 13 and 23 months, while

smaller gaps can be seen throughout the data. Panel 2a on the left of the heat map is a single-

year age distribution, or LPP, sharing the age axis with the heat map. The other axis of LPP is

showing the frequency, thus panel 2a describes the overall frequency of disease counts at par-

ticular age for the heat map. Thus, the multi-panel plot incorporates information shown in

Figs 2 and 5 along with a time series.

Fig 7. Multi-panel graph of disease. a) time series of disease counts; 5a) image plot of disease cases by time in month and single year

age intervals for all patients irrespective of sex and serotypes; 2a) LPP of Vellore.

https://doi.org/10.1371/journal.pone.0182642.g007
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Discussion

A local population profile is a single-unit distribution or collection of single-unit distributions

representing stratifications of the data. LPPs provide patterns that are statistically comparable

for varying sample sizes, while LPP plots allow for visual detection of disease patterns irrespec-

tive of sample sizes. In combination, LPP and LPP plots provide an additional tool for explor-

atory data analysis and visualization, as exemplified in this paper with patient hospitalizations

records. Our main results for this specific case study suggest that cholera hospitalization pat-

terns depend on sex and cholera serotype. These patterns by sex and serotype would have been

obscured with traditional age bins, illustrated in Fig 1. In comparison to traditional methods

such as age categorizations, LPPs allow us to view samples of different sizes with higher granu-

larity due to the use of single-units. Traditional histograms often aggregate available age range

to a select few categories, reducing the number of data points available for comparison. Reduc-

tion of the effective sample size from 91 data points to 5–7 groups, for example, reduces statis-

tical power needed for various statistical tests; and uneven grouping may distort accuracy. In

fact, in our example (Fig 1) the median age calculated using actual data and the mid-points of

grouped data would differ by 4.5 years, placing incorrectly the estimated average on young

adults (19.5) intstead of teens (15.0). The use of single-year age distribution allows us also to

treat LPP as a continuous distribution and apply a broad range of existing statistical tools.

Throughout the paper we emphasized the differences between traditional age categorization

and the single-unit distribution with respect to visual interpretation.

Our analysis illustrates the advantages of using a single-year age distribution, so called LPP,

that can weave basic patient information such as age, sex, disease, pathogenic serotype, loca-

tion, and time into temporal and demographic visuals. Summary statistics related to study

population age are commonly reported in epidemiological investigation. However, without

pairing summary statistics with properly binned distributions, the perception of information

on age-specific disease incidence can be distorted. For example, Table 1 states patient mean

age and standard deviation as 23 ± 23. In a normal distribution, one standard deviation from

the mean encompasses 68% of the data. Thus, under the assumption of a normal distribution,

68% of the patients will have an age between 0 and 46 with a center at 23. This interpretation is

misleading if the underlying distribution is unknown, as is usually the case. Fig 1b, for exam-

ple, shows that disease frequency is centered among specific age groups or ages. Additionally,

stratification by age intervals may also misrepresent data. The broad age categories can limit

the precision and accuracy of the information. For example, in Fig 1 the highest disease fre-

quency is within children between 1–4 years old followed by adults aged 40–64. In compari-

son, the single-year age distribution in Fig 1b indicates that disease frequency is highest

specifically among 1-year-old children followed by infants. Juxtaposing traditional age catego-

ries and single-year categories, we see that the specificity in disease frequency is higher using

single-unit intervals. Greater specificity is useful for targeted intervention programs and detail

description of disease burden within the community. Thus, the single-year age distribution or

LPP provides a more detailed picture of disease patterns.

We explored the patterns in disease incidence by converting our LPP from counts to proba-

bility units using a density smoother, allowing comparison for samples of varying sizes. To

minimize the loss of information, we applied the smoother on a refined grid, imitating a sin-

gle-year age distribution, so it removes noise and highlights peculiar behaviors. In the case of

age of Vellore cholera patients, the noise is the 5-year peaks seen in Fig 1b and in the outcome

pyramid in Fig 3b. We suspect that common practice for rounding reported age to the nearest

semi-decadal break is the reason for the regular peaks. Smoothing of these peaks allowed for

visual detection of three humps (among other patterns) as shown in Fig 2a. With the single-
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year age distribution, we can clearly observe the 5-year intervals of peaks in the data, whereas

5-year or 10-year bin stratification would have masked the spikes. The higher level of granular-

ity achieved with single-year age distribution or LPP prompts practical recommendations for

improving primary data collection.

In addition to smoothing noise, conversion of LPPS as probability units allows for normali-

zation of data of varying sizes. Normalization of distribution with a density smoother allow us

to formally compare subsets using KS test as seen in Table 2. This approach guides the genera-

tion of new research questions. For instance, do the different strains infect children at the

same rate? In Fig 2c we saw that V. cholerae serotype O1 was the most prevalent serotype in

general, yet O1 and non O1/ O139 serotypes have the largest burden in young children. We

can test such hypothesis by comparing the age distribution of each serotype with KS test. In

Table 2, we see that age distributions of O1 and O139, and O1 and non O1/ O139 are likely to

have different patterns, where strain O1 affects patients differently than O1 and O139 with

respect to the patient age. This supports the hypothesis that each serotype has a unique age pat-

tern, which might be indicative of age-specific susceptibility for particular serotypes.

The detection of serotypes changes over time. We illustrated the temporal changes with the

image plots (Fig 6): for serotype O1, frequency of cases diminished for all ages over time. In

comparison, serotype O139 was most dominant in the first 3 years of the study period and

almost disappeared after the fourth year of our time series, except for one isolated case. Non-

O1/O139 serotypes also show a specific age and temporal pattern: in the first year of our time

series, non-O1/O139 serotypes were observed in children under 10 years old and dropped off

until it picked back up later. LPPs combined with image plots expand substantially the func-

tional capacity of data analysis.

The LPP plots can also trigger new research questions. For example, coupling knowledge of

cholera’s infectious nature and of traditional intergenerational households in India, we suspect

that the three humps seen in Fig 2A at approximately age 1, 25 and 50 years (presumably for a

child, adult and grandparent) may reflect person-to-person spread of infection within a house-

hold. An infected person in a home is likely to spread the disease to caretakers or relatives [37],

thus leading to infection in three distinct generations. Given the difference between LPP for

males and female seen in Fig 2B, we can also hypothesize that adult women are more likely

to be infected than adult men due to their traditional role as caregivers in their households

[38, 39].

Difficulties with the LPP approach are encountered in the implementation of the density

function in R, and in data quality and interpretation. Due to left censoring at age 0 it was diffi-

cult to achieve the sum of the area under the density curve as one. Thus, interpretation of the

probability units is limited because the sum of probability units does not equal one. Another

challenge is the quality of original data available, as illustrated in the rounding of ages in our

original dataset. Interpretation of results from the density smoother is dependent on the accu-

racy in primary data collection. Higher accuracy in data is likely to increase researcher’s ability

to gain useful knowledge from an LPP. Even though the density method is imperfect and varia-

tions of the application need to be further explored, valuable information can be gleaned from

visualization of an LPP.

The advantages of the single-unit distribution come from the application and utilization

of the LPP in characterizing the relationship between disease and patient demographics.

Early work by Cohen et al [40], shows the benefit of single-year distributions in quantifying

the burden of diseases in the elderly, and the disadvantage of using traditional approaches,

like binning. His work illustrates trends and anomalies were obscured when binning age dis-

tributions in age categories such as five, ten, or twenty-year age intervals for people aged 65–

100. Other examples include the use of single year rates to study the excess of malaria
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episodes and trends in premature mortality, although for a narrow age range such as 0–20

[41] and 25–64 [42], respectively. We argue that replacing actual age with arbitrary selected

categories is likely to distort accuracy and while data aggregation might be seen as a tool to

protect confidentiality, little benefits is achived by age binning [43]. In this paper, we applied

LPPs as a compression factor covering the whole biologically plausible age range. The pro-

posed approach can be expanded to determine aberrations and complex distributional forms

for a broad variety of biomedical, demographic, environmental and socio-economic vari-

ables collected in large-scale projects. With increasing volumes of available medical records,

LPPs may offer accurate, precise, and highly detailed information in a compact and compre-

hensive manner.

Conclusion

Our first implementation of the LPP to hospitalization records has demonstrated the benefit of

increased resolution in pattern detection of disease over time for different cholera serotypes

and two demographic categories. These patterns revealed information that is typically gathered

from surveillance systems such as, i) detection of trends and other temporal changes, ii) esti-

mation of the demographic distribution of diseases and identification of a population at risk,

iii) detection of changes in the dominant pathogen presence. Detection of outbreaks can be

further explored from the time series plot featured in the multi-panel plot, while the demo-

graphic distributions highlight the changes in hospitalization rates. Overall, LPP and LPP plots

provide a new tool to visualize age distribution of disease with higher accuracy and precision

than traditional methods, and add value in the characterization of the interaction among dis-

ease, age, and time. Future development of this approach will allow researchers and public

health practitioners to broadly utilize and efficiently compress large volumes of medical rec-

ords without loss of information.
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