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Abstract

Medical image collections contain a wealth of information which can assist radiologists and

medical experts in diagnosis and disease detection for making well-informed decisions.

However, this objective can only be realized if efficient access is provided to semantically

relevant cases from the ever-growing medical image repositories. In this paper, we present

an efficient method for representing medical images by incorporating visual saliency and

deep features obtained from a fine-tuned convolutional neural network (CNN) pre-trained on

natural images. Saliency detector is employed to automatically identify regions of interest

like tumors, fractures, and calcified spots in images prior to feature extraction. Neuronal acti-

vation features termed as neural codes from different CNN layers are comprehensively

studied to identify most appropriate features for representing radiographs. This study re-

vealed that neural codes from the last fully connected layer of the fine-tuned CNN are found

to be the most suitable for representing medical images. The neural codes extracted from

the entire image and salient part of the image are fused to obtain the saliency-injected neural

codes (SiNC) descriptor which is used for indexing and retrieval. Finally, locality sensitive

hashing techniques are applied on the SiNC descriptor to acquire short binary codes for

allowing efficient retrieval in large scale image collections. Comprehensive experimental

evaluations on the radiology images dataset reveal that the proposed framework achieves

high retrieval accuracy and efficiency for scalable image retrieval applications and com-

pares favorably with existing approaches.

1. Introduction

Rapid technological advances in medical imaging devices facilitate generation, transmission,

consumption, and storage of medical images in hospitals and clinics [1]. The growing depen-

dency on recent medical diagnostic methods like radiology, histopathology, and computed

tomography causes massive increase in the volume of digital images stored and processed on a

regular basis. These data-stores containing images of different modalities like X-Ray, CT, MRI,
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ultrasound, and PET have become essential sources of anatomical and functional information

which can assist in diagnosis, education, and research [2]. They serve as a vital resource for

providing decision support to radiologists and medical experts (ME) through retrieval of rele-

vant medical case records and images from huge medical multimedia collections [3]. These

databases grow in volume and diversity with the passage of time, and extraction of relevant

information becomes increasingly difficult [4]. Furthermore, the exponential growth in these

databases renders manual annotation infeasible. Therefore, content-based image retrieval

(CBIR) methods can effectively be used for this purpose.

It is common for MEs to render diagnosis based on experience and intuition [5]. Current

picture archival and communication systems (PACS) allow operators in hospitals to store,

retrieve, and transmit medical images. However, these systems are based on text-based

retrieval techniques which are plagued with many weaknesses [6]. For instance, the inability of

text-based approaches to effectively represent images make it difficult to locate relevant images

from diverse image collections, thereby compelling physicians to manually browse for their

desired contents which is a tiresome practice. These limitations in the text-based PACS sys-

tems have led to the development of content-based retrieval methods, where the contents of

images are processed for organizing the database. In these methods, access to relevant medical

images is carried out at the perceptual level-based on visual features extracted from color,

shape, and texture of images, with appropriate image similarity models. CBIR systems are

striving to represent medical images semantically, in order to allow timely access to accurate

relevant information [7].

At the core of CBIR systems exist an image representation process which attempts to model

images using feature vectors of fixed dimensions [8]. A fundamental problem in CBIR systems

is to represent images in a manner that their visual as well as semantic similarities can be effec-

tively determined. In typical CBIR systems, feature vectors are constructed by extracting low-

level features from color, texture, or shapes to represent images in the database [7]. The pro-

portion of similarities in these feature vectors is used to derive relevance between the query

and target images. Images having high visual similarity may be very different in terms of their

semantics. This problem is referred to as the semantic gap, which reflects the disagreement

between low-level features and high level user semantics [9]. In case of image retrieval, the

extracted features may fail to represent high level concepts in images which could lead to

retrieval of irrelevant images. For instance, a radiologist may wish to look for fractured leg in a

collection of radiographs, but the retrieval system may only retrieve normal leg radiographs

without any fracture, because most of the image contents are visually similar. Consequently,

concepts like machine learning, relevance feedback (RF), adaptive similarity functions, and

extraction of semantic features are used to reduce this gap [10].

Regions of interest (ROI) detection is a natural activity in high level perception, where most

of the attention is dedicated to processing only a small area of the visual field [11]. These ROIs

are areas of images regarded as more vital and meaningful than the rest of the image. The use

of ROIs in image description process can effectively improve the representation process by

careful consideration of these significant areas [12]. In the context of medical images, areas

representing fractured bones or calcified spots are considered more significant than the rest of

the image [13]. Recent saliency detection methods can be applied to automatically detect

regions of interest in medical images, so that more importance may be given to ROIs than the

rest of the image during image description and relevancy computation process. Similarity in

anatomical structures, presence of identical medical peculiarity, and visual similarity are the

key characteristics for determining content relevancy in medical image retrieval systems [14].

It is essential to consider radiologists’ perspective to build an effective image representation by

incorporating visual saliency which the existing systems do not incorporate appropriately.

Saliency-injected neural codes for medical image retrieval
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Such a representation depends on the ability of extracted features to model semantics in medi-

cal images, thereby making effective image representation the key factor for improving

retrieval performance.

Existing content-based medical image retrieval (CBMIR) systems lack the representational

capability for radiology images to facilitate efficient retrieval of semantically relevant images

from large databases consisting of several terabytes data per year [3]. The lack of color infor-

mation in radiographs, structural complexity of the human body due to its deformable nature,

variation in illumination, and the lack of sufficient information regarding significant ROI in

the image description process are some of the reasons for the weaknesses in existing CBMIR

systems. In this paper, we propose an effective method to represent medical images by incor-

porating visual saliency with fine-tuned neural codes to facilitate semantic retrieval of medical

images. Furthermore, we provide an efficient method for retrieval in large scale datasets by

employing locality sensitive hashing to the proposed SiNC descriptor.

The success of deep CNNs in dramatically improving image classification has motivated the

computer vision community to adapt these powerful architectures for other related problems

like object detection, image classification, face recognition, and image retrieval [15]. Recent

studies have revealed that the features emerging in the higher layers of CNNs contain significant

discriminative capabilities for determining image similarities in retrieval applications. Moreover,

the activation features from CNNs pre-trained on large datasets such as ImageNet [16] have

been successfully employed as generic image representation methods [17, 18]. Significant inter-

ests arose after the impressive success of these features in visual recognition, which resulted in

several extensions to the work including [19–21]. Interestingly, these features are not only effec-

tive at determining visual similarity but also perform exceptionally well at computing semantic

consistency in visual contents [22]. Furthermore, efficient and compact representations have

also been derived using hashing methods for accessing relevant images in huge image collections

and perform other relevant tasks like image segmentation more efficiently [23, 24].

Our major contributions in this work are as follows:

1. Saliency detection is employed to automatically identify ROI involving medical peculiarities

like fracture, calcified spots, and tumors in medical images

2. Fine-tuned CNN is used to extract discriminative features (neural codes) from the whole

medical image as well as their salient components

3. Neural codes of the salient patch are injected into neural codes of the whole image to repre-

sent medical images, allowing their accurate retrieval

4. The weighted fusion scheme for injecting neural codes allow users to adjust the influence of

saliency in retrieving images

5. Computation of locality sensitive binary hash codes to enable efficient large scale retrieval

The rest of the paper is organized as: Section 2 presents some of the relevant works regard-

ing the retrieval of radiology images, Section 3 highlights the various aspects of the proposed

framework. Experiments and their results are discussed in Section 4. Section 5 concludes the

paper with a review on the strengths and weaknesses of our framework along with further

research directions.

2. Related work

Advancement in the field of CBMIR has benefited medical experts in clinical decision making,

medical education, and research. Effective utilization of the visual content resources associated
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with previous medical cases can provide useful insights and decision support to radiologists

and other MEs. To ensure timely availability of such information, researchers are constantly

trying to develop efficient medical image retrieval systems. They have developed frameworks

to represent medical images using low-level features, bag-of-visual-words (BoVW), and sparse

coding-based methods. Seetharaman and Sathiamoorthy [25] proposed a unified learning

framework to index and retrieve medical images. Three different low-level features from color

and texture including color auto-correlogram [26], edge orientation autocorrelogram [27],

and micro-texture information were extracted to represent both color and grayscale medical

images. Although color information is missing in case of grayscale images, their work showed

that both kinds of images were retrieved with high accuracy. The color auto-correlogram did

not capture any color information from such images but captured features among intensity

values. For grayscale medical images, besides color and texture, shape features have also been

frequently used including Fourier descriptors [28], invariant moments [29], co-occurrence

matrices [30], Gabor features [31], and wavelets [32] for representation. The inherent weak-

ness of low-level features in representing high-level concepts (i.e. semantics) limit their ability

to accurately retrieve medical images for practical applications [10].

In addition to features extracted directly from color, texture, or shapes, BoVW approaches

have been widely used in CBMIR systems. These techniques allow essential features of images

to be learned in an unsupervised manner. Local patches from salient keypoints are collected

from the pool of training images and clustered to form a codebook of visual words. Each

image is then represented as a collection of visual words, usually without any spatial informa-

tion of these words. The BoVW framework has been extensively studied and improved over

the course of years in the domain of medical images. Iakovidis et al. [33] presented a pattern

similarity scheme for retrieving medical images and termed their approach as PANDA (Pat-

terns for Next generation DAtabase systems). Their framework was based on the BoVW

approach, where low-level features were extracted from small image patches and clustered to

form representative patterns or code words. Furthermore, several simple patterns correspond-

ing to a particular anatomical specimen were grouped to form complex patterns. This group-

ing to construct complex representative patterns effectively adds semantic meaning to these

patterns. The number of clusters were determined automatically using expectation maximiza-

tion approach. The presence of these semantic patterns enabled them to effectively compute

similarity between image pairs. In another extension to the BoVW approach, Wang et al.

[34] developed a weighted scheme for visual words obtained from dense sampling of radi-

ology images. Weights in their scheme indicate significance of visual words in the image

representation. These weights are learned by the adaboost algorithm. Avni et al. [35] intro-

duced a patch-based visual words framework. They applied the BoVW approach to densely

sampled rectangular patches to allow organ level and pathological level categorization and

retrieval. Their system was able to discriminate between healthy and pathological cases in

chest radiographs. In another similar approach, Yang et al [36] used Scale Invariant Feature

Transform (SIFT) [37] based interest points to build a BoVW-based representation for

medical images. The use of salient patches in representing images allowed their framework

to retrieve CT images with similar lesions. The success of BoVW in these works is attrib-

uted to the inclusion of saliency information determined by the salient keypoint detection

schemes such as SIFT in the overall representation process.

Feature learning-based representation schemes inspired by the BoVW framework have pre-

vailed in the recent past. A dictionary learning-based medical image retrieval method was pre-

sented by Srinivas et al. [38]. They proposed to group medical images by sparse representation

through existing learned dictionaries using k-singular valued decomposition algorithm. Fur-

thermore, they used orthogonal matching pursuit (OMP) algorithm to match images with
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dictionaries and associated image clusters. The query image was then compared with images

in that cluster to efficiently retrieve relevant images. In a similar approach, Yonggag et al. [39]

presented a three stage bag-based framework for medical image retrieval. In the first stage,

each image was associated with a relevance degree to a bag (cluster). The stage two, incorpo-

rated the image-bag relevance and feature significance to perform pair-wise image similarity.

In the final stage, both image-bag similarity and pair-wise image similarities were adaptively

combined to retrieve the final results.

Although saliency information is somehow incorporated into the BoVW frameworks,

explicit inclusion of visual saliency will improve representational capability. Furthermore, the

scalability issues in CBMIR systems when dealing with ever-growing medical multimedia data-

bases has been dealt with cluster-based approaches on visual words frameworks and have

shown promising results. Feature learning, inclusion of saliency information in representation,

and deriving a compact representation are important factors that will allow efficient and accu-

rate retrieval of medical images.

3. Materials and methods

Incorporating semantic information like visual saliency into image representation frameworks

have witnessed improvements in retrieval performance [40, 41]. A closer analysis of radio-

graphs reveal that there exist significant amounts of salient content which can be helpful in

improving the retrieval performance if used appropriately. The proposed framework, shown

in Fig 1, takes advantage of this semantic information in deriving such a representation that

will enable retrieval of radiographs with similarities in the salient contents. It consists of three

main components including image preprocessing which involves image rescaling and extrac-

tion of the salient image region, features extraction using fine-tuned CNNs, and features

fusion. The derived representations are then used to compute image similarities for extracting

relevant images to satisfy information needs of radiologists.

3.1 Medical image representation

In a CBMIR system, it is imperative to represent images in such a form that visual similarities

and mutual semantic relevance can be proficiently determined. Images are usually represented

as features corresponding to their visual contents like colors, textures, shapes, and their spatial

relationships [42]. CBIR systems rely heavily on image representation schemes. Therefore,

most of the effort was usually devoted to feature extraction from images. Features were hand

engineered for every CBIR system. However, due to the recent success of deep CNNs in image

classification and visual recognition tasks, researchers’ attention has been diverted from fea-

ture engineering to automatic feature extraction. This practice allows them to devote their

energies in optimizing the overall image retrieval process for particular applications.

Currently, neural activation features are regarded as highly discriminative and robust [43,

44]. These features are extracted by training a deep CNN on a huge image dataset. Millions of

parameters (neuron weights and biases) are learned at various layers during the training

phase. Each neuron models an input pattern and activates when that particular type of input

pattern is encountered. For an image, there exist sets of active neurons in each layer. These

activations are regarded as effective representations of the input image which facilitates image

recognition and retrieval. Representing medical images using CNNs posed several challenges

such as:

1. Difficulty in determining scope and degree of fine-tuning the deep network pre-trained on

color images for feature extraction from grayscale medical images

Saliency-injected neural codes for medical image retrieval
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2. It is essential but challenging to automatically model neural activation features to facilitate

image relevancy computation according to the perspectives of radiologists.

3. Assessment of features at different layers for image representation

4. Identification and utilization of ROIs according to the radiologists perspectives for medical

image modeling

In order to fulfill all these requirements, we propose saliency-injected neural codes (SiNC)

framework for representing medical images. Various phases of the whole process are described

in the subsequent sections.

3.2 Image preprocessing

The deep CNN we used was trained on color images of fixed size (224 x 224 x 3), thereby

requiring inputs to be of the same type and size. In most cases, the input color images are

either cropped or rescaled to adjust the size of input for these networks. However, automatic

scaling and cropping often removes essential parts of the image or distorts the input which

affect the feature extraction process adversely. To extract features from grayscale medical

images, they are preprocessed before feed-forwarding through the CNNs. The preprocessing

involves, adjusting the input size without distorting the content, and transforming 2D medical

Fig 1. The proposed saliency-injected neural code features for medical image representation.

https://doi.org/10.1371/journal.pone.0181707.g001
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images to 3D images for the deep network. The variety in sizes of medical images can be seen

in the samples shown in Fig 2. Resizing all images in the same way may affect feature extrac-

tion performance. Therefore, an adaptive resizing method, assisted by zero-padding is used to

make images compatible for the CNN. For an image I having width w, and height h, the rescal-

ing factor Sf is obtained using the following transformations:

Sf ¼

224

h
; h > w

224

w
; w � h

8
>><

>>:

9
>>=

>>;

ð1Þ

wR ¼ w� Sf ð2Þ

hR ¼ h� Sf ð3Þ

Fig 2. Sample medical images.

https://doi.org/10.1371/journal.pone.0181707.g002
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where wR is the rescaled width and hR is the rescaled height of the image. The rescaled width

and height may not be of equal size if the original width and height were not equal. Therefore,

the image is padded with zeroes to make it a square image as required by the CNN. If h> w,

then the width of the image is zero-padded such that the image pixels lie in the center of the

transformed image. Similarly, the height of the image will be zero-padded, if w� h. Since,

this transformed image is a 2D image, it is transformed to a 3-plane image to fit the input

needs of the CNN during fine-tuning. Finally, the mean image values computed over the train-

ing images are subtracted from each image in order to center the data around zero. The pur-

pose of this operation is to remove the average brightness from the image because we are more

interested in the content of images and not so in their illumination conditions. This prepro-

cessing step has been shown to improve classification performance in the ImageNet dataset

[45].

3.3 Deep convolutional neural network

Convolutional Neural Networks (CNN) are powerful deep learning architectures applied effec-

tively to solve the problems related to computer vision [44]. Their recent success in large scale

image classification (ImageNet) [45], segmentation [46, 47], and face recognition [48] have

motivated researchers to utilize these hierarchical networks to learn efficiently about their

data. A typical CNN consist of three different neural layers, i.e. convolutional, pooling, and

fully connected layers. All of these layers play different roles in the overall modeling process.

Network training is accomplished in two stages. Firstly, in the forward stage, the input image

is forward propagated through the network with existing parameters (i.e. weights and biases)

of neurons at each layer. Then the loss cost is computed using the predicted output and ground

truth labels. Secondly, the backward stage calculates gradients of each parameter using chain

rules in an attempt to reduce the loss cost. In this way, all the parameters in each layer are

updated for the next forward stage. The training stops after sufficient iterations of forward and

backward stages or when the loss cost has been sufficiently reduced.

The success of CNN may be attributed to their ability in modeling higher level abstractions

in the data. In case of images, the neurons in its various layers become sensitive to particular

structures in the visual receptive field. Neurons in the initial layers act like edge detectors and

simply react to the various types of edges encountered in images. The inherent hierarchy in

deep networks allow neurons in the deeper layers to learn more complex structures. Neuronal

activations at the higher layers of these networks contain very useful features which eventually

result in higher performance of CNNs in recognition tasks. Razavian et al. [49] and others

[50–52] showed that CNNs trained on very large image datasets like ImageNet can act as

generic descriptor extractors having powerful discriminative abilities. They exhibited the abil-

ity of CNN features in a variety of visual recognition tasks like object classification, scene rec-

ognition, and image retrieval etc. achieving very encouraging results.

The successful use of pre-trained CNN features motivated us to use neuronal activations

from higher layers of the CNN model trained by Simonyan and Zisserman [53] of the Visual

Geometry Group (VGG) of the University of Oxford for representing medical images in our

retrieval scheme. The most distinguishing characteristics of this network were its depth and

homogeneous convolution and pooling operations across the entire network. The VGG net-

work has 16 layers consisting of 13 convolutional layers and 3 fully connected layers. Each con-

volution layer consisted of a stack of convolutional layers followed by one pooling layer. The

input to the network are fixed size 224 × 224× 3 RGB images preprocessed as described in the

previous section. The image is then passed through the stack of convolution layers having

small receptive fields of size 3 x 3. In each of these layers, the image is padded to preserve

Saliency-injected neural codes for medical image retrieval
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image resolution after convolution. A fixed stride of 1 pixel is used in all the convolutional lay-

ers. All the 13 layers in the VGG-16 network are arranged in five stacks. In the first two stacks,

there are 2 convolutional layers, and the remaining three stacks had three convolutional layers.

Each of these five stacks is followed by a max pooling layer performed within 2 x 2 windows

with a fixed stride of 2. The stacks of convolutional layers are followed by three fully connected

layers having 4096, 4096, and 1000 neurons, respectively. The final softmax layer outputs pre-

dictions for the 1000 classes in the ImageNet dataset.

Though the VGG-16 network was designed for large scale image classification, like other

deep CNNs it has also been shown to work as a powerful generic feature extractor [54]. The

extended depth and fixed sized convolution and pooling operations allowed for the extraction

of useful hierarchical features for efficient visual analysis and recognition of previously unseen

content. This characteristic of the network motivated several researchers from the community

to utilize these features for a variety of tasks [18, 47, 55, 56].

3.4 Fine-tuning

In a recent study, Tajbakhsh et al. [57] showed that CNNs pre-trained on large collections of

color and grayscale natural images, when fine-tuned on medical images outperform the CNNs

trained from scratch using medical images only. They evaluated both types of CNNs for several

medical imaging applications including Polyp detection, Pulmonary Embolism detection, col-

onoscopy frame classification, and boundary segmentation. They concluded that pre-trained

CNNs fine-tuned in a layer-wise manner provide superior performance than other deep learn-

ing or hand-crafted representations. The superior performance in all the tasks is attributed to

the effective representation of the visual contents obtained through fine-tuning of the model.

In a similar study, Gao et al. [58] performed lung disease classification with high accuracy by

fine-tuning all layers of a pre-trained CNN. Inspired by their findings, we decided to fine-tune

the VGG network to derive an effective representation for medical images. The pre-trained

VGG network is designed to recognize 1000 categories of natural objects in the ImageNet data-

set. We fine-tuned this network to extract visual features from radiology images. Fine-tuning

works on the principles of transfer learning [59], where the classification function of a CNN

trained for a broad domain classification problem (e.g. ImageNet classification) is replaced

with another classification function (e.g. medical image classification) and optimized to mini-

mize the error in that specific domain. In this way, the features and parameters of the previous

network are transferred to the new network with some modification which yield performance

improvements. It helps the model transform its focus from a broad, generic domain to a more

specific domain.

We replaced the last softmax layer which computes probabilities for the 1000 classes with a

new layer which outputs probabilities for the 193 classes in the IRMA 2009 dataset [3]. This

new softmax classifier is trained using the backpropagation algorithm on the radiology images.

During the fine-tuning process, learning rate for the new softmax layer was kept unchanged as

the original rate of 0.01 because it has been randomly initialized. Conversely, the learning rates

for rest of the layers were set to 0.001 so that the previous knowledge (parameters) of the net-

work is somewhat preserved and optimized at a relatively gradual pace. The reason behind this

strategy is the fact that the VGG network is regarded as an excellent choice for off-the-shelf

feature extraction and offers superior performance in a wide range of applications. Further-

more, initial layers of the CNN learn generic low-level image features, which are directly appli-

cable to many computer vision-based applications. On the other hand, the last layers of the

network learn application specific high-level features. Therefore, fine-tuning of these layers

is usually sufficient. However, since there is a very large difference between the natural and
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medical images, we opted to fine-tune the entire network. Preserving the parameters while

optimizing the network for the medical images will serve the purpose of transfer learning at

best. The network was optimized using stochastic gradient descent (SGD) in 34K iterations

using NVidia DIGITS system [60]. A batch size of 20 was used and the fine-tuning process was

executed for 10 epochs.

After the fine tuning, neural activation features were extracted from the last fully connected

layer of the network for representing medical images. The basic concept of image representa-

tion is to compute a set of feature values f = {f1,f2,. . .,fn} from image I, such that feature similar-

ity can be translated into image similarity. Neural codes (NI
C) were obtained from the fine-

tuned VGG network:

NI
C ¼ ExtractFeaturesðI;VGG FT; LayerÞ ¼ ff1; f2; . . . ; fng ð4Þ

where NI
C represent the neural codes for image I, ExtractFeatures() is a function which extracts

features from the specified layer (i.e. Layer = FC8) of the fine-tuned model (i.e. VGG_FT) by

feed-forwarding input image I, and fi refers to the activation value of the ith neuron in the spec-

ified layer.

3.5 Salient content in medical images

Medical image retrieval aims at identifying and searching images with similarities according to

the interests of radiologists. Such similarity refers to the presence of particular peculiarities in

images such as tumors, calcified spots, and fractures, etc. These patches of images are often the

regions of interest to the medical expert who intends to search and analyze previous relevant

medical cases prior to making clinical decisions. To identify these regions of interest in medi-

cal images, we propose to employ saliency detection methods for localizing such peculiarities

in images prior to feature extraction. This additional information induced into the feature

extraction process will result in more accurate identification of relevant contents in CBMIR

applications. Furthermore, the saliency models in general are able to identify significant

regions in medical images which will help in retrieval performance improvement even in the

absence of such peculiarities. Results of some famous saliency detection schemes including

graph-based visual saliency (GBVS) [61], signature saliency [62], and random center surround

saliency (RCS) [63] on a variety of medical images is given in Fig 3. It can be seen from the

results that the saliency detection methods are able to identify regions of interest. Specifically,

GBVS method has successfully highlighted the salient image patches in most of the medical

images which makes it appropriate for saliency detection in these images. It is a bottom-up

saliency model which is based on graph computations. For an image I, the objective is to high-

light significant portions of the image based on a criterion such as human fixation data density.

For a given feature map M, an activation map A is computed such that pixel location (i, j) in A
will contain high activation values if theM(i,j) is unusual from its surroundings. For comput-

ing the local dissimilarity between two distinct locations M(i,j) andM(p, q) in the feature map,

a logarithmic dissimilarity metric d was employed such that:

dðði; jÞkðp; qÞÞ ¼ log
Mði; jÞ
Mðp; qÞ

�
�
�
�

�
�
�
� ð5Þ

Every node (i.e. pixel) in the feature mapM is connected with the remaining n-1 nodes in

M to form a fully connected directed graph GA. The node (i, j) has a directed edge towards (p,

q) having weights

w1ðði; jÞ; ðp; qÞÞ ¼ dðði; jÞkðp; qÞÞ:Fði � p; j � qÞ ð6Þ
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where

Fða; bÞ ¼ exp �
a2 þ b2

2s2

� �

ð7Þ

The parameter σ in (7) was set to one tenth or one fifth of the width ofM. It is evident that

the weight w of the directed edge is proportional to the dissimilarity and closeness inM. A

Markov chain define on GA, whose equilibrium distribution helps accumulate mass at nodes

having high dissimilarity with neighboring nodes. This yields an activation measure derived

from pair-wise contrast. Like the leading saliency computation schemes which highlight very

limited areas of images, GBVS method concentrates mass on activation maps in order to make

the saliency map more informative. The final saliency map S computed by treating GA as a

Markov chain followed by computation of the equilibrium distribution over the nodes of the

graph. Since GBVS is a mass concentration algorithm, mass will flow towards the nodes with

high activations. Saliency detection methods, especially GBVS performed substantially well in

identifying regions of interest automatically. The identified salient patches were extracted

from the image using (8), rescaled according to the procedure explained in Section 3.2. After-

wards the salient patch is feed forwarded through the network to acquire neural codes for the

salient part IS.

ISðx; yÞ ¼
Iðx; yÞ; Sðx; yÞ � t

0; Otherwise

( )

ð8Þ

t ¼
1

MN

XM

x¼1

XN

y¼1

Sðx; yÞ ð9Þ

Fig 3. Saliency detection in medical images.

https://doi.org/10.1371/journal.pone.0181707.g003
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where S(x,y) is the value in saliency map at location (x,y), τ is the threshold value computed as

the mean value of the saliency map S,M and N are the width and height of the S, respectively.

It allows dynamic selection of the threshold based on the saliency map. IS(x,y) contains the

pixel value at position (x,y) in I which belongs to the salient part of the image determined by τ.

3.6 Saliency-injected neural codes

Final features are computed by fusing neural codes of the entire image NI
C and salient image

patch NS
C. This fusion process acts as a means to inject saliency information into the neural

activation features to build a stronger discriminative representation. The fusion process is per-

formed as:

SiNC ¼ aNI
C þ bNS

C ð10Þ

where α and β are relative weights assigned to the two neural codes such that α + β = 1, and NS
C

are the neural codes for the salient part of the image computed as:

NS
C ¼ ExtractFeaturesðIS;VGG FT; LayerÞ ¼ ff S

1
; f S

2
; . . . ; f Sn g ð11Þ

This weighted scheme provides a degree of freedom to adjust the system parameters to best

fit the current query scenario. For majority of the queries, we used the values of α and β to be

0.4 and 0.6, respectively. It can be adjusted according to the requirements of the query being

processed.

3.7 Short binary codes for large scale image retrieval

Locality sensitive hashing (LSH) methods provide efficient means to retrieve images from

huge image collections by reducing the search space significantly. These methods tend to solve

the nearest neighbor search problems, where the objective is to quickly and accurately locate

visually similar nearest neighbors in a database of images (I1, I2,..IN) to a query image IQ. LSH

methods work on the principle of approximate similarity search where retrieval performance

is sacrificed for allowing fast queries. The basic concept is to project the high dimensional fea-

ture vectors to a low-dimensional hamming (binary) space such that each feature vector is

mapped to a b-bit vector known as the hash key. The value of b determines the number of bits

to be used for representing a feature vector. The hash key can be used to effectively locate near-

est neighbors of the query image in sub-linear time, given that the projection is performed

appropriately. For indexing the images using this scheme, a hash table is constructed by apply-

ing b binary valued hash functions (h1, h2, . . . hb) to all database images. Each of these hash

functions must satisfy the locality sensitivity criteria:

Pr½hðIiÞ ¼ hðIjÞ� ¼ simðIi; IjÞ ð12Þ

Where Pr is the probability that the hash keys for two images Ii and Ij will be similar and sim(Ii,
Ij) 2 [0,1] is the similarity function used for pair-wise image matching. It means that visually

similar images will have high probability of collision in the hash table (i.e. the same hash key

will be assigned to visually similar images). Given the query image IQ, its hash key is computed

using the same b hash functions. The hash key collides with a certain bucket in the hash table,

which points to a small portion of stored samples/images. Only those images are retrieved

without exhaustively searching the entire dataset. This scheme allows retrieval of (1+ε)-near

neighbors in O(n1/(1+ε)) [64].
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Several approaches have been presented in the past to generate hash codes including locality

sensitive hashing (LSH) [65], Kernelized locality sensitive hashing (KLSH) [64], Spectral Hash-

ing (SH) [66] and Iterative Quantization (ITQ) [67], etc.

In our case, we applied KLSH scheme on the SiNC feature vector to obtain a compact repre-

sentation of b bits. The SiNC feature vector was normalized prior to applying the KLSH algo-

rithm using:

SiNCN ¼
SiNC � mn

mx � mn
ð13Þ

wheremx andmn are the minimum and maximum activation values of the SiNC descriptor for

all images in the dataset and SiNCN is the normalized feature vector.

The hash keys are constructed by applying b binary valued functions (h1,h2,. . .,hb) to SiNCN

such that the locality sensitive hashing property is satisfied:

Pr½hðSiNCNi Þ ¼ hðSiNC
N
j Þ� ¼ simðSiNC

N
i ; SiNC

N
j Þ ð14Þ

where simðSiNCNi ; SiNC
N
j Þ is the similarity function for computing image similarity between can-

didate images having values between [0, 1]. It is desired to have collisions in the hash table with

similar examples, so that nearby locations in the hash table will contain visually similar medical

images. In KLSH, Kulis and Grauman kernelized the input data by applying radial basis function

(RBF) kernel on the input vector SiNCN = (x1,x2,. . .,xn) to obtain ϕ(x) such that the input data

can only be accessed through this kernel function KðSiNCNi ; SiNC
N
j Þ ¼ �ðSiNC

N
i Þ

T
�ðSiNCNj Þ. A

subset of ρ samples (SiNC feature vectors) are chosen to define the RBF kernel matrix K over

these sampled data points. The kernel matrix is zero-centered, and a hash table is constructed by

selecting t indices randomly from [1,. . . ρ] to form es. The final values for all the b bits are com-

puted by determining the sign from the hash functions:

hð�ðxÞÞ ¼ signð
X

i
wðiÞkðx; xiÞÞ ð15Þ

where w(i) is the ith value in weight matrix for computing hash keys over the queries and is calcu-

lated asw = K−1/2es, e is a vector of all ones, and es is a vector with ones in the corresponding indi-

ces of Z, which is the set of selected database items for computing kernel matrix K. Consequently,

a compact b-bit binary representation is constructed for each image in the dataset as well as the

query image to accomplish efficient retrieval in large scale datasets, where the relevant images are

located by employing existing nearest neighbor search (NNS) algorithms.

4. Experiments and results

This section presents the evaluation dataset, experimental setup, implications of various

parameters on retrieval performance, and discussions on various experiments.

4.1 Image database

To assess performance of the proposed representation and retrieval framework, we used a

database provided by IRMA group from the University Hospital of Aachen, Germany [3]. It

contains diverse sets of radiology images of hand, skull, chest, knee, shoulder, neck, breast,

foot, etc. It consists of 15363 images in total, in which 13630 are provided for training and the

remaining 1733 are used for testing purposes. All the images were annotated and categorized

into 193 distinct groups, where each group contain a number of semantically relevant images.

The test images were used as queries to extract relevant images from the training set. Maxi-

mum image dimension in this dataset is 512 and minimum is 120.
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4.2 Experimental setup

The proposed system was implemented in MATLAB 2015a for Windows 7 Professional run-

ning on a PC equipped with 8 GB RAM, 3.4 GHz Intel Core i5 processor, and NVidia GeForce

GTX 650 GPU. Network fine-tuning was performed on an Intel Core i7 processor equipped

with 16 GB memory and NVidia GeForce GTX TITAN X with 12 GB of onboard memory,

running NVidia DIGITS 3.0 [60] system in Ubuntu 15.10. For fine-tuning the network, 13630

images were randomly cropped into 224 x 224 sub images to generate 68000 training images.

The remaining 1733 images were used as queries for retrieving relevant images. Different sets

of experiments were designed to assess the overall performance of the proposed scheme.

4.3 Evaluation metrics

Performance of image retrieval systems are usually measured in terms of precision and recall.

Precision shows the capability of the technique to retrieve relevant images. Recall exhibits the

portion of relevant images retrieved from all the relevant images in the dataset. An ideal system

will achieve high precision values for all recall settings. However, it is usual observation that

precision drops at high recalls. The objective is to maintain a high precision value for high

recall rates. These values are measured as:

P ¼
NR

NR þ NI
ð16Þ

R ¼
NR

TR
ð17Þ

where NR is the number of relevant images retrieved, NI is the number of irrelevant images

retrieved, and TR is the total number of relevant images in the database. Based on these two

metrics, a precision-recall curve is usually plotted to show the retrieval performance of an algo-

rithm for various recall settings. Furthermore, a unified performance metric derived by com-

puting area under the precision-recall curve (AUC) is also computed for the proposed method

and compared with several existing methods.

4.4 Evaluating feature layers

A CNN typically learns different layers of features from images during the training process.

Neuronal activations from the fully connected layers usually provide effective representations

of the input which are frequently used to perform visual recognition tasks [68]. In this experi-

ment, we evaluated performance of features obtained from the last three fully connected layers

of the fine-tuned model. Several experiments were performed to assess the suitability of these

layers for representing medical images. Although, features from all the fully connected layers

possessed sufficient discriminatory capabilities to perform image retrieval, it is necessary to

determine the best set of features. After evaluating features extracted from different layers for

various queries, it was found that the last fully connected layer FC8 performed slightly better

than the previous two layers due to the fact that higher layers abstracts higher level semantic

concepts than the lower layers. Furthermore, this layer is much more compact (193 neurons)

than the previous two layers having 4096 neurons and it also contains the most comprehensive

features for performing the desired retrieval task. Precision values for various recall settings

are reported in Fig 4. All the layers maintain a high precision (>0.9) for recall settings below

0.2. The overall precision drops gracefully for all the layers as the number of retrieved images

is increased. A slight improvement can be seen in the top 10% for FC8 over other layers.
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Beyond recall 0.3 up to 0.7, a gradual degradation is observed in retrieval performance for all

the layers, with FC8 performing slightly better. However, for recall beyond 0.65, FC8 maintains

a significantly better precision as compared to FC7 and FC6. At recall settings beyond 0.8, the

precision of all the layers drop significantly especially FC6 suffers the highest performance

loss. In terms of area under the precision recall curve (AUC), FC8 achieves 0.73 AUC com-

pared to 0.72 and 0.69 for FC7 and FC6 respectively. High performance and short feature

length of the FC8 motivated us to use this feature for the proposed CBMIR system.

4.5 Retrieval performance of SiNC

Neural codes from the pre-trained CNN performed substantially well for grayscale medical

images and were able to successfully retrieve relevant images in most of the queries. However,

their retrieval performance in images with peculiarities was not as good as their performance

in retrieving normal images. In this context, we experimented with inclusion of saliency infor-

mation and fine-tuning to proliferate discriminative capability of the SiNC descriptor in order

to improve its overall retrieval performance as reported in Fig 5. With the inclusion of saliency

information, retrieval performance for all the layers has been improved as is evident from the

Fig 4. Retrieval performance of the proposed CBMIR scheme with neural codes extracted from various fully connected layers.

https://doi.org/10.1371/journal.pone.0181707.g004
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precision recall curve. Similar to the results in Fig 4, FC8-SiNC maintains slight edge over

other layers while retrieving with recall up to 0.3. Precision scores drop in the same way for all

the layers up till recall 0.7. Beyond this point, FC8-SiNC maintains better scores for all subse-

quent recall settings. FC8-SiNC achieves 0.75 AUC which is better than FC6-SiNC and

FC7-SiNC by 3.6% and 1.9%, respectively.

The effectiveness of SiNC features for medical image retrieval can also be seen from the

visual retrieval results for different queries. Fig 6 show retrieval results for two different query

images enclosed within red boxes. A total of 25 images were retrieved for each query image

taken from the set of query images and relevant images were retrieved from the database. The

scores written on top of each retrieved image represent the similarity score. It can be noticed

that the similarity scores for identical images are very high for visually similar images. An

interesting point to note here is that horizontally flipped images are also retrieved by the sys-

tem which exhibit the invariance capability of the SiNC descriptor. In Fig 7, the query images

contain joint support rods and therefore radiologists would be interested in both visual simi-

larity and salient content uniqueness as the query image. Since the proposed SiNC descriptor

embeds visual saliency features in the representation process, semantically relevant images

Fig 5. Retrieval performance of the proposed CBMIR scheme with SiNC.

https://doi.org/10.1371/journal.pone.0181707.g005
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Fig 6. Retrieval results for medical images without medical peculiarities.

https://doi.org/10.1371/journal.pone.0181707.g006
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Fig 7. Retrieval results of medical images with different peculiarities.

https://doi.org/10.1371/journal.pone.0181707.g007
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were retrieved for both queries at top ranks which exhibit its suitability for retrieval of such

challenging images.

In order to assess the retrieval performance of SiNC for various categories in the IRMA

2009 dataset, precision-recall values are reported for some major categories in Fig 8. It can be

observed that images from majority of the categories were retrieved with more than 95% preci-

sion at recall 0.2. At recall setting 0.3, precision above 90% is achieved for six of these catego-

ries. All of the relevant images belonging to categories 1, 3, 4, 6, and 18 were retrieved with

more than 70% precision for all recall settings. However, the precisions for other categories 16,

23, and 48 dropped significantly beyond recall 0.8. The reason behind this significant decrease

in the retrieval performance for these categories was that some of the images in these categories

had significant illumination variations and occlusions which lead those images be confused

with images from other categories. Therefore, precision values dropped significantly when

those images were retrieved from the dataset.

Table 1 shows the comparison of different image representation schemes for radiographs

obtained from a freshly trained CNN with the same architecture as VGG16, pre-trained VGG

model, fine-tuned model, and SiNC. From the results reported in the table, it can be seen that

SiNC descriptor performs better in comparison with other representations. It performs better

than VGG16 raw features by 9% at 0.1 recall and 32% at recall 1.0. Similarly, it outperforms

fine-tuned VGG features-based representation by almost 3%, and concatenation scheme of

Fig 8. Category-wise retrieval performance using SiNC.

https://doi.org/10.1371/journal.pone.0181707.g008
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fine-tuned VGG features and saliency features by 2% at 0.1 recall. For recall settings 1.0, SiNC

descriptor outperformed fine-tuned VGG16 features by more than 12%. It is interesting to

note here that the fine-tuning process lead to improved retrieval performance despite the fact

that the VGG16 model was pre-trained on a very different set of natural color images.

Images having sufficient visual information about the anatomy like radiographs of chest

(category 1, 2, 3, 25, 52), abdomen (categories 6, 7, 14), skull (categories 4, 10, 12, 18), shoulder

(29, 37, 45, 48, 78), hand and feet (5, 28, 31, 34, 81, 82, 99), knee (24, 26, 30), and neck (9) were

retrieved with high precision for recall ranges 0.1 to 0.7. On the contrary, the proposed method

has slight difficulty with images of fingers, and parts of arm and leg bones at high recall settings

due to the fact that some of the images in these categories could be easily confused with other

visually similar images. Retrieval results for some challenging queries are provided in Fig 9.

Images enclosed within the red rectangles are the query images. In the top row in each query,

are the top-10 retrieved images by the SiNC descriptor. The second row contains top-10

images retrieved by the pre-trained VGG16 network features. It can be seen in all of these que-

ries that SiNC is able to retrieve more relevant images than the VGG16 features. In the first

query, the proposed method retrieved all the images correctly, whereas only three relevant

images are retrieved by the VGG16 features. Similarly, in the rest of the queries, more visually

similar and relevant images are retrieved by SiNC with significantly higher precision than the

other scheme.

4.6 Effect of saliency injection on retrieval performance

Recent advances in visual saliency detection has enabled computer vision systems of simulate

this essential aspect of human visual system in identifying the most significant object in image.

Once these regions are identified, features pertaining to these regions are usually given higher

weights and significance than the rest of the image. Such approaches in image retrieval have

shown promising results [12, 69, 70]. In this study, we chose to incorporate visual saliency for

identifying regions of significant importance to the radiologists. Experiments have revealed

that the chosen saliency detection scheme is capable of identifying fractures, calcified spots,

and tumor regions in images. In this section, we provide a thorough analysis of inclusion of

visual saliency into the image description process, and study the effects of saliency injection on

retrieval performance.

In the proposed framework, the role of salient features in image representation is controlled

by two parameters α and β. By adjusting their values, we can control the inclusion of saliency

into the image representation. During these experiments, we evaluated different values for

these variables and studied their effects on retrieval performance and determined an optimal

set of values for these essential parameters. Fig 9 shows the effects of saliency injection on

retrieval performance for top 10% retrieved images (precision at 0.1 recall). It can be seen that

modifying the values of α and β enables us to control the degree of saliency features to be

Table 1. Average precision scores at various recall settings for different representation schemes.

Recall

Representation Method 0.1 0.25 0.5 0.75 1.0

Newly Trained VGG16 0.81 0.72 0.60 0.46 0.27

VGG16_FC8 0.87 0.83 0.69 0.51 0.36

VGG16_FT_FC8 0.93 0.90 0.76 0.65 0.47

VGG16_FT_FC8+Saliency 0.94 0.90 0.77 0.66 0.49

SiNC 0.96 0.92 0.77 0.68 0.53

https://doi.org/10.1371/journal.pone.0181707.t001
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included in the image representation process. By setting the value of α to 0 and β to 1, results

in a low precision score of 0.78 which is due to the fact that only features from the salient

region are used to retrieve images without the contextual information. By improving the value

of α, significant improvements were recorded due to the inclusion of contextual features. Simi-

larly, we can ignore the saliency features and use only the deep features of the entire image by

setting the value of α to 1 and β to 0. At this setting, we achieved a precision of 0.93. Through

these experiments, we determined optimal values for both α and β to be 0.4 and 0.6,

respectively.

Qualitative results for some queries have been provided in Fig 10. Some of the images have

salient regions like fractures, and calcified spots, whereas other do not have any significant

salient regions. Still, the proposed method yielded superior performance as compared to sim-

ple deep features. The query image is shown to the left, the retrieved images using simple deep

features are provided in the top row of each query, whereas the retrieval results using the pro-

posed approach are given in the second row. It can be seen that for almost all the queries, the

proposed SiNC features yielded better results. In the first, third, fourth, and last query, there

exist fractures in query images, the SiNC features retrieved more relevant images at higher

ranks than the simple deep features. Similarly, it provided superior retrieval performance even

if there exist no such salient region as exhibited in second query.

Fig 9. Effect of saliency injection on retrieval performance.

https://doi.org/10.1371/journal.pone.0181707.g009
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Fig 10. Top retrieved images using deep features (first row) and SiNC features (second row).

https://doi.org/10.1371/journal.pone.0181707.g010

Saliency-injected neural codes for medical image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0181707 August 3, 2017 22 / 32

https://doi.org/10.1371/journal.pone.0181707.g010
https://doi.org/10.1371/journal.pone.0181707


4.7 Sensitivity analysis of proposed framework

The VGG model used for features extraction is a key component of the proposed framework

and its optimal utilization is highly essential for the success of our system. For this purpose, we

carried out sensitivity analysis of the model in order to make sure that we get the best out of

this model for image retrieval purposes. To a certain degree, we have already performed sensi-

tivity analysis of the VGG model. For instance, we studied the comparative performance of

various layers of the model to determine the best set of features for medical images. Similarly,

we also carried out an empirical evaluation of the parameters α and β to select optimal values

for features fusion. Since we used the fine-tuned model, we could not modify its overall archi-

tectures to a great extent. We only could modify the last FC layer according to the number of

classes in our dataset and kept the rest of the architecture unchanged in order to utilize the pre-

vious parameters as much as possible. However, it is essential to study the robustness of the

model to several image degradations and transformations which the proposed system may

come across in practical environments. In radiographic images, two important challenges are

noise and random translations. So we studied the effects of these image degradations and

transformations. For this purpose, we conducted several experiments to assess the effects of

various kinds of noises and the precision for Salt & Pepper noise have been shown in Fig 11(A)

and 11(B) highlights the results of Gaussian noise with different variance. Gaussian noise

caused higher performance degradation as compared to Salt & Pepper noise. In both cases, fil-

tering attempts to reduce noise caused significant degradation in retrieval performance. Hence

we recommend to avoid filtering the query image before features extraction. We also evaluated

the robustness of the model to translations and image cropping, and found that the VGG

model is very robust to these transformation, partly due to its robust nature and partly due to

the fact that we used random crops of images to fine-tune the model. Experimental results

revealed that random translations and cropping do not affect the retrieval performance of the

proposed system, if major portion of the image remains intact.

Fig 11. (a) Precision scores with varying probabilities of Salt & Pepper noise (with and without filtering), (b) Precision scores with different variances of

Gaussian noise (with and without filtering).

https://doi.org/10.1371/journal.pone.0181707.g011
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4.8 Feature hashing for scalable image retrieval

Large scale image retrieval demands efficient access to relevant information within huge image

collections. Linearly searching the entire database becomes infeasible for very large and con-

stantly growing databases like medical images. To address this issue, researchers have pro-

posed several methods for computing hash keys to enable faster query execution at the cost of

performance reduction [23, 24]. For the proposed SiNC features, we evaluated two different

hashing schemes and concluded that the existing hashing methods like Kernelized LSH and

Spectral Hashing can be used to build hash tables for allowing faster queries in large image

databases. These methods can be used to draw an initial set of images using NNS algorithms

and then the search can be refined by performing linear search in that subset using the SiNC

features. We performed several experiments with different hash key lengths for both KLSH

and SH and found that both methods perform the best with 128-bit hash codes. Fig 12 reports

Fig 12. Retrieval performance with different hash code lengths.

https://doi.org/10.1371/journal.pone.0181707.g012
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the outcomes of our experiments. For prec@20, KLSH method achieved more than 80%

retrieval accuracy. Fig 13 reports retrieval results using hash features obtained using SiNC and

VGG deep features. Results reveal that the proposed SiNC features yielded better retrieval per-

formance. Fig 14 shows results of ten different queries executed using KLSH with hash keys of

128 bits. It can be seen that the top-5 retrieved results mostly contain relevant images.

Comparison of the query execution time (in milliseconds) with and without hashing is pro-

vided in Table 2. For each case with varying database sizes, 300 random queries were run and

average retrieval times along with standard deviations have been reported. Retrieval with hash

codes is 2.6 times efficient than querying without hash codes in a database of 15K images. For

a significantly larger dataset, the improvement of SiNC + KLSH is much more pronounced.

Increasing the search space increases the amount of retrieval time for linear search. On the

other hand, the retrieval time for hashing-based approach remains almost constant. All these

values are computed for MATLAB-based implementation.

4.9 Comparative analysis with other CBMIR methods

This section presents a comparison of SiNC with several existing schemes on the IRMA dataset

and provides critical analysis on several performance aspects. The PANDA framework developed

by Iakovidis et al. [33] used pattern classes to keep track of similar patterns in medical images

which assisted in determining structural similarities between image pairs. Since they used low-

level features to describe local patterns, their method offered comparatively lower precision at

recall settings below 0.3 as depicted in Fig 15. Furthermore, they did not consider the interest of

medical experts while retrieving images from the dataset. Their method achieved 66.75 AUC and

its performance dropped gradually when more and more images were retrieved and a significant

drop was observed beyond 0.8 recall. In Stat. Model framework [25], the use of low-level features

also affected retrieval performance, partly due to the absence of color in medical images and

partly due to the weak representational strength of these features. Their method achieved 67.20

AUC, however, their performance dropped significantly as a result of increasing the number of

retrieved images. The method in [35] used the BoVW framework to represent densely sampled

image patches. Their system was able to discriminate between healthy and pathological cases and

therefore, achieved better retrieval performance than the previously discussed methods. Srinivas

et al. [38] method used sparse coding features to identify dictionaries and associated image clus-

ters to retrieve relevant images from the dataset. Their method achieved retrieval accuracy above

90% at 0.2 recall which dropped to 43% at full recall. Like most of the existing methods, they did

not consider region of interest while retrieving images. Therefore, it failed to deal with queries

involving a very particular region of interest. The proposed method achieved steady precision for

recall up to 0.85. This improved performance verifies the representational capability of SiNC for

retrieving medical radiographs.

Table 3 lists AUC values of the proposed method and other similar methods. The proposed

scheme provides superior performance in terms of precision and recall than several existing

methods on the evaluation dataset. Similarly, the hashing-based scheme also provides reason-

able performance (82% for P@20) slightly below the linear search scheme. The proposed

method is believed to provide promising performance for large scale datasets. We also believe

that the inclusion of cues for specifying ROIs for visual content queries like image saliency has

great potential for retrieval applications and needs to be studied further.

5. Conclusion

In this paper, an efficient method for representation and retrieval of medical images is pre-

sented. Our objective is to enable efficient retrieval of medical images having visual and
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Fig 13. Retrieval performance with different representation schemes for some queries. Top row of each query represent retrieval using SiNC

features and the second row shows retrieved results using simple deep features.

https://doi.org/10.1371/journal.pone.0181707.g013

Saliency-injected neural codes for medical image retrieval

PLOS ONE | https://doi.org/10.1371/journal.pone.0181707 August 3, 2017 26 / 32

https://doi.org/10.1371/journal.pone.0181707.g013
https://doi.org/10.1371/journal.pone.0181707


semantic similarities. Saliency detection method was used to automatically identify regions of

interest in medical images. These methods were able to highlight regions containing fractures,

calcified spots, and tumors. Neuronal activations from the fully connected layers of a fine-

tuned CNN were studied for the suitability of representing medical images. A deep CNN

trained by the visual geometry group (VGG) was used in this study. It was found that the last

fully connected layer represented images more efficiently than the other two fully connected

layers. Neural codes were extracted from the entire medical image as well as the salient part.

Fusion of both these features yield the final feature vector used to index medical images. Exper-

iments conducted with the IRMA dataset revealed that the proposed SiNC descriptor is suffi-

ciently discriminative for retrieving relevant medical images from large image collections.

The inclusion of saliency information in the feature extraction process helped in identifying

Fig 14. Retrieval results with 128-bit hash codes of SiNC (The first column contains the query images (top-1 ranked image) and the remaining

columns contain the top-4 ranked images).

https://doi.org/10.1371/journal.pone.0181707.g014

Table 2. Retrieval efficiency with and without hash codes.

Database Size (Number of

images)

Average Retrieval Time (ms) (SiNC

+ Linear Search)

Average Retrieval Time (ms)

(SiNC + KLSH)

2,000 80 ± 4.1 127 ±3.7

5,000 191 ±6.3 130 ±3.3

15,000 346 ±6.6 137 ±4.0

60,000 1221 ±17.7 141 ±3.3

https://doi.org/10.1371/journal.pone.0181707.t002
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semantically relevant images to better fulfill the needs of radiologists and other MEs. For most

of the queries, we were able to retrieve relevant images, however, in certain cases where the

saliency detection method failed to identify the region of interest appropriately, relevant

images were scarcely retrieved in the top ranked results. Further study is needed to make the

existing framework more efficient by visual saliency detection method for identifying medical

peculiarities, and directly learning binary hash codes from CNNs to facilitate retrieval from

large scale databases. Moreover, iterative query refinement and relevance feedback schemes

can be incorporated to further improve retrieval performance of our framework.

Fig 15. Performance comparison with other CBMIR approaches.

https://doi.org/10.1371/journal.pone.0181707.g015

Table 3. Comparison of area under the precision recall curve for IRMA 2009 dataset.

Performance Methods

PANDA [33] Stat. Model [25] PBVW [35] Dictionary [38] SiNC

AUC 66.75 67.20 70.61 71.0 75.17

https://doi.org/10.1371/journal.pone.0181707.t003
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