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Abstract

We previously reported the development of a new acquired neurogenic HO (NHO) mouse

model, combining spinal cord transection (SCI) and chemical muscle injury. Pathological

mechanisms responsible for ectopic osteogenesis after central neurological damage are

still to be elucidated. In this study, we first hypothesized that peripheral nervous system

(PNS) might convey pathological signals from injured spinal cord to muscles in NHO mouse

model. Secondly, we sought to determine whether SCI could lead to intramuscular modifica-

tions of BMP2 signaling pathways. Twenty one C57Bl6 mice were included in this protocol.

Bilateral cardiotoxin (CTX) injection in hamstring muscles was associated with a two-stage

surgical procedure, combining thoracic SCI with unilateral peripheral denervation. Volumes

of HO (Bone Volume, BV) were measured 28 days after surgery using micro-computed

tomography imaging techniques and histological analyses were made to confirm intramus-

cular osteogenesis. Volume comparisons were conducted between right and left hind limb

of each animal, using a Wilcoxon signed rank test. Quantitative polymerase chain reaction

(qPCR) was performed to explore intra muscular expression of BMP2, Alk3 and Id1. Nine-

teen mice survive the complete SCI and peripheral denervation procedure. When CTX injec-

tions were done right after surgery (n = 7), bilateral HO were detected in all animals after 28

days. Micro-CT measurements showed significantly increased BV in denervated paws

(1.47 mm3 +/- 0.5) compared to contralateral sides (0.56 mm3 +/-0.4), p = 0.03. When

peripheral denervation and CTX injections were performed after sham SCI surgery (n = 6),

bilateral HO were present in three mice at day 28. Quantitative PCR analyses showed

no changes in intra muscular BMP2 expression after SCI as compared to control mice

(shamSCI). Peripheral denervation can be reliably added to spinal cord transection in NHO
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mouse model. This new experimental design confirms that neuro inflammatory mechanisms

induced by central or peripheral nervous system injury plays a key role in triggering ectopic

osteogenesis.

Introduction

Neurogenic heterotopic ossification (NHO) can be defined as the ectopic formation of lamellar

bone in non-osseous tissues following traumatic brain or medullar injury. It is a debilitating

and costly condition, which has been reported to concern nearly 10% to 40% of neurologically

impaired patients [1–4]. Preferentially located in extracapsular tissues around hip and elbow

[5], NHO can cause articular ankyloses or vascular and nervous compressions [6]. Pathophysi-

ological mechanisms involved in this process remain elusive which makes it difficult to elabo-

rate efficient preventive strategies [7, 8]. Therefore, surgical excision is usually performed to

control symptomatic NHO, with a significant risk of perioperative complications and potential

relapses even late after surgery [5, 9–12]. The persistent lack of non-invasive treatment for neu-

rologically damaged and fragile patients has driven efforts to develop experimental studies on

HO animal models [13, 14].

In that specific research field, last decades have been marked by the identification of Bone

Morphogenetic Proteins (BMPs), which turned out to be important molecular actors of osteo-

genesis regulation. This group of proteins belongs to the Transforming Growth Factor-β
(TGF-β) superfamily and first observations of their osteo-inductive effects were published in

the mid-1960s by Urist [15]. As rapid progress were made towards understanding BMP molec-

ular signalling pathways [16], HO animal models involving BMP overexpression have been

developed, either through matrigel heterotopic implantation or transduced cells [17–21]. Yet,

it seems difficult to transpose those experimental models to clinical applications since they

don’t reflect the complexity of regulation pathways involved in neurologically injured patients.

For that reason, we recently developed an acquired NHO mouse model [22] featuring cen-

tral neurologic and peripheral limb injuries as observed in patients who suffer high-speed acci-

dent. We demonstrated that intramuscular osteogenesis could be reliably induced in C57Bl6

mice by combining thoracic spinal cord transection with intramuscular injection of cardio-

toxin (CTX). CTX is a potent polypeptidic snake-venom which causes muscle damage and

localized inflammation. Besides macrophage involvement, our previous works underlined the

critical role of central nervous tissue damage in triggering the shift from muscular regenera-

tion towards osteogenic process [22].

Several hypotheses have been discussed about molecular signals conveyed from injured spi-

nal cord to musculoskeletal effectors. Gautschi et al. supported humoral regulation of ectopic

osteogenesis, highlighting osteo-inductive effect of the cerebrospinal fluid (CSF) from patients

with severe TBI [23, 24]. Disruption of blood brain barrier following central nervous system

injury could lead to the systemic release of osteogenic factors but also to the cellular activation

of circulating progenitors. More recent works by Kan et al. have shown that concentration of a

neuromodulator called substance P was significantly higher in blood from NHO patients and

similarly in different HO mouse models [25]. As substance P is known to be involved in bone

remodelling regulation [26], it seems logical to suppose that it plays a key role in neurogenic

HO formation. Indeed, Salisbury et al. demonstrated that substance P could be released by

activated sensory neurons upon BMP stimulation [27] and promote intra muscular NHO for-

mation. Nevertheless, the role of sensory neurons in the context of spinal cord injury is not as
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clear. Below the level of injury, afferent inputs are released from cortical control and conveyed

dysregulated signals to muscular effectors, whom involvement in NHO formation remains to

be elucidated.

Another plausible hypothesis regarding NHO pathophysiology is an induced dysregulation

of BMP signalling pathway, which is supported by numerous experimental works on heredi-

tary HO animal models [16, 28–30], as well as recent identification of ACVR1 mutation

responsible for fibrodysplasia ossificans progressiva [31–33]. In patients affected by this dis-

ease, pathologic upregulation of BMP-4 signal leads to multiple heterotopic endochondral

ossifications. However, no evidence has yet been published regarding abnormal BMP expres-

sion in acquired neurogenic HO.

Considering these data, we thought relevant to focus on both PNS regulation and BMP

expression in our NHO mouse model. To evaluate the influence of peripheral deafferentation

below the level of central injury, we first sought to develop a new surgical procedure of mouse

hind limb peripheral denervation, which could be combined with spinal cord transection and

muscular cardiotoxin injection. To evaluate the influence of central neurological damage on

BMP signalling pathway in muscles, we measured BMP2 and Alk3 (activin-like kinase 3, type

1 BMP receptor) muscular expression rates, in early stage following spinal cord injury or sham

surgery.

Materials and methods

Study groups

To evaluate the role of peripheral innervation on ectopic bone volume after spinal cord injury

(SCI) we randomly assigned 21 females C57Bl6 mice of 5 weeks-old to three groups. Experi-

mental design in group 1 (n = 7) included spinal cord transection (SCI surgery), right hind-

limb peripheral denervation and bilateral hamstrings cardiotoxin injections (CTX, C9759,

Sigma-Aldrich). Same surgical procedures were performed in group 2 (n = 7), except that

bilateral CTX injections were realized 10 days after surgery. In group 3 (n = 7), we performed

control procedure with SHAM SCI surgery, right hind-limb peripheral denervation and bilat-

eral hamstrings CTX injections.

To evaluate whether spinal cord injury could induce specific dysregulation of intramuscular

BMP2 signaling pathway in wild type mice, we quantified BMP2, ALK3 and Id1 RNA expres-

sion in muscle samples of 20 C57Bl6 females eighteen hours after SCI (n = 10) comparatively

to SHAM SCI surgery (n = 10). We choose this early-stage time point considering that patho-

physiological changes resulting from the central nervous system injury settle quickly in the

acute post traumatic phase.

Surgical procedures

All procedures were realized under the microscope. Mice were anesthetized with isoflurane gas

(2.5% with oxygen 21% balanced), on hot plate to maintain body temperature around 37˚C

during surgery. Skin incision was made on top of thoracic kyphosis and spinal cord was

exposed by removing inter-lamar ligament in between posterior laminae of two contiguous ver-

tebrae. Complete transection of spinal cord was achieved using surgical blade. Hemostasis was

obtained using cautious compression with cotton plug. SHAM SCI surgery consisted in poste-

rior approach of vertebral column ending before inter-lamar ligament removal, without spinal

cord transection. We pursued the procedure with right hind-limb complete denervation, begin-

ning with sciatic nerve excision (Fig 1). After right tight skin incision, sciatic nerve was exposed

extensively, followed from mid tight to gluteal fossa. All divisional branches were identified

and transected. Large removal of sciatic nerve was then performed, after realizing proximal

Heterotopic ossification and nerves
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transection as far upstream as possible, in contact with the iliac wing. Second step of this proce-

dure was femoral nerve excision performed through an anterior inguinal approach, extended

into the retroperitoneal space (Fig 2). Femoral nerve was exposed on the psoas muscle and

removed from there to the iliac vessels. Muscles and skin were sutured at the end of each step.

Injections

We reconstituted a solution of Cardiotoxin from naja mossambica (CTX, C9759, Sigma-

Aldrich) at 10μmol/L. 75μL of this solution was injected in both hamstring muscles. For

Fig 1. Sciatic nerve excision procedure by posterior approach. A: skin incision over posterior surface of proximal hind

limb exposes superficial muscular layers [gluteus maximus (1) and biceps femoralis (2)]. B: Biceps femoralis retraction

allows sciatic nerve identification. C: Pelvic insertion of gluteus maximus muscle is freed to expose deep muscular layers

[gluteus medius and gluteus minimus (3)]. D & E: Greater trochanter (4) exposure after deep muscles retraction. Sciatic

nerve is followed throughout its course towards the sciatic notch. E: Proximal cut of sciatic nerve. F: Divisional branches of

the sciatic nerve to hamstring muscles.

https://doi.org/10.1371/journal.pone.0182454.g001

Fig 2. Anterior approach of femoral nerve. A: skin incision through inguinal fold. B: femoral neuro-vascular bundle

exposure. C: proximal part of femoral nerve laying over psoas muscle.

https://doi.org/10.1371/journal.pone.0182454.g002
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groups 1 and 3, injections were performed during surgery, as hamstring muscles were exposed

for sciatic nerve transection procedure. For group 2, CTX were performed 10 days after sur-

gery, percutaneously. Antibiotics prophylaxis was achieved through intraperitoneal injection

of ciprofloxacin (Ciflox1; 10mg/kg)

Postoperative treatment

Animals were kept in standard plastic cages, under controlled environmental conditions with

food and water ad libitum. As animals from groups 1 and 2 were paraplegic, we practiced man-

ual bladder emptying twice a day until sacrifices. To prevent urinary tract infection, sulfameth-

oxazole/trimethoprim (Bactrim1; 50/10 mg/kg) was added in drinking water.

Surveillance score was used daily to ensure the absence of motor recuperation, wound

infections, weight over loss or suffering signs. Mice from three groups were euthanized 28 days

after surgery. This procedure was performed under anesthesia, first using isoflurane 2.5%

mixed with oxygen 100%. After exposition of intrathoracic organs, isoflurane inhalation was

relayed by urethane intra-cardiac injection (200mg/mL) and exsanguination was then per-

formed. All these steps were conducted within a chemical fume hood utilizing sash, by compe-

tent staff wearing protective equipment. Syringes used for urethane injections were safety

engineered. All Precautions were taken in order to keep exsanguinated animals out of sight or

smell from others mice. Animals’ hindquarters were harvested, immersed 24h in paraformal-

dehyde 4% and conserved in phosphate-buffered saline.

Micro-tomography

Micro-tomography was performed on each hindquarter with a skyscan 1174 X-ray computed

microtomograph (Bruker MicroCT, Kontich, Belgium). Scanning parameters were 50kV,

800μA and a 0.5mm aluminum filter. Measurement calibration was based on bone mineral

density of hydroxyapatite phantoms (Bruker-Micro CT BMD calibration phantoms, concen-

trations of CaHA: 0.25 and 0.75 g.cm-3). To distinguish mineralized from soft tissues, we

applied segmentation with threshold grey level density values set up at 45 and 220. The CTAn

Software was used to measure the volume of HO (Bone Volume, BV mm3) developed in both

hamstrings of each mouse. To distinguish HO from soft tissues, we followed CTAn software

processing steps: regions of interest were manually delineated on each microCT transversal

slice, around heterotopic mineralization, taking care not to include lower limb bones, easily

identified. Binarisation were applied on the volume of interest delineated to separate HO from

background. Threshold grey level density values, set up at 45 and 220, were defined after soft-

ware calibration by means of hydroxyapatite phantoms (0.25 g/cm3 and 0.75 g/cm3).

Histological analyses

Whole hind limbs were embedded in paraffin after EDTA 5% decalcification for about ten

days (Excelsior Shandon robot), sectioned at 5 μm (LEICA 2025 microtome), stained with

Hematoxylin-Eosin-Saffron, and observed under an optical microscope.

Quantitative polymerase chain reaction

To isolate total ribonucleic acid (RNA), hamstring muscles were removed from animals imme-

diately after scarification, and homogenized in 500 μL of Trizol reagent (Life Technologies;

Grand Island, New York) according to the manufacturer’s instructions. Isolated RNA was

quantified and normalized to synthesize complementary deoxyribonucleic acid, using RNeasy

mini kit (Qiagen1). Real-time polymerase chain reaction (RT-PCR) was performed to

Heterotopic ossification and nerves
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quantify the expression of BMP2, ALK3 and ID1 genes in muscle samples using a SYBR Green

Supermix iTaq Universal (BioRad1). Gene expression was normalized to glyceraldehyde

3-phosphate dehydrogenase and 18S, housekeeping genes. For each tested gene, primers

sequences and efficiencies (E) are presented in Table 1.

Statistical analyses

All calculations were performed using GraphPad Prism 6.01 software. Wilcoxon matched-

pairs signed rank test was used to compare HO BV developed in innervated and denervated

leg of each mouse. Statistical significance was considered when p<0.05.

Ethics committee approval

This study protocol was reviewed and approved by the local ethics committee (University of

Versailles-Saint Quentin en Yvelines) and conducted in accordance with international ethics

standards for animal experimentation, number 201609231059233.

Results

Surgeries were performed on 21 C57Bl6 mice. 2 mice died in the early postoperative period (1

in group 1 and 1 in group 3). We suspect several factors to be involved in those premature

deaths such as thermoregulation dysfunction (secondary to central nervous system injury) and

surgical bleeding (epidural, medullary and gluteal vessels). It is important to note that careful

dissection must be conducted during sciatic nerve exposure in the gluteal fossa. Indeed, gluteal

artery is at risk of injury during this part of the surgical procedure and hemostasis gesture is

difficult to achieve in this particular location. When CTX was injected 10 days after surgery

(group2, n = 7), none of the samples presented intramuscular HO on micro-tomography

images. In group 1 when CTX injection was done right after SCI and peripheral denervation

procedures (group1, n = 6), we observed a significant increase of HO volumes in denervated

right hamstrings compared to innervated left hamstrings (mean BV respectively 1.47 mm3 +/-

0.5 vs 0.56 mm3 +/- 0.4 p = 0.03; Fig 3A, 3B and 3C; S1 Table). Quantitative analysis showed

that peripheral denervation, combined with SCI and CTX injection, increased heterotopic

bone volume by a factor of 3.4. In group 3, when shamSCI surgery was combined with periph-

eral denervation and CTX injection (group 3, n = 6), all mice exhibit postoperative right hind

limb complete paralysis. At the time of sacrifice (day 28), we constantly noticed a major and

global muscular amyotrophy in the right hind limb compared to the contralateral side. Con-

cerning outcome measures, micro-CT analysis revealed bilateral HOs in 3 mice out of six with

the same tendency to increased BV in denervated limb compared to non-paralyzed control

paws (0.74 mm3 +/- 0.33 vs 0.33 mm3+/- 0.33; not statistically significant; S1 Table).

Histologic examination at day 28 confirmed the presence of ectopic osteogenesis in muscu-

lar samples identified as HO positive by micro-CT (Fig 4) with no qualitative differences

between right and left hind-limbs.

Table 1. Primers sequences and efficiencies used for quantitative RT-PCR.

Gene Forward primer Reverse primer E

BMP2 5’-CATCACGAAGAAGCCGTGGA-3’ 3’-TGAGAAACTCGTCACTGGGG-5’ 1,96

ID1 5’-GGTGGTACTTGGTCTGTCGG-3’ 3’-CCTTGCTCACTTTGCGGTTC-5’ 1,88

AlK3 5’-TGAGACAGCAGGACCAGTCA-3’ 3’-GATTCTGCCCTTGAACATGAGA-5’ 1,92

18S 5’-CATTCGAACGTCTGCCCTATC-3’ 3’-CTCCCTCTCCGGAATCGAAC-5’ 1,99

GAPDH 5’-TGACGTGCCGCCTGGAGAAA-3’ 3’-AGTGTAGCCCAAGATGCCCTTCAG-5’ 1,99

https://doi.org/10.1371/journal.pone.0182454.t001
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Regarding the expression of BMP2, Alk3 and ID1 in muscular samples from SCI and sham

SCI mice (Fig 5), qPCR analyses showed no statistically significant differences directly related

to spinal cord injury in harvested muscles (S2 Table).

Discussion

The major goal of this study was to explore the role of peripheral nervous system in an

acquired HO mouse model. We successfully developed a right hind limb peripheral denerva-

tion procedure. Our results demonstrated that peripheral denervation led to increased hetero-

topic bone volumes in wild C57Bl6 mice after spinal cord injury and intramuscular CTX

injections.

Regarding our experimental design, several points can be discussed. First, significant inter

individual variability in HO volume measurements have been previously highlighted in this

Fig 3. Experimental design and bone volume measurements. Fig 3A. SCI: spinal cord injury; PNS: peripheral nervous

system; CTX: cardiotoxin. T0: CTX was injected during surgery. D10: CTX was injected 10 days after surgery BV: HO Bone

Volume measured with CT scan in right hind limb (RHL) versus left hind limb (LHL). Fig 3B. CT scan of harvested hind limbs

showed bilateral intramuscular HO in one mouse from group 1 and 3 and no HO in mouse from group 2. Fig 3C. HO

volumes in hind limbs of 6 mice from group 1 showing significant increased BV after peripheral denervation. Fig 3D.

Amyotrophic right hind limb after peripheral denervation 28 days after surgery.

https://doi.org/10.1371/journal.pone.0182454.g003
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animal model [22]. Several extrinsic factors can be pointed out, such as non-controlled extra

muscular dissemination of CTX after percutaneous injection, but genetic or metabolic compo-

nents may also be involved. In order to obtain the most robust evaluation of ectopic bone vol-

umes, we tried to minimize bias related to inter individual variability by analyzing paired BV

in each mouse. We also realized CTX injections under eye control to prevent any extra muscu-

lar leak. Secondly, in order to obtain a complete peripheral hind limb denervation, we decided

to realize nerve transection on both femoral and sciatic nerves. We deemed important to sup-

press axonal transportation towards muscles of both anterior and posterior muscular compart-

ments. We established the efficiency and reproducibility of our peripheral denervation in non-

paraplegic control animals (group3), since all of them had a complete motor deficit of dener-

vated paw during the post-operative period and presented with consistent global muscular

amyotrophy at day 28.

Finally, group 2 was constituted in order to take into account delayed effects of peripheral

denervation on local inflammatory reaction as notified by Stangenberg et al [34]. This author

recently demonstrated that nerve transection could alter the transcriptome of joint microvas-

culature and inhibit inflammation-enhancing vascular leak in K/BxN serum-transferred mice.

Regarding the role of neurologic damage in our mouse model, we first hypothesized that

PNS could support neuropeptides transportation from injured spinal cord to muscles. This

idea was based on recent experimental data. First, central nerve damage appears to induce sys-

temic release of substance P or calcitonin-gene-related peptide (CGRP) [35, 36] which triggers

pro-inflammatory mechanisms and neuronal regeneration [37, 38]. Moreover substance P can

be distally released from sensory nerves expressing the transient receptor potential cation

channel subfamily V member 1 (TrpV1), also known as the capsaicin receptor, leading to the

recruitment of activated platelets, mast cells and neutrophils, which is one inductive step nec-

essary to injury acquired HOs [25–27,39]. Consequently, we rather expected a decrease in HO

volumes after peripheral nerves excision, since we thought that interrupting neurotransmitters

transportation along peripheral nerves would prevent their intra muscular release. Yet, we

observed significantly increased volumes in denervated muscles compared to control paw. We

also observed HO formation (n = 3) in group 3, after peripheral denervation and muscular

lesions without central nerve damage. These results seem to underline the key role of neuron

Fig 4. Muscular samples after SCI and CTX injection. HES staining showed bone matrix (1), osteocytes

(white arrow) mineralized nodules (2), regenerated muscular fibers (3) infiltration of inflammatory cells (4).

https://doi.org/10.1371/journal.pone.0182454.g004
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cell injury, in triggering the release of osteoinductive factors. Rather than having some direct

consequences on neuropeptide transport, peripheral nerve section appears to reinforce patho-

logical propensity for intra muscular progenitors to differentiate into bone cells. This effect

could be mediated by specific cross-talk between the nervous and immune systems [40–44].

To date, published evidence suggests that injury to the spinal cord elicits a robust intra spinal

inflammatory response with major impact on the entire immune system [45–46]. As reviewed

by Schwab et al. SCI rapidly induces immune depression syndrome, through the loss of vegeta-

tive input to lymphoid and endocrine organs. This down-regulation affects cells of both the

innate and adaptive immune systems [47]. Yet macrophages and mast cells have been identi-

fied as important regulators in regenerative mechanisms induced by tissue injury [48, 49].

Time-specific infiltration of macrophages during muscle regeneration appears to actively coor-

dinate muscle fiber repair and re-attachment of motoneuron terminals onto damaged fibers

through spatiotemporal up-regulation of neural chemo-repellent molecules [50]. These data

support the idea that immune cells reprogramming after SCI could influence cellular differen-

tiation of recruited progenitors in damaged muscles, leading to ectopic osteogenesis.

Regarding molecular signals involved in our model, we failed to demonstrate increased

expression of BMP signaling pathway in muscles after SCI as described by Kang et al [51].

Fig 5. QPCR analyses of BMP signaling pathway in muscular samples of C57bl6 mice, 18 hours after

spinal cord injury (SCI) or sham surgery (sham SCI). Studied genes were BMP2, Alk3 (encoding BMP

type 1 receptor) and ID1 (encoding inhibitor Of DNA Binding 1, HLH Protein). For each gene, presented

results are the means of qPCR triplicate results, reported to housekeeping genes 18S and GADPH. p values

were 0.08 and 0.76 respectively for BMP2/18S and BMP2/GADPH; 0.05 and 0.9 respectively for AlK3/18S

and AlK3/GADPH; 0.8 and 0.15 respectively for ID1/18S and ID1/GADPH.

https://doi.org/10.1371/journal.pone.0182454.g005
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However experimental designs were focused on different time points, respectively eighteen

hours after SCI in our protocol versus 3 days in Kang’s study. This raises the problem of deter-

mining the exact time-course of molecular events triggered by SCI. As we were unable to con-

tinuously monitor intra muscular changes of BMP expression, we arbitrarily chose to explore

an early stage after injury. But further analysis need to be conducted in order to establish

robust conclusion on this point. Moreover, considering recent studies on sciatic nerve crush

injury models, it seems that BMP signaling pathway contributes to the axonal regeneration of

sensory neurons [52–54]. We can easily conceive that in our NHO mouse model, sciatic resec-

tion reinforces BMP expression as well as neurogenic inflammation leading to heterotopic

ossification.

Our study has several limitations. As we performed global nerve transection we failed to

associate increased HO formation with the suppression of a single nerve quality (sympathetic,

parasympathetic, or sensory nerves). One might expect that these systems are both involved in

HO formation following SCI, but their respective effects remain to be clarified in the particular

case of our mouse model. Moreover, preliminary results of molecular analyses need to be com-

pleted in order to demonstrate up-regulation of BMP signaling pathway in this NHO model.

Further works should aim at identifying cellular sources of BMP and clarifying its regulatory

contribution to the cascade of events leading to ectopic osteogenesis.

In conclusion, our study demonstrates that peripheral injury-induced neuro-inflammation

leads to increased heterotopic bone volume in a NHO mouse model. This finding supports the

idea that propensity to develop ectopic osteogenesis in brain or medullary injured patients

could involve disturbed regenerative molecular signals. It remains though a complex multicel-

lular process with several unknown interactions. We succeeded in developing a promising

experimental design using neurogenic HO mouse model. This protocol should help us to clar-

ify the NHO pathophysiology and to target preventive therapies.
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ossian, Marie-Caroline Le Bousse-Kerdilès.

Funding acquisition: Jean-Pierre Levesque, Jean-Jacques Lataillade, Marie-Caroline Le

Bousse-Kerdilès, François Genêt.

Investigation: Charlotte Debaud, Marjorie Salga, Laurent Begot.

Heterotopic ossification and nerves

PLOS ONE | https://doi.org/10.1371/journal.pone.0182454 August 30, 2017 10 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0182454.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0182454.s002
https://doi.org/10.1371/journal.pone.0182454


Methodology: Charlotte Debaud, Marjorie Salga, Laurent Begot, Xavier Holy, Fréderic Toros-
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