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Abstract

Regional co-location scoping intends to identify local regions where spatial features of inter-

est are frequently located together. Most of the previous researches in this domain are con-

ducted on a global scale and they assume that spatial objects are embedded in a 2-D

space, but the movement in urban space is actually constrained by the street network. In

this paper we refine the scope of co-location patterns to 1-D paths consisting of nodes and

segments. Furthermore, since the relations between spatial events are usually inversely

proportional to their separation distance, the proposed method introduces the “Distance

Decay Effects” to improve the result. Specifically, our approach first subdivides the street

edges into continuous small linear segments. Then a value representing the local distribu-

tion intensity of events is estimated for each linear segment using the distance-decay func-

tion. Each kind of geographic feature can lead to a tessellated network with density attribute,

and the generated multiple networks for the pattern of interest will be finally combined into a

composite network by calculating the co-location prevalence measure values, which are

based on the density variation between different features. Our experiments verify that the

proposed approach is effective in urban analysis.

1. Introduction

With the rapid development and extensive application of ubiquitous network technology, huge

collections of geospatial data become available. There is an increasing demand for the incorpo-

ration of data mining techniques into the knowledge discovery from large spatial databases. The

major objective of spatial data mining is to automatically discover interesting, potentially useful,

and previously unknown patterns from large amounts of geo-referenced data [1]. This process

is usually realized via spatial co-location/correlation pattern mining [1–3].

Spatial co-location pattern is a subset of spatial features whose events are usually located in

close spatial proximity. Finding such a pattern is one of the most important techniques for

understanding geographically global relationships in spatial data sets. It should be noted that

many associations in geographic context are only regional or local, rather than global due to
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spatial heterogeneity [3–5]. The global measurements probably lead to the loss of association

information hidden at a regional scale [6]. For example, based on regional statistics, esophageal

cancers is associated with water pollution in a county, while such relationship may be diluted

at a larger spatial extent (e.g. state). Therefore, many domain applications have been developed

in the literature focusing on the relationships at a local scale rather than a global scale [4, 7].

Based on the local variation of dependency, regional co-location pattern scoping aims to

identify regions in which the spatial features under investigation are strongly co-located. The

application domains of this technique are wide, including risk analysis, business mangement,

LBS (location-based services) query processing, environmental studies, etc. For example, to

answer LBS queries like “Which region could I drive to for filling my car up while having a coffee
nearby?”, service providers would be interested in finding the “hot spot’ regions where gas sta-

tion and coffee shop are most likely to be found in proximity. In addition, detecting the

regions in which urban facilities and street crime have a strong association relationship would

also help the public security department allocate police presence more effectively. In environ-

mental protection, experts are devoted to identifying the risk regions related with heavy metal

pollution in the water supply [4].

Although both global co-location mining and regional co-location scoping have been

widely studied and applied, most of them compute neighborhood using Euclidean distance

[4,8–10]. In some circumstances, however, it is necessary to scope co-locations using a differ-

ent distance metric, such as network path distance, because many human activities are con-

strained only to the network subset of the planar space [11, 12]. For example, to satisfy the

information needs of location-sensitive advertisements, mobile service providers often need to

identify paths in which the co-locations of different facilities are prevalent enough [13]. These

paths are spatially irregular and they may vary at multiple distance scales.

Therefore, it is necessary to develop new methods to identify 1-D paths in which different

types of objects or events frequently occur together. However, the existing methods have diffi-

culties in dealing with such issue. The major challenges to identify local paths for a pattern of

interest include the following two aspects.

1. How to partition the study region into sub-regions (or cells) and compute the neighborhood
envolving network-constrained features?
Existing methods for regional co-location scoping need to first divide the study region into

equal-sized and homogeneous cells (i.e. 2-D grid), and then calculate an interestingness

value for each cell by considering objects inside as a co-location intstance [3, 4]. A cell with

high interestingnesss value is said to be valid with respect to the co-location pattern under

investigation. However, such methods have some disadvantages: (1) the neighborhood is

computed based on Euclidean distance and the result is on the whole region in which the

network is embeded, regardless of the constaint of street network; (2) some of the co-loca-

tion instances across the boundaries of the chosen cell are lost. For example, by using the

traditional algorithm [4] on the dataset of Fig 1, events A.3, B.2 and C.2 are not considered

as a co-location instance as they are not located in the same cell.

2. How to define the co-location interestingness on each cell?
Previous measures (e.g., support and participation index) for co-location interestingness

evaluation are based on counting, which do not take the “Distance Decay Effects” of spatial

interaction into account. In other words, both types of co-location instances (having closer

objects and farther objects) are treated as the same. In the geospatial domain, “Distance

Decay Effect” which satisfies first law of geography of Tobler [14] can be presented as the

strength of spatial correlation decays with distance between events. The conventional
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counting-based measurements cannot model and analyze such relations within a fixed

boundary of neighborhood distance.

In view of these issues, this article proposes a novel approach by integrating the techniques

of network analysis and distance decay function. In the approach, the valid regions of patterns

of interest are constrained to continuous small linear segments, and the co-location interest-

ingness of each place is assessed using a weighted prevalence measure, which takes into

account the geographic context and spatial relationships across tessellated cells.

The organization of this paper is as follows: Section 2 reviews the related literature. Section

3 presents the improvement of co-location scoping which involves the issues about neighbor-

hood determination and “Distance Decay Effect”. In Section 4, we demonstrate the effective-

ness of our approach through a case study with real-world street network and facility POIs

data. Section 5 concludes the paper and outlines further research directions.

Fig 1. Illustration of identifying regional co-location instances and valid regions (or cells) by using traditional

method.

https://doi.org/10.1371/journal.pone.0181959.g001
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2. Related work

Relevant researches can be discussed from two perspectives: extenison from global co-location
mining to regional co-location scoping and extension from planar space to network space. The

detail about both of the topics is as following:

2.1 Extension from global co-location mining to regional co-location

scoping

In the last two decades, spatial co-location pattern mining has been widely studied in geo-spa-

tial domain, aiming at measuring spatial dependence between geographic features by using

spatial proximity concepts [1, 10, 15, 16, 17]. Shekhar and Huang [10] bring a systematic way

to mine co-location patterns in spatial data set relying on the participation indexmeasure.

Given a co-location pattern P = {f1, f2,. . ., fk} containing a set of feature types f1, f2,. . ., fk, the

participation index PI(P) is defined as minfi2P{PR(P, fi)}, where participation ratio measure PR

(P, fi) is PR P; fið Þ ¼
Number of distinct objects of fi in instances of P

Number of objects of fi
. Under the framework of PI measure, dif-

ferent variations of Apriori algorithm were proposed to improve the performance of instance

connecting process [17–19]. Recently, Huang, Pei and Xiong [20] adjusted the interest mea-

sure to support the co-location mining evolving rare features, e.g., a rare disease. Flouvat et al.

[21] integrated expert constraints inside transaction-based mining process for finding more

accurate information.

However, it should be noticed that all the frameworks mentioned above are designed for

specific types of global co-location patterns mining, in which valid scope of patterns is the

whole study region. Our approach, on the other hand, focuses on the regional co-locations, in

which valid scope of patterns is restricted to a local region. In the fields of spatial statistics and

spatial data mining, regional co-location scoping attracts an increasing attention. For example,

Guo et al. [22] extended classic K function to measure the local association of two variables

(e.g., temples and villages). In the works of Ding et al. [3, 4], the whole area is firstly divided

into a fixed 2-D grid, then the output for a co-location is formed by a set of square cells, in

which the probability of occurrence of the co-location maximizes a specified fitness function.

However, these works analyze the distributions of events within different cells separately, and

it may lead to the loss of neighborhood (or instances) across the boundaries of cells (see Fig 1).

2.2 Extension from planar space to network space

Neighborhood definition is another important issue for mining spatial patterns [23]. In spatial

co-location mining, different neighborhoods were proposed to meet different kinds of applica-

tion requirements, including fixed-distance neighborhood [10, 24], space partition [18], buffer

zone [25], topological relationship [26], k-nearest neighbors [27], and Delaunay diagram [28].

However, most of these approaches assume uniform distributions of events on a 2-D plane.

The relevant measures may become inappropriate in applications of mobile services and street

infrastructure planning due to the factor that the movement in urban areas is usually con-

strained by the street network. In the fields of geo-computation and spatial statistics, the issue

of network space versus Euclidean space has attracted attention of many scholars. For example,

Okabe et al. [29] and Ai et al. [30] proposed to use network distance rather than Euclidean dis-

tance to construct Voronoi diagram. Yamada and Thill [7, 31] developed a constrained K-

function based on network distance to analyze the cluster characteristics of traffic accident

data. Shiode and Shiode [32] detect point agglomerations at multi-scales by finding neighbor

elements fallen within a certain shortest path distance from a reference point. Miller [33]

shows that the Euclidean distance tends to overestimate the spatial intensity level of network-
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constrained features. Mennis and Guo [34] conclude that route distance is an effective measure

to detect spatial clusters in network space. To the best of our knowledge, however, there is lack

of network-constrained co-location scoping research that can be used for cases with more than

two variables.

The classic co-location models employ the counting-based measures such as support, confi-
dence, and participation index, which simply count the number of events falling in each cell to

reflect the local interestingness [1, 23]. In contrast, spatial correlations with different distances

have different weights in real-world data sets—the so called “Distance Decay Effects”. Since

distance-decay effects exist in most of spatial processes as suggested by Tobler’s first law of
geography [14], it is integrated into numerious geographical models for capturing the nature of

spatial interactions. For example, the kernel function uses distance-decay effects to estimate

the density variation of point clusters across space. Kernel density estimation is effective for

the analysis of first-order properties (e.g., intensity), while spatial interactions between multi-

ple variables need to be explored by other methods, e.g., cross K-function. In fact, in addition

to the kernel density estimation, there are also many other successful models and applications

which explore the distance-decay effects hidden in the spatial processes. For example, McGrail

and Humphreys [35] measured the attractiveness of a facility service by materializing decay

effect through using a gravity model. Liu et al. [36] found that the spatial interactions of inter-

urban trip were governed by a distance decay effect following a power law distribution.

Yamada and Thill [7, 31] incorporated the distance-decay for their network-constrained statis-

tics involving single feature. More recently, Wang et al. [37] proposed a local co-location quo-

tient based on statistical test. They differentiated the Euclidean distance and network distance

for detecting co-location behaviors involving facilities and crimes. However, these approaches

are developed from perspective of the spatial statistics, and as suggested in Huang et al. [20],

they cannot be easily extended to deal with the co-location involving more than two features.

To solve the problems above, our previous works have established a method which can extract

prevalent co-location patterns from the whole study area (i.e., from a global scale), but they

would also miss some valuable information existed within local areas [38,39]. In this respect,

this paper proposes a new co-location scoping approach (Section 3) to identify prevalent

regions of specific co-location patterns, which are pruned by previous approaches due to their

low prevalence measure values at the global scale. Although the distance-decay effects are used

in our study only for co-location patterns, it would be beneficial to incorporate this concept

into other data mining frameworks (which are originally designed for handling transaction

database) in order to improve their applicability for geographical settings.

3. Method

In the proposed method, each geographic feature can lead to a tessellated network (i.e., a linear

tessellation) with density attribute, and multiple features will create different tessellated net-

works, which are further integrated to create a final network with co-location prevalence attri-

bute. This scoping process involves three distinct stages:

Step 1 Partitioning network: Partitioning the street network into 1-D cells and, creating mul-

tiple tessellated networks for different features.

Step 2 Quantifying “Distance Decay Effect”: Calculating the distribution intensity of events

on the tessellated networks by using a distance-decay function.

Step 3 Interestingness evaluation: Combining the tessellated networks into a composite net-

work by using a weighted interest measure.

Regional co-location pattern scoping
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In the following, the method will be demonstrated in detail.

3.1 Partitioning network

As for vehicle navigation services, the concerned region often only needs to contain the seg-

ments and nodes which form the paths to the facilities of interest (e.g., hotel). Therefore, inter-

esting regions for co-location patterns in our research are simplified as network paths, instead

of the whole plane.

For determining co-location scope, the study region is firstly divided into a set of regular

cells, which are often represented in the form of a 2-D square. While for the cases in a net-

work-configured space, our method proposes to use a new form of cell with a unique, linear

shape following the irregular configuration of networks, as shown in Fig 2. To obtain such

type of cells, we firstly place a set of points (illustrated by the dark black points in Fig 2) which

are set apart at a certain distance on the network. Then the street network is divided into small

sections (i.e., 1-D cells) which start and end at a point. The size of these cells depends on the

spacing distance between two neighboring points along the network. Within such network-

constrained cell system, the unique spatial structure of network which may be lost in the 2-D

cell system, can be maintained by establishing the topological relationship of the linear cells.

Besides, in order to facilitate the network analysis, each event located alongside the network

can be projected to the nearest 1-D cell (termed as event cells) according to its Euclidean dis-

tance from the central point of the cell. Then based on the locations of event cell, the neighbor-

hood can be specified as the following:

Definition 1 (neighborhood). Two events (oi, oj) is called neighborhood if the distance of

the shortest path from the event cell of oi to the event cell of oj (i.e., dN(oi, oj)) is less than or

equal to a user specified threshold.

In the linear tessellation, we define the network distance between two events as the number

of hops of the cells on the shortest path that connects their projected event cells. Formally, net-

work distance dN(ox, oy) between events ox and oy is calculated as:

dNðox; oyÞ ¼ jfq1; q2; � � � ; qngj � 1 ð1Þ

Fig 2. Two kinds of methods for partitioning a network into a grid: Using 2-D square cells (left), and 1-D linear cells (right). In the linear

tessellation (right), two events o1 and o2 are projected to the nearest 1-D cells q1 and q2 by nearest distance searching, in order to facilitate the network

analysis.

https://doi.org/10.1371/journal.pone.0181959.g002
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where {q1, q2, . . ., qn} denote the continuous cells on the shortest path connecting the projected

cells of events ox and oy, and |{q1, q2, . . ., qn}| denotes the number of the cells. As shown in Fig

2, events o1 and o2 are firstly projected to their nearest cells q1 and q2, respectively. Then with

shortest-path searching, the cells located on the shortest path between q1 and q2 are identified

(illustrated by the dark black lines in Fig 2), and finally according to Eq 1, the distance between

events o1 and o2 is calculated as 7, which is the number of hops on the network shortest path,

instead of their Euclidean distance.

3.2 Quantifying “Distance Decay Effect”

“Distance Decay Effect” is applied in numerous applications involving the concept of spatial

interaction, since the interaction between geographical events often take effect in a limited

scope and its strength degrades with the increasing of distance [40–41]. Therefore, for iden-

tifying the scope of co-location patterns, we also propose to exploit the distance-decay func-

tion, which is inversely related to distance, to compute event intensity on the locations/cells

of a network. As shown in Fig 3, rather than giving a constant weight to all locations within

the neighborhood D, the distance-decay function introduces possible differentiation of

proximity within the neighborhood boundary. This function would ensure that location

close to the event (ox) has a large density value, whilst location far from the event has a small

density value.

If a cell q falls within the neighborhood of multiple events (assuming the number of

neighboring events is n), its density (Num(q, fi)) is the cumulative value of the distance-

decay densities computed from all neighboring events which belongs to the feature type

under consideration (fi), and the formation is as follows:

Num q; fið Þ ¼
Pn

x¼1
S �

1

D
� ð1 �

ðdNðq; oxÞÞ
2

D2
Þ ð2Þ

where q is the focus location/cell on the network, fi the feature type under consideration, ox
the observed event (the feature type of ox is fi), S the scaling parameter, D the theshold of

Fig 3. Comparison of the weighted functions based on distance-band counting and distance decay effect along a network.

https://doi.org/10.1371/journal.pone.0181959.g003
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neighborhood distance, dN(q,ox) the shortest-path distance between q and ox. An example

with multiple data points is presented in Fig 4. Compared to the distance-band counting,

the addition of a distance-decay function can avoid the problem of artificially sharp bound-

aries between neighboring cell values by generating a smooth density surface. Many differ-

ent forms of the distance-decay function have been developed in the literature, including

Linear, Gaussian, Conic, Quartic, and negative exponential [42]. It is approved that the

choice of the distance-decay function does not affect much of the resultant density pattern,

because they all account for “Distance Decay Effect” [42–44]. Therefore, for simplicity, this

paper only considers the Quartic function (i.e., Num(q, fi)) with S equal to 3

4
, one of the most

commonly used functions in geospatial domain [43]. Furthermore, in order to evaluate the

probability of different features to frequently locate together, multiple networks with den-

sity attribute for different features will be generated in our approach by using the distance-

decay function Num(q, fi).

3.3 Interestingness evaluation

In this section, we propose to integrate multiple density surfaces into a composite network by

using a weighted measure called PI’(q) and formulate co-location pattern scoping in terms of

this new concept. The composite network is termed as network of Interestingness of Co-loca-
tion, or IC network for short.

The authority measure evaluates the co-location interestingness by considering events fall-

ing within each individual cell [4]. Accordingly, we generalize the form of the measure through

considering event distribution across adjacent cells. To demonstrate the advantages of using

the weighted measure for co-location scoping, let’s consider a simple example. In Fig 5, five

events classified into two categories (feature A and feature B) are distributed along an illus-

trated network segment. The detailed steps are as follows (Fig 5A):

1. In the first step of our approach (Step 1), a tessellated network with density attribute (i.e.,

Num) is generated for each feature, and a total of two tessellated networks for pattern {A,

B} are in Fig 5A. The tessellated network with small cell size can lead to a smooth density

surface, which is able to reduce the loss of spatial co-location information across the bound-

aries of cells.

Fig 4. Illustration of the differences between the distance-decay measure and counting-based

measure for the same point event dataset.

https://doi.org/10.1371/journal.pone.0181959.g004
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2. Then, by utilizing the GISmap overlay technique (Step 2), these networks are combined

into a final IC network (Step 3), on which the interestingness values of a co-location pattern

P = {f1, f2,. . ., fk} are calculated using the improved participation indexmeasure [10] as fol-

lows:

PI’ðqÞ ¼ Minfi2PfPR’ðq; fiÞg � sizeðqÞ ð3Þ

where q is the focus cell on the network, PR0(q, fi) is the participation ratio value calculated by

PR0 q; fið Þ ¼
Numðq;fiÞ

nfi
(nfi is the number of events of feature fi located in the neighborhood of cell

q), size(q) is the regional data size of events in cell q calculated by sizeðqÞ ¼
Pk

i¼1
Numðq; fiÞ.

In the proposed model, the measure PI’(q) is not only impacted by the number of co-location

instances, but also by the regional data size (size(q)) within each cell, because given the same

participation ratio value, regions having more events are more statistically significant than

regions having less events. A high value of the PI’(q) indicates that spatial features of the co-

Fig 5. Process of calculating the interestingness variation of the co-location pattern {A, B} on an illustrative network: (a) using distance decay-based

measure PI’(q), (b) using counting-based measure PI(q).

https://doi.org/10.1371/journal.pone.0181959.g005
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location pattern appear together in the cell qwith high probability. In other words, a cell is a

valid (or prevalent) place for the co-location pattern if all the features of the pattern are

observed in the cell with a high probability of PI’(q). Compared to the counting-based mea-

sure PI (Fig 5B), our measure allows smooth estimate of the event density on the network (Fig

5A), and thus creates a more distinguishable result of co-location scoping. For example, by

using the traditional measure, the right side of the network is obtained as a non-prevalent

region for the pattern {A, B} because the events are located in different cells. However, this

portion of the network is likely to be interesting according to the proposed measure PI’(q) (see

Step 3 in Fig 5A).

Furthermore, it can be observed that replacing PR0(q, fi) with counting-based participation
ratio in Eq 3 gives traditional measure PI [4, 10]. Therefore, the distance-decay interest mea-

sure can be considered as a generalization of counting-based interest measure, which takes

into account the unique characteristics of spatial interaction that its strength bears a process of

distance decay.

3.4 Algorithm analysis

For the task of co-location pattern scoping, our work proposes to improve the traditional algo-

rithm [4] by using the network distance, instead of Euclidean distance. Thus, the performance

difference between the proposed algorithm and traditional algorithm depends on the complex-

ity difference in computing spatial proximity. Specifically, two major operations in our frame-

work influence the computational cost, i.e., partitioning the space by using 1-D cells and

computing the distribution density of events by applying the shortest-path searching tech-

nique. Given the number of street edges n and the number of 1-D cells l, the computational

complexity of the linear tessellation operation is O(nl). For the calculating of spatial density of

events, the time cost depends on the efficiency of calculating network distance. In general, the

shortest-path searching can be implemented by the Dijkstra [45]’s algorithm, which adopts a

strategy of incrementally expanding the network around the query event. Thus, for a specific

feature, if its number of events ism, the run time complexity of calculating the density of

events is O(mlk2) [45], where l is the number of 1-D cells and k is the number of nodes on the

network. Therefore, given the number of features p, the overall run time complexity of calcu-

lating the interest measure values is O(pmlk2). Based on the above, our algorithm has the time

complexity O(nl)+O(pmlk2), which is higher than the traditional algorithm that only requires

a constant-time operation for calculating Euclidean distance. However, our algorithm is more

accurate for some specific cases involving network-constrained features (e.g. urban facility).

In addition, there are three key issues that should be paid attention to in our algorithm.

Firstly, as presented in Section 3.1, the method tessellates a street network by placing equidis-

tant points on the network, and thus the running time of this step would largely depend on the

granularity of cell size. Generally, the smaller the interval between points, the more cells the

algorithm traverses, and thus the more time it costs. Therefore, although the step of partition-

ing network has a time complexity of O(nl), it usually takes much time in practical applications

because the number of cells is usually large in the implementation. In this respect, the cell size

should be carefully defined according to data distribution. For example, our case study used a

parameter of 10 m (please see Section 4.2), which can ensure both effectiveness and efficiency

of the proposed method. Secondly, although corner side cells with a length less than the prede-

fined length may be generated in practical conditions, they would not affect the result due to

the following reasons: (1) Corner side cells with a short length only account for a negligible

portion of all the cells; (2) As long as the linear segment size is small enough, the resolution dif-

ference between regular cell and corner side cell can be significantly reduced. Thirdly, since
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travel speed varies among different streets in reality, the neighbourhood size should be defined

differently depending on the local traffic condition. The proposed method can be adapted to

this situation by introducing irregular sizing cells. The basic idea is to assign a big size of cell to

the street segments having a high travel speed and a small size of cell to the street segments

having a low travel speed. In this way, with additional traffic data sets (e.g., vehicle trajectory),

it is possible to deal with the more complex of data using the proposed framework.

4. Experiments and results

4.1 Experiment data

The data sets were provided by the Geomatics Center of Shenzhen (http://www.szpl.gov.cn/),

including a street network and a set of urban facility POIs (Points of Interest) from Shenzhen,

China, as shown in Fig 6. In our previous work (please see [38]), we chose sixteen certain types

of facilities for the global co-location pattern mining. Among the non-prevalent patterns in the

global region, we selected two patterns for the regional co-location scoping, i.e., for identifying

local areas in which the selected patterns are significant or prevalent enough. The two regional

patterns include the size-2 pattern {Internet Café, Police Post and Police Service} and the size-3

pattern {Internet Café, Leisure Center, Police Post and Police Service}. The proposed method can

also be applied to other patterns with different features and pattern sizes. The underlying street

network possesses 4176 segments, which are split at the locations of street intersections.

4.2 Experiment settings

In our experiments, the neighborhood threshold was set to 300 m for two reasons: firstly, by

constructing street blocks from the street network in Shenzhen, we found that the average

block neighborhood is about 228 m; In addition, researchers [46] in urban studies suggested

that 300 m distance is suitable for the analyzing of spatial interactions at the scales of neighbor-

hood. Furthermore, in order to evaluate the effectiveness of our approach at different distance

scales, larger distance thresholds were additionally utilized in the co-location scoping, i.e., 600

m and 1200 m.

For the identifying of valid locations of the co-location patterns, six experiments were con-

ducted (Table 1). The first two experiments were based on measure PI’(q). For both of the two

experiments, neighborhood threshold (300 m) were the same, and the basic linear cell size was

set to 10 m. In essence, in our approach, the size of cell should keep as small as possible to

generate smooth density surface and facilitate co-location analysis on different locations. How-

ever, cells with small size lead to a rapid increase of amount of data, which makes the algorithm

efficiency being a problem in the experiments, especially when the experiments do not require

such a small granularity. After several tests on the experiment data, we chose to partition the

network with an appropriate parameter (10 m), which is small enough relative to the average

length of the street segments in the data. To compare our approach (Experiments I and II)

with the traditional approach [4], two additional sets of experiments (Experiments III and IV;

Experiments V and VI) were also conducted. These experiments differ from Experiments I

and II in that, the sizes of the basic cells (the length of network segments and 300 m) were

larger than that in Experiments I and II (10 m). This is because counting-based interest mea-

sure considers events in each cell as a co-location instance, ignoring relationships across the

boundaries of cells. Therefore, a large cell size parameter should be used in traditional appr-

oach for reducing the loss of co-location information. In addition, Experiments V and VI

adopted the classic 2-D grid and measured spatial proximity using Euclidean distance, while

Experiments III and IV adopted a 1-D grid by dividing the street network on the locations of

street intersections.

Regional co-location pattern scoping

PLOS ONE | https://doi.org/10.1371/journal.pone.0181959 August 1, 2017 11 / 27

http://www.szpl.gov.cn/
https://doi.org/10.1371/journal.pone.0181959


Fig 6. Study region, the facilities and the street network data.

https://doi.org/10.1371/journal.pone.0181959.g006

Table 1. The six experiments for the study region and their settings.

Experiments Regional co-location pattern Tessellated

space

Neighborhood

determination

Interestingness measure

I {Internet Café, Police Post and Police

Service}

1-D grid

(10-m units)

network distance

(300-m threshold)

Distance decay-based participation index PI’(q)

(Quartic function)

II {Internet Café, Leisure Center, Police Post

and Police Service}

1-D grid

(10-m units)

network distance

(300-m threshold)

Distance decay-based participation index PI’(q)

(Quartic function)

III {Internet Café, Police Post and Police

Service}

network

segments

network distance

(300-m threshold)

Counting-based participation index PI(q)

IV {Internet Café, Leisure Center, Police Post

and Police Service}

network

segments

network distance

(300-m threshold)

Counting-based participation index PI(q)

V {Internet Café, Police Post and Police

Service}

2-D grid

(300-m

squares)

Euclidean distance

(300-m threshold)

Counting-based participation index PI(q)

VI {Internet Café, Leisure Center, Police Post

and Police Service}

2-D grid

(300-m

squares)

Euclidean distance

(300-m threshold)

Counting-based participation index PI(q)

https://doi.org/10.1371/journal.pone.0181959.t001
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4.3 Results and discussion

In general, according to our previous work [38], the most prevalent co-locations involve fre-

quent spatial features (e.g., ATM, Parking Lot) that have far more events than others. This is

because from the perspective of the entire study region, more frequent features are more likely

to appear in different locations, and thus they have a higher probability to co-occur with others

than rare features. For example, the two patterns of interest involving rare feature Internet
Café obtain a lower participation index value (Table 2), and they could be pruned by a preva-

lence threshold in the global co-location mining. To solve this limitation, we applied the pro-

posed approach to identify local areas in which the patterns of interest were significant enough

(Section 4.3.1).

4.3.1 Regional co-location pattern scoping. By implementing Experiments I and II,

three tessellated networks with density attribute were generated for three features respectively

(Fig 7). Peaks of the density networks (highlighted by red color) represent the presence of hot
spots in the event distribution. By a simple visual observation, it can be noticed that the associa-

tion between the three types of facilities shows huge variation across the study area. The main

clusters of these features appear in the southern part of the region, adjacent to Hong Kong in

the real world. Geographical advantages of the local area facilitate the development of social-

economic activities. In addition, it is also observed that some hot spots in Fig 7A (highlighted

by the circles) do not appear in Fig 7B, while a contrary trend is observed in other regions

highlighted by the squares in Fig 7B.

In order to quantify these local variations in co-location scoping, we further integrated the

density networks into a composite IC network using the proposed measure PI’(q). Fig 8 shows

the detailed distribution trends of co-location interestingness values. First, for the size-2 pat-

tern {Internet Café, Police Post and Police Service}, most of high measure values with a clustered

pattern are located in the southern and eastern parts of the study region. In contrast, most of

low measure values are distributed in specific areas satisfying either one of the following condi-

tions: (1) both of Internet Café and Police Post and Police Service features have a low density of

events; (2) one of the features has a low density of events (e.g., the locations highlighted by the

circles in Fig 7A and by the squares in Fig 7B). Actually, this also occurs with the size-3 pattern;

That is, the high interest measure values are clustered in the south-east parts of the study

region (Fig 8B). In general, the interestingness surface for the size-3 pattern is massively

diluted and reduced in comparison with that for the size-2 pattern (i.e., Fig 8A vs. Fig 8B),

because the addition of the third feature (Leisure Center) makes it harder for the co-location

pattern to be significant in a local area.

With such clear clustering information associated with police presence and other facilities,

understanding where and why to increase police presence is possible to creating a safe urban

environment. Street crimes which often occur on street are rarely random in space. Especially

according to the reports from the government’s safety agency, the majority of street crimes

and youth crimes take place in the nearby areas of the specific facilities (i.e., Internet Café and

Table 2. The patterns of interest and their prevalence measure values in the entire study region with

neighborhood distance D = 300 m.

Pattern

size

Co-location Global interest measure value

(participation index)

Size-2

pattern

{Internet Café, Police Post and Police Service} 0.191842

Size-3

pattern

{Internet Café, Leisure Centre, Police Post and

Police Service}

0.068440

https://doi.org/10.1371/journal.pone.0181959.t002
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Fig 7. Tessellated networks with density attribute (Num) generated from the data of different types of

features: (a) Police Post and Police Service, (b) Internet Café, (c) Leisure Center. All the density values are

calculated with a Quartic function and 300-m neighborhood.

https://doi.org/10.1371/journal.pone.0181959.g007
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Fig 8. IC networks with distance-decay interestingness attribute (PI’) generated for different co-location patterns: (a) {Internet Café, Police Post and Police

Service} (Experiment I), (b) {Internet Café, Leisure Center, Police Post and Police Service} (Experiment II).

https://doi.org/10.1371/journal.pone.0181959.g008
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Leisure Center), because there are actually no effective measures to supervise the operation in

these neighborhoods. Hence, our approach is deemed as a key issue in safety improvements,

with identifying high-crime street segments.

4.3.2 Comparison. To compare our approach with the traditional approaches, the other

four experiments (III-VI) were also implemented in the study region (Fig 9).

All of the experiments produce a very different result in co-location region discovery,

including the scope of valid regions and the distribution of interest measure values. We can

make the following observations from a more detailed comparison. First, for the comparison

between Fig 8A and Fig 9A, what they share in common is they both limit co-location region

to paths with 1-D cells. And the difference is that the valid paths in Fig 8A consist of continu-

ous small linear cells, while the valid paths in Fig 9A consists of coarse-grained paths. Further-

more, the IC surface with distance-decay function shows a smoother characteristic compared

to that with counting-based function. In Fig 9A, many examples of artificially sharp bound-

aries at the locations of street intersections exist. This trend can also be seen when we compare

Fig 8B and Fig 9B for the size-3 pattern. The problem of the use of counting-based measure on

co-location scoping is due to the following two reasons: the counting-based measure only

accounts for co-location instances falling within a single cell, neglecting instances within its

neighboring cells; and also the counting-based measure does not differentiate the proximity of

locations within neighborhood. On contrary, our approach considers distance-decay propa-

gating characteristic of spatial interaction through the space and hence provides a better solu-

tion for our cases.

Second, Experiments V and VI result in several valid regions not only containing the net-

work paths, but also the areas apart from the network routes. With the planar approach, facili-

ties on a non-contiguous network section may fall within the same neighborhood, resulting in

many discrete road sections for the valid regions of the patterns, as presented in a zoom-in

portion of the valid segments (Fig 10). Experiments I and II which utilize network distance

instead of Euclidean distance only consider contiguous network section for the modeling of

spatial co-locations, and thus they give more reasonable results.

Third, Table 3 presents the resulting statistics. Among Experiments I-IV, all of which adopt

1-D grid, Experiments I and II with a distance-decay measure result in far more contiguous

road paths (i.e., clusters for the co-location pattern) than Experiments III and IV do with a

counting-based measure. This finding can be also observed in the comparison between Experi-

ments I-II with network distance and Experiments V-VI with Euclidean distance. In summary,

the statistics confirm the impression of the above mining result (Figs 8 and 9): that is, our

approach can generate a large number of road paths that are spatially contiguous, avoiding

sudden divergence at the boundaries of cells. These regions can then be utilized by domain

experts for confirmatory analysis to help answer the what and why questions of the applica-

tions of urban management and transport planning.

4.3.3 Statistical test. Next, we computed statistical measure values of the results (Fig 8) to

determine to what extent a co-location instance in a given cell conform to a particular hypoth-

esis. Such statistical significances may be tested in different ways. A natural one is to examine

to what extent a given set of features co-occur in a cell at a probability different to what one

would expect. Since the participation index can measure the probability that the events of dif-

ferent features have co-location relationships [9], we can use the following measure to test the

statistical significance:

ε qð Þ ¼ Minfi2P
PI’ ðqÞ � EðfiÞ

sðfiÞ
ð4Þ
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Fig 9. Distributions of co-location interestingness values based on the counting-based measure PI: (a)

Experiment III, (b) Experiment IV, (c) Experiments V, (d) Experiments VI.

https://doi.org/10.1371/journal.pone.0181959.g009
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Fig 10. The illustration of valid paths (dark segments) or regions (yellow polygons) in a small portion of the Shenzhen city: (a) Experiment I, (b)

Experiment II, (c) Experiments III, (d) Experiment IV, (e) Experiment V, (f) Experiments VI.

https://doi.org/10.1371/journal.pone.0181959.g010
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where q is the cell under investigation, P = {f1, f2,. . ., fk} is the set of features of interest, PI’(q) is

the participation index value at cell q containing events of all the features {f1, f2,. . ., fk}, E(fi) is

the average participation index value at cells that contain events of feature fi, and σ(fi) is the

standard deviation of the participation index values at cells that contain events of feature fi. In

this case, E(fi) serves as a null hypothesis with respect to which we can measure PI’(q). The

measure ε(q) is standardized to give the statistical significance in terms of σ(fi). According to

the normal distribution, ε(q)>2 corresponds to the confidence interval of 95%. If the ε(q) is

larger than 2, the assumption of independent distributions in the cell under investigation is

rejected and a significant location has been found. There are other measures that may be used

in this statistical test, such as statistical measure of the results versus complete spatial random-

ness. But, their running time increases fast with the increase of the number of instances and

sizes of patterns, because they usually require a large number of times of the Monte Carlo sim-

ulations (at least 1000). Therefore, previous approaches in spatial co-location mining tend to

use the measure of statistical diagnostics [47].

By adopting the proposed statistical measure, we obtained the significant segments with

respect to the patterns of interest, as presented in Fig 11. In these cells where ε(q)>2, the fea-

tures of interest co-occur with a probability significantly larger than one would expect relative

to the null hypothesis. The significant cells of both the size-2 pattern and the size-3 pattern are

located in nearly the same areas, i.e., peripheral areas of the study region.

4.3.4 Effect of neighborhood distance scale. We also examined the impact of neighbor-

hood distance scale on the significance assessment and co-location region detection (Figs 12

and 13). As the neighborhood distance threshold increases (i.e., 300 m, 600 m, and 1200 m),

the experiments result in larger significant regions for both the size-2 pattern and the size-3

pattern. It makes sense, since the significant regions detected with larger neighborhoods often

indicate the existence of more extensive spatial interactions along the network. Furthermore,

the results imply that the choice of neighborhood distance depends on the scale of analysis;

that is, a small neighborhood distance will identify local significant regions for the pattern of

interest, while a larger distance results in broader areas.

4.3.5 Evaluation. In order to compare the effects of network distance and Euclidean dis-

tance on the co-location mining, we further generated two sets of random points along the net-

works within the highly urbanized area (Fig 14A) and the suburban area (Fig 14B). For each

area, there are two types of simulated points which are independent and distributed uniformly

over the network, and thus the size-2 pattern consisting of these two types is expected to be

non-prevalent. In this respect, the lower the prevalence measure value obtained, the more

accurate the method is. Table 4 presents the result for the urbanized area with high density net-

work and the suburban area with low density network. It can be observed that the prevalence

measure values based on network distance are always lower than those based on Euclidean dis-

tance. Therefore, the proposed method is more accurate in network space than traditional

methods. Furthermore, as shown in Table 4, the difference between the prevalence measure

values of network distance and Euclidean distance in the suburban area is larger than that in

the urbanized area. It means that the effectiveness of network distance on co-location mining

is more significant in the suburban area than in the urbanized area. This is because the

Table 3. The number of valid cells and valid clusters whose PI’(q) >0 or PI(q) >0 for the six experiments.

Statistics Experiments

I (PIw >0) II (PIw >0) III (PI >0) IV (PI >0) V (PI >0) VI (PI >0)

The number of valid cells 9149 5438 42 20 81 46

The number of valid clusters 148 117 36 18 38 28

https://doi.org/10.1371/journal.pone.0181959.t003
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Fig 11. The significant segments (dark segments) for the two co-location patterns at the 0.05 significance level: (a) {Internet Café, Police Post and Police

Service} (Experiment I), (b) {Internet Café, Leisure Center, Police Post and Police Service} (Experiment II). Both the statistical tests are conducted with a

300-m neighborhood.

https://doi.org/10.1371/journal.pone.0181959.g011
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Fig 12. The significant segments (dark segments) for the two co-location patterns with a 600-m neighborhood: (a) {Internet Café, Police Post and Police

Service}, (b) {Internet Café, Leisure Center, Police Post and Police Service}.

https://doi.org/10.1371/journal.pone.0181959.g012
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network distance approximates a straight line distance (Euclidean distance) when the network

density is increased.

Fig 13. The significant segments (dark segments) for the two co-location patterns with a 1200-m neighborhood: (a) {Internet Café, Police Post

and Police Service}, (b) {Internet Café, Leisure Center, Police Post and Police Service}.

https://doi.org/10.1371/journal.pone.0181959.g013
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Fig 14. Random points along the network within (a) the highly urbanized area and (b) the suburban area.

https://doi.org/10.1371/journal.pone.0181959.g014
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Finally, we compared the efficiencies of the proposed algorithm and the traditional algo-

rithm with different neighborhood distance thresholds (i.e., 300 m, 600 m and 1200 m). Both

of the algorithms can be divided into two procedures: neighbor pairs searching and pattern

mining. As discussed in Section 3.4, the proposed algorithm spends more time in searching

neighbor pairs than the traditional algorithm does. In addition, compared to network distance,

Euclidean distance would result in more co-location instances, and thus the traditional algo-

rithm would spend more time in pattern mining process. Table 5 presents the result of perfor-

mance of both algorithms. It can be observed that, with 300-m neighborhood distance

threshold, the overall computational time of the proposed algorithm is more than that of the

traditional algorithm. But our algorithm performs better with the increase of threshold.

5. Conclusions and outlook

Spatial co-location pattern mining approach has been widely used for discovering spatial

knowledge from spatial data sets, and regional co-location scoping has been proven to be bet-

ter for identifying interesting regions in which co-location patterns concerned are significant.

These two approaches, together, can be used to model and analyze spatial data sets at different

levels of granularity, which are global-grained one and regional-grained one. Yet, most of the

previous research [4, 10] ideally abstract the study region as a homogeneous Euclidean space,

computing spatial proximity by using Euclidean distances. In urban environment, however,

the movements are usually restricted to the layout of street network and the patterns concern-

ing spatial interactions largely depend on the computation of network distance instead of

Euclidean distance. Given the importance of co-location scoping in network space, this paper

proposes a novel method for identifying the valid regions of patterns involving urban facility

POIs (Points of Interest), which can be also used in the spatial data mining for other network

phenomena, such as traffic accidents and street crimes.

Unlike the previous approaches using square cells [4], our approach proposes to partition

the study region into 1-D cells, which possess specific network characteristics. The tessellated

data structure facilitates the calculating of network distance and the interestingness assessment

of locations on a network. On the other hand, this paper quantifies the “Distance Decay Effect”

of spatial interaction, which exists extensively within many spatial objects and spatial relations

Table 4. Comparison of the effectiveness of planar co-location mining and network co-location mining within the highly urbanized area (Fig 14A)

and the suburban area (Fig 14B), by generating random points along the network.

Region Planar co-location mining Network co-location mining

Number of co-location

instances

Prevalence measure

value

Number of co-location

instances

Prevalence measure

value

The highly urbanized

area

954 0.814000 507 0.614000

The suburban area 457 0.746212 246 0.518939

https://doi.org/10.1371/journal.pone.0181959.t004

Table 5. Comparison of the computational time of planar co-location mining and network co-location mining with different neighborhood distance

thresholds (i.e., 300 m, 600 m and 1200 m).

Neighborhood distance

threshold (m)

Planar co-location mining Network co-location mining

Neighbor pairs

searching (s)

Pattern

mining (s)

Overall computational

time (s)

Neighbor pairs

searching (s)

Pattern

mining (s)

Overall computational

time (s)

300 0.157 0.857 1.014 1.454 0.799 2.253

600 0.173 23.862 24.035 9.022 3.453 12.475

1200 0.212 274.339 274.551 113.191 10.605 123.796

https://doi.org/10.1371/journal.pone.0181959.t005
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in the real world. With introducing the distance-decay function, a new measure PI’(q) is

defined in the approach to give the interestingness of locations/cells with respect to the pattern

under investigation. It differs from the traditional counting-based measure by producing

smooth density surface and identifying valid regions with a spatially contiguous characteristic.

Experimental results demonstrate that in comparison with traditional techniques our method

is effective in dealing with network-constrained pattern scoping problems, which involve the

propagation and decay of the strength of spatial interactions.

However, there are several aspects in which the proposed framework can be further

extended. First, in addition to the street network, there are many other types of spatial net-

works in the real world, such as power lines and pipelines, the flows on which largely depend

on the direction and connectivity conditions. Our approach however only considers the physi-

cal distance constraint, and further development can construct a directional graph with turn

prohibition for the refining of neighborhood. Furthermore, it should be noted that the physical

distance concept does not apply to the cases in completely non-spatial networks (e.g. social

network or dependency chains). To solve this limitation, we can calibrate the model by assign-

ing different weights to different network links according to the current context of the user in

social network (e.g. current social relations and personal preferences). In this way, a ‘virtual’

distance concept instead of ‘physical’ distance concept can be developed in the framework for

non-spatial networks.

Second, the proposed approach does not consider the constraint of facility difference. The

service area and competitive capability largely depend on the attributes of facility, such as mall

size and power. Thus, the further development of the model should add a weight coefficient in

the proposed measure to differentiate the strength of spatial attractiveness. Finally, if visualiza-

tion is required, we can utilize combinations of primary colors (i.e., Red, Green, and Blue) to

create single picture elements, or cells. For example, by assigning two features suitable color

values of Red and Green, the composite IC network can be highlighted in Yellow that is the

composite color of the Red and the Green in the real world. In this way, the co-location statis-

tics can be represented by visual elements, instead of text files.
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