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Abstract

Mangrove forests of a single trees species, Avicennia marina subsp. australasica are wide-

spread in the upper North Island of New Zealand, but there is little available information on

the diversity of epiphytes such as lichens within them. A survey of 200 trees from 20 man-

grove sites recorded a total of 106 lichen species from 45 genera. Two of these species are

considered to be ‘Threatened’, five ‘At Risk’ and 27 ‘Data Deficient’. Multiple regression indi-

cated that tree diameter (DBH) and mean annual rain days positively influenced site species

richness. Multidimensional scaling showed that sites from the same geographical region

generally formed distinct clusters. Redundancy analysis indicated that mean annual wet

days, latitude and DBH measurably influenced species composition.

Introduction

The term “mangrove” covers a range of halophytic evergreen plants comprising over 70 species,

found in 27 genera from 20 families and nine orders [1–4]. About a quarter of all mangrove spe-

cies belong to the pantropical genus Avicennia [1]. The only mangrove species currently found

in New Zealand is the Mānawa (Avicennia marina subsp. australasica), which is also found in

Southeastern Australia [5]. Mangrove forests are distributed throughout the globe in 118 tropi-

cal and sub-tropical countries [6], ranging from 31˚45’N in southern Japan, to 38˚03’S in the

North Island of New Zealand. In New Zealand, the species is naturally distributed from the top

of the North Island to Kāwhia on the west coast and Ohiwa on the east coast [5].

Mangrove ecosystems occur at the convergence of terrestrial and marine communities [2],

receiving saline and fresh water, sediment, and nutrient inputs from both the ocean and rivers

[4]. Worldwide, mangroves are highly productive ecosystems [3, 7, 8] that provide habitat and

an important source of nutrients for a variety of species [9, 10]. Mangroves are valuable nurs-

ery grounds and breeding sites for birds, fish, crustaceans, shellfish, reptiles and mammals [8].
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They provide habitats for motile or visiting fauna, and support coastal fisheries through the

provision of nursery areas [11]. Mangroves also filter sediment and contaminant runoff from

the land into the sea, act as carbon sinks, and can store more carbon than freshwater wetlands

[4, 12]. Whilst the biodiversity value of mangroves is well accepted worldwide [3, 11, 13], there

is an admitted shortfall of information on the biodiversity status of New Zealand mangrove

forests [14]. The State of New Zealand’s Environment Report [15] described New Zealand

mangroves as being “low in diversity”, although 30 fish species are noted as being associated

with mangroves and a wide range of native and introduced birds are known to utilize them as

habitat [14]. Some terrestrial invertebrates have been recorded from mangroves in New Zea-

land. This includes several moth species, including Planotortrix avicenniae, a mite (Acalitus
avicenniae), the lemon tree borer (Oemona hirta) and several ant species [14]. Despite several

international studies describing epiphytic plant and/or lichen diversity on mangroves [13, 16–

18], there is very little published information on epiphytes of mangroves in New Zealand. One

study [19] recorded 32 lichen species from mangroves on Great Barrier Island and another

[20] reported 33 species at Miranda in the Firth of Thames, but, both of these studies were

small-scale and not quantitative. One threatened species, the ‘Nationally Endangered’ Rama-
lina pacifica is mainly found in mangrove forest in New Zealand [21].

Worldwide, over 90% of mangroves are found within the territory of developing countries

[22] Since the 1980s at least 35% of mangrove forests have been lost, mainly due to human

influences [23, 24]. The main causes of mangrove loss are considered to be mariculture, log-

ging for timber, and removal for the establishment of agricultural systems [10, 23, 25]. In con-

trast to the global trend of loss, mangroves in New Zealand have been steadily spreading [5, 26,

27]. This spread is attributed to increased sedimentation caused by erosion from urbanization

and agricultural development [9] This has led to public submissions for removal of mangroves

[5], some of which have occurred [28].

Whilst a number of lichen species have been recorded from New Zealand mangroves [29,

30], no systematic study has been carried out on the diversity of lichens epiphytic on Avicennia
marina subsp. australasica. We therefore conducted a study of the species richness, abundance

and community composition of lichens in association with mangrove forest at 20 sites across

its range in the upper North Island of New Zealand. We compared these assemblages with

environmental and site factors in order to develop an understanding of variables that may

influence their distribution.

Methods

Site selection

Sites were chosen from harbour areas throughout the range of Avicennia marina subsp. austra-
lasica in New Zealand (Fig 1). The sites represented four distinct areas of the upper North

Island: the Far North; Coromandel Peninsula; Kaipara Harbour and mid Northland; and

Auckland. The study focused on larger mature mangroves with significant trunks, as these are

more likely to host epiphytes than younger saplings and shrubs with dense canopies. Sites were

selected to provide representative regional spread, but, were only included if they were both

accessible and contained a minimum of 40 trees (in order to provide a large enough parent

population for randomised tree selection). Permission was sought from land owners to access

any site.

Lichen sampling

Ten trees at each site were randomly selected from those present and mean DBH was recorded

at each site (Table 1). Lichen species observed on each individual tree sampled were recorded
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(from ground level to the top of the canopy), by careful visual observation to account for any

vertical zonation of different species [31]. Frequency of occurrence for a given species at a site

was estimated by calculating the proportion of trees that were hosts. A single tree was consid-

ered to be a host if at least a single thallus was observed. Voucher specimens of all lichen spe-

cies present were collected (where possible) and accessioned into the Unitec Herbarium.

Nomenclature follows the last Flora treatment and recent updates for individual genera [21,

30, 32–34].

Environmental and site variables

Longitude and latitude were recorded for each of the 20 sites. Climate variables were deter-

mined from annual means (1981–2010) from the nearest weather station (taken from the

NIWA CliFlo database) and comprised: mean daily minimum and maximum air temperature

(˚C), mean annual rainfall (mm), mean annual rain days (�0.1 mm of rain), and mean annual

wet days (�1.0 mm of rain) (Table 1). The percentage mangrove canopy cover for each site

was also determined using recent aerial photographs.

Data analysis

As a preliminary analysis, species accumulation curves were plotted to determine whether

sampling was sufficient to adequately represent species composition. Species accumulation

curves were generated using the “Sample Interpolation” method available in the package Spe-

cies Diversity and Richness (version 4.1.2). This analysis indicated that ten samples were able

Fig 1. Mangrove study sites, North Island, New Zealand.

https://doi.org/10.1371/journal.pone.0180525.g001
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to adequately characterise species composition (Fig 2), because the accumulation curve

reached a plateau as sample size increased. Multiple regression analysis was used to evaluate

the relationship between species richness (R) and environmental variables (including DBH).

Automatic forward selection was done on untransformed data. Secondly, correlation coeffi-

cients were calculated for each pair of environmental variables using Pearson’s test. Regression

and correlation analyses were done using Minitab (Version 17). Thirdly, multivariate analyses

were conducted to explore patterns between sites, species and measured environmental vari-

ables. For these analyses, untransformed frequency of occurrence was used as an abundance

measure, which ranged from 0 to 1 in intervals of 0.1 (preliminary analysis indicated that

transformation had little effect on ordinations). We considered frequency of occurrence to be

preferable to utilising the cover measurements which were both difficult to reliably estimate

(given the spatial complexity of the host tree), and difficult to translate into values that can be

used for analysis purposes [35]. Multi-Dimensional Scaling (MDS) was done to determine

similarities between sites using the Bray-Curtis method (Primer, Version 6). Redundancy

Analysis (RDA) was done using CANOCO Version 4.5 [36]. RDA was used to determine the

Table 1. Summary of environmental and other variables.

Location Site Canopy

Cover %

Latitude Longitude Min

temp
˚C

Max

temp
˚C

Mean

temp

˚C

Mean

annual

rain days

Mean

annual

wet days

Mean

annual

rainfall

(mm)

Mean

DBH

mm

Number of

spp. /site

Far North Hokianga

(HO)

68 -35.272066 173.522483 11.8 19.5 15.7 198.67 163.11 1394.1 219.6 36

Whangaroa

(WA)

84 -35.084144 173.719894 11.8 19.5 15.7 182.50 132.13 1394.1 159.2 28

Mangonui

(MA)

46 -35.012327 173.560641 11.8 19.5 15.7 182.50 132.13 1394.1 216.8 29

Kerikeri (KK) 87 -35.217416 173.985469 10.6 20.1 15.3 201.46 131.64 1709.8 231.9 33

Paihia (PH) 82 -35.304761 174.101969 10.6 20.1 15.3 201.46 131.64 1709.8 147.7 30

Auckland Kepa Bush

(KB)

66 -36.864341 174.829175 11.3 19.0 15.2 194.17 135.71 1213.2 176.2 25

Puhinui (PU) 59 -36.996244 174.832138 11.8 18.9 15.4 168.40 121.00 1125.2 122.6 19

Waiheke

Island (WI)

62.5 -36.824580 175.138752 11.3 18.8 15.2 194.17 135.71 1213.2 162.3 31

Kaipara/ Whangarei

(WH)

100 -35.836300 174.305880 11.8 19.7 15.8 188.70 131.35 1299.9 140.6 23

Northland Mataia (K1) 47 -36.493261 174.419052 10.2 18.8 14.5 184.81 134.94 1435.5 268.4 37

Mataia (K2) 17 -36.490327 174.415294 10.2 18.8 14.5 184.81 134.94 1435.5 219.4 39

Makarau (M) 69 -36.547583 174.465691 10.2 18.8 14.5 184.81 134.94 1435.5 216 38

Warkworth

(W1)

100 -36.398819 174.670513 10.2 18.8 14.5 184.81 134.94 1435.5 175.5 25

Warkworth

(W2)

94 -36.402461 174.675336 10.2 18.8 14.5 184.81 134.94 1435.5 185 19

Puhoi (P) 9 -36.523405 174.676750 10.2 18.8 14.5 184.81 134.94 1435.5 217.6 30

Paparoa (PA) 71 -36.114686 174.229697 10 19.1 14.5 190.96 137.39 1442.8 161.2 37

Coromandel Kauaeranga

River (KA)

72 -37.149852 175.548430 10.6 19.5 15.0 170.22 118.22 1141.4 166.4 18

Peninsula Oturu (O) 75 -37.028222 175.833086 10.1 19.3 14.7 212.56 142.56 1839.8 103.2 26

Orchard Point

(OP)

27 -37.036219 175.842200 10.1 19.3 14.7 212.56 142.56 1839.8 112 24

Piako Rover

(PI)

77 -37.201483 174.676750 10.6 19.5 15.0 170.22 118.22 1141.4 135.1 20

https://doi.org/10.1371/journal.pone.0180525.t001
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relationship between the environmental variables and species composition for both sites and

individual species. Use of a linear method was confirmed from a preliminary analysis. Envi-

ronmental variables were selected using an iterative manual selection process in order to estab-

lish the most parsimonious model. Only variables that significantly influenced species

composition were added to the model during the stepwise selection process. CANODRAW

Version 4.14 was used to generate site/environment and species/environment biplots.

Results

A total of 106 species of lichenized fungi within 45 genera were collected from the 200 trees

sampled across the 20 sites in this study (S1 Table). The most represented family of lichens

found on mangroves was the Parmeliaceae with sixteen species, followed by the Physciaceae

and Lobariaceae with 15 and 13 species respectively. The most common genera were Pseudocy-
phellaria, Pertusaria, and Heterodermia with seven, Ramalina with six, and Parmotrema with

five species respectively. Species richness per site ranged from 18 at the Kauaeranga River

(KA) on the Coromandel Peninsula to 39 at Mataia (K2) in the Kaipara Harbour (Fig 3; S1

Table).

The most common lichen species were Parmotrema reticulatum, which occurred at all sites

and both Pertusaria melaleucoides and Parmotrema crinitum which were recorded at 18 sites.

Other common species were Pannaria elixii, Physcia tribacoides, and Heterodermia japonica.

Of all the species identified, two were ‘Nationally Endangered’, five were ‘Naturally Uncom-

mon’, twenty-seven were ‘Data Deficient’, sixty-nine were ‘Not Threatened’ following the

Fig 2. Example of a representative species accumulation curve (site K1). All other sites followed a similar pattern.

Error bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0180525.g002
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designations from the most recent conservation threat classification assessment [21]. Four taxa

were unable to be identified to species level, and one (Pertusaria puffina) has been added to the

New Zealand lichen flora since publication of the threat classification for lichens [21, 37] (S1

Table). The ‘Nationally Endangered’ Ramalina pacifica, was found at seven sites. ‘Naturally

Uncommon’ species, such as Ramalina canariensis, Crocodia poculifera, and Pseudocyphellaria
wilkinsii were uncommon, although P. wilkinsii was found to be locally common at two of the

sites were it occurred.

Some ‘Data Deficient’ lichen species were relatively common, such as Pertusaria melaleu-
coides, Physcia tribacoides, and Leptogium cyanizum. Others, such as Lecanora argentata,

Amandina diorista, and Thelotrema circumscriptum were only rarely observed. In the genus

Leptogium two ‘Data Deficient’ species (L. cyanizum and L. phyllocarpum) were relatively com-

mon, whilst two ‘Not Threatened’ species (L. aucklandicum, and L. cyanescens) were only

rarely seen, and observed at one site each. Three ‘Data Deficient’ species in the genus Pyrenula
were observed, with two species (P. nitidula, and P. dermatodes) present at over a quarter of all

study sites (where they were commonly found). P. ravenelii was observed in abundance at two

sites only.

Multiple regression analysis indicated that DBH and mean annual rain days positively

influenced site species richness (R = -32.5 + 0.1069 DBH + 0.222 rain days, PDBH = 0.001, Prain

days = 0.025). Mangrove mean DBH ranged from 103.2mm at site O (Oturu, Coromandel Pen-

insula) to 268.4mm at site K1 (Mataia, Kaipara Harbour). Mean annual rain days ranged from

168.4 at PU (Puhinui, Manukau Harbour) to 212.56 at O and OP (Orchard Point, Coromandel

Peninsula).

Environmental variables were generally not correlated (Table 2), although latitude, longi-

tude, mean air, min. air, max. rain and wet days showed some correlation with other variables.

MDS analysis indicated that there was similarity between sites from the same regional location,

as clusters were generally formed (Fig 4). In particular, Kaipara Harbour/mid Northland sites

showed distinct similarity and formed a recognizable cluster, with the exception of sites W2

and WH. Far North sites also formed a cluster (albeit less distinct), representing the northern-

Fig 3. Species richness of each site surveyed within four areas of the North Island, New Zealand.

https://doi.org/10.1371/journal.pone.0180525.g003
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most sites studied. Coromandel sites and one of the Auckland sites (PU) also formed a diffuse

cluster, representing the southern-most sites within the study. The stress value of 0.14 indi-

cated that the analysis showed reasonable fit in two dimensions.

Redundancy analysis indicated that wet days (P = 0.002), latitude (P = 0.002) and DBH

(P = 0.008) were good predictors of variability in species composition (Fig 5). In general, sites

from the same region (and latitude) clustered together, but, not consistently. For example, dis-

tinct clustering of sites were evident (Fig 5A) for Northland sites (KK, MA, WA and PH, but,

not HO), and the mid-Northland/Kaipara Harbour sites (PA, K1, K2, P, M, W1, W2, but, not

WH). Two of the Coromandel sites (PI, KA) formed a cluster with one of the Auckland sites

(PU) and two of the Auckland sites (KB and WI) clustered with the two eastern Coromandel

sites (O and OP). The first two ordination axes accounted for 25.5% (16% and 9.5% respec-

tively) of the observed variability in species composition (Fig 5B). Sixteen species were strongly

Table 2. Bivariate correlations (Pearson) between environmental variables. Significant correlations at 5% indicated by * and 1% by ** respectively.

Lat. Long. Cover DBH Mean air Max. air Min. air Max. rain Wet days Rain days

Lat. - 0.90** -0.24 -0.37 -0.56* -0.55* -0.42 -0.24 -0.31 -0.18

Long. - -0.13 -0.58** -0.45* -0.24 -0.44 -0.02 -0.29 0.07

Cover - -0.27 0.30 0.38 0.20 -0.09 -0.13 -0.03

DBH - -0.15 -0.20 0.09 -0.04 0.21 -0.15

Mean air - 0.65** 0.93** -0.28 0.00 -0.03

Max. air - 0.32 0.25 -0.07 0.29

Min. air - -0.50* 0.01 -0.22

Max. rain - 0.46* 0.81**

Wet days - 0.68**

Rain days -

https://doi.org/10.1371/journal.pone.0180525.t002

Fig 4. MDS plot of sites within the regions Northland (HO, KK, MA, PH, WA). Auckland (KB, PU, WI), Kaipara (K1, K2, M,

W1, W2, P, PA, WH) and Coromandel (KA O, OP, PI). Region boundaries shown for clarity.

https://doi.org/10.1371/journal.pone.0180525.g004
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Fig 5. RDA ordination plots representing relationships between influential environmental variables

and sites (A) and species (B) respectively. In the species diagram, only the sixteen species most strongly

influenced by the environmental variables are displayed for clarity.

https://doi.org/10.1371/journal.pone.0180525.g005
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influenced by these variables and were selected for inclusion in the species/environment plot.

Fifteen species were positively related to both DBH and mean annual wet days, whilst one spe-

cies (Ramalina celastri) was associated with increasing latitude.

Discussion

One hundred and six species of lichens found in New Zealand mangrove forest equates to c.

6% of the known NZ lichen Flora [21], indicating that this forest type is an important habitat

type for lichen diversity. Out of 38 species listed as occurring on mangroves in the most recent

Flora treatment for New Zealand lichens [30], 20 were identified during this study. More spe-

cies are therefore likely to be added to the checklist as more sites are investigated.

Unlike most mangrove forests, New Zealand mangrove forests are a monoculture of one

tree species. Despite this, when compared with studies elsewhere in the world, the number of

lichen species found in New Zealand mangroves is relatively high (as a proportion of those

extant within the country). The highest recorded number of species of lichens on mangroves

was recorded from a study of the southern and south-eastern coastline of Brazil, where 289

lichen taxa were reported [38]. One hundred and sixty-seven species are known from the Sun-

darban mangroves [39], an area of over 1 million hectares and 30–36 species of mangroves

[40, 41]. An investigation of the mangroves of Trat province in southeast Thailand, which

hosts 33 species of true mangroves, reported 117 species of lichens. These were found on the

trunks and prop roots, and the majority of lichen species were crustose [42]. In a study of man-

groves of eastern Australia, where seven species of mangroves, including Avicennia marina,

were examined, 105 lichen species were observed [16]. However, this study focused on macro-

lichens, so the total number present is likely to be higher.

Other studies observed lichen richness that were generally similar to observations at indi-

vidual sites in New Zealand. Twenty-nine lichen species were recorded from the Andaman

Island mangroves in India [18], 21 species from mangroves on the southeast coast of India

[21], seven species from Caye Caulker, Belize [43], whilst two species were recorded from

Jozani-Pete mangrove creek, Zanzibar, Tanzania [44].

Patterns in lichen epiphyte diversity can be viewed as the result of interaction between envi-

ronmental and habitat factors (environmental gradients, substrate tree specificity, tree size,

tree age, bark characteristics) and the ability of each lichen species to disperse [45]. In our

study, two variables, DBH and mean annual rain days, had a measurable effect on species rich-

ness. DBH is often used as a proxy measure of tree age [46] or overall size [47]. Variation in

the diameter of the trunk of a tree affects available surface area, but also may influence the vari-

ability of the surface (bark texture and pH, water availability, presence of holes or cracks [48]

and probably acts as a proxy measure of age. The positive influence of tree diameter on lichen

species richness has been noted in other studies, but, not so far in studies on mangrove forests.

For example, lichen species richness has been found to be greater in Mediterranean Quercus
forest remnants where the average tree diameters were greater [49]. Similarly, a positive linear

effect of trunk diameter on lichen species richness has been reported for deciduous tree stands

in southern Sweden [50]. However, there is not always a clear link between tree diameter and

lichen species richness. For example a study of montane rainforest in Cuba found differences

in lichen species composition in relation to tree trunk diameter for one tree species, but did

not observe differences for species richness, frequency or cover area [51].

Mean annual rain days (those days with 0.1mm or more of precipitation) positively influ-

enced site species richness but maximum rainfall did not. Sites with higher mean annual num-

ber of rain days generally had more lichen species present (Table 1). The relationship between

lichen growth and moisture levels is an interesting one. Lichens are poikilohydric; they cannot
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regulate their own water content [52]. Different lichen species obtain moisture from rain, mist,

dew or high humidity [53], and most can survive periods of desiccation. As lichens dry out,

the rate of photosynthesis and respiration declines until rehydration of the lichen thallus

occurs [52]. Many lichens appear to function more efficiently obtaining water from dew rather

than rain, and excess water can actually inhibit photosynthesis [53]. Regular small amounts of

mist or rain could therefore be more optimal for the growth of most lichen species than irregu-

lar heavy rainfall events, which may explain the lack of correlation between species richness

and maximum rainfall. Mean annual rain days influenced the occurrence of a number of

lichen species on mangroves in Eastern Australia [16].

MDS analysis showed that sites from the same region generally formed distinct clusters (Fig

4) and the RDA identified that wet days, latitude and DBH were predictors of species composi-

tion (Fig 5). While there was a large degree of overlap in species occurences between sites (S1

Table), some lichen species were more commonly observed at certain sites, whilst some were

absent. For example, Flavoparmelia haywardiorum was characteristic of the majority of the

Kaipara Harbour sites, and was not found elsewhere. Other species that seemed to characterise

the mangroves of the Kaipara harbour included Leptogium cyanizum and L. phyllocarpum, Per-
tusaria sorodes and Dufourea ligulata. This last species is an unusual occurrence, as it is usually

saxicolous [30], but, it is possible that the hard bases of the trunks of mangroves are providing

a similar microhabitat to that of coastal rocks. Also of note was the high diversity of species in

the Lobariaceae at Kaipara sites, with seven species present. The Coromandel Peninsula sites

are perhaps best characterised by what is missing. There were no Opegrapha species, Ochrole-
chia pallescens was absent and the Lobariaceae were also largely absent. Characteristically

“northern” species of Ramalina, such as R. australiensis and R. pacifica [29] were also not

found at these sites.

A range of possible explanatory variables for the lichen assemblages observed were exam-

ined, but, redundancy analysis revealed that only three environmental variables (DBH, latitude

and mean annual wet days) were predictors of species and site composition. The causal rela-

tionships remain unknown from this study, but, these patterns are presumably driven by cli-

matic variations which favour certain species at given geographical locations. Similarly, species

assemblages were reported to change with latitude in Australia as species replaced each other

through turnover [16].

As well as finding a relationship between the environmental variables DBH and mean

annual rain days with species richness, our study also demonstrated that DBH measurably

influenced species composition. This has been noted in other studies of epiphytic lichens. For

example, a study of epiphytic lichens in the Italian alps found that after substrate tree specific-

ity was taken into account, tree size (DBH) and age influenced lichen species dynamics [47].

They observed that tree size affected population sizes and abundance patterns, and tree age

had species-specific effects as some species prefer older or younger trees. It has been suggested

that the relationship between lichen species composition and trunk diameter could be due to

trees with larger trunks having more suitable microclimates on the bark and a larger surface

area available for colonising lichen propagules [51]. Unfortunately, tree ages for the mangrove

species used in this study could not be determined by counting tree rings [54].

Whilst mean annual rain days influenced site species richness, we observed that the number

of mean annual wet days influenced species composition. Moisture levels are therefore a strong

driver of the species distributions that we observed. The preference of different lichen species

for different moisture levels is known to depend on a range of factors. Cyanolichens generally

require liquid water for photosynthesis, whereas lichens with green algal photobionts often do

not [52, 53]. In addition, fine, filamentous or fruticose lichens can take up moisture from mist

or humid air rapidly, but, more compact or thicker foliose lichens may not [53] and may
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require liquid water to rehydrate. For example, members of the Lobariaceae such as Pseudocy-
phellaria and Sticta are adapted to rainier climates [53, 55]. It could be expected that sites with

a high number of wet days would be richer in cyanolichens and foliose lichens such as species

of Lobariaceae. This is indeed the case (S1 Table) in this study, with cyanobacterial species of

Leptogium and Pannaria, and species of Crocodia, Pseudocyphellaria and Sticta (Lobariaceae)

well-represented at these sites. The most comparable study available [16] did note several cya-

nolichens but no species of Lobariaceae from eastern Australian mangroves. All of the sites in

the Australian study had significantly lower mean annual rain days than the sites in our study.

Some individual species were strongly influenced by environmental variables. Species such

as Heterodermia leucomela, Leptogium aucklandicum, Leptogium cyanizum, Pannaria elixii,
Pannaria araneosa, Pertusaria leucoplaca, Pseudocyphellaria carpoloma and Usnea rubicunda
were strongly positively associated with DBH and mean annual wet days. Four of these species

are cyanolichens (in this case species of Leptogium and Pannaria). The presence of lichens

with cyanobacterial symbionts has previously been found to correlate with tree size [49] and

cyanolichens are usually associated with wetter habitats [30, 52, 53].

Ramalina celastri was more evident with increasing latitude, whilst Brigantiaea chrysosticta,

Lepraria incana, Megaloblastenia marginiflexa and Pseudocyphellaria wilkinsii were more evi-

dent with decreasing latitude. However, it should be noted that most of these species are found

throughout New Zealand [30], and most are also found on trees other than mangroves [30,

56]. Only one lichen recorded in our study, Caloplaca mooreae is likely to be a mangrove-

specialist.

There are other possible explanations for differences in site species assemblages. Forest con-

tinuity (the continuous occupation of a site for multiple generations), can have an effect on

species richness and community composition. For example, in beech forests in southern Swe-

den, older stands with continuous forest through time and high substrate quantity and quality

were linked to higher lichen species richness [57]. Mangrove forests are highly dynamic eco-

systems, and forest continuity, whether spatial or temporal is probably not the norm. Most

mangrove forests have a low, dense, shrubland of seedlings and saplings, with scattered larger,

older trees, often at or above the high tide level [54, 58, 59]. As mangrove forests age, they are

usually characterised by scattered large trees, canopy gaps, standing dead trees and little regen-

eration [60]. These sites are likely to have a high lichen diversity when compared with stands

of mangrove saplings, which often do not support lichens at all. In New Zealand, mangroves

have been spreading rapidly in the last 80 years due to increased sediment loads in estuaries

caused by the expansion of agriculture and urbanisation [5, 9, 26, 54, 59]. The distribution,

abundance and size of individual mangroves has been found to vary within and between dif-

ferent estuaries [58], and suitable estuarine sites are not evenly distributed in the upper North

Island [26], leading to some significant distributional gaps. Large scale mortality of mangrove

forests can be caused by storms, tsunamis, changes in local hydrology or salinity, erosion, frost

and disease [60]. The instability through time and geographical separation of these older trees,

when combined with the variable ability of different lichen species to disperse over long dis-

tances, could therefore be influencing site species richness and community composition.

Another variable not investigated in our study was the possible influence of atmospheric

pollutants, in particular nitrogen in the form of ammonia. Agricultural areas with high num-

bers of cattle can have high background levels of ammonia, and this is known to affect lichen

community composition and reduce species richness at high concentrations [61–63]. Lichen

species can be catagorised as nitrophytes, oligophytes or acidophytes [62, 64, 65], with acido-

phytes generally declining as levels of ammonium increase, and nitrophytes being favoured.

Most research on the effects of ammonia on lichen diversity has been done in the Northern

Hemisphere, but some of the same species are found in New Zealand. Site PI, for example,
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might be an example of a site influenced by atmospheric nitrogen. This site is located in the

Firth of Thames at the mouth of the Piako River, which flows through an extensive flood

plain area that is heavily farmed. Three species listed as being nitrophytes in Europe [63, 65]

Hyperphyscia adglutinata, Ramalina canariensis and Xanthoria parietina were observed, and

cyanolichens were absent. Cyanolichens are known to be particularly sensitive to excess envi-

ronmental nitrogen [66].

Two ‘Nationally Endangered’, five ‘Naturally Uncommon’ and 27 ‘Data Deficient’ species

were amongst the 106 species found on mangroves, highlighting the biodiversity importance

of this habitat type. Despite mangrove forests increasing in extent in New Zealand, human

activities are impacting on habitat quality and there are indications that some lichen species

characteristic of mangroves and other coastal forest types may be declining. One species with

its stronghold in mangrove forests, Ramalina pacifica, already noted as ‘Nationally Endan-

gered’ [21], was found at less than half of the surveyed sites. Other species such as Teloschistes
flavicans, previously found in mangrove forests and listed as ‘Declining’ [21] were not found in

any of the 20 study sites. Another previously common species, Ramalina geniculata, known to

be common in stands of Avicennia marina from Auckland northwards [29, 67] was only found

at 12 of 20 sites, indicating a possible decline.

Conclusion

The mean annual number of rain days and tree diameter (DBH) positively influenced lichen

species richness at the 20 mangrove forest sites surveyed in this study. There was a distinct

similarity in species composition between sites from the same geographical region, and this

was influenced by mean annual wet days, DBH and latitude. These results indicate that regular

small amounts of precipitation may be more important for lichen diversity than overall rain-

fall, which did not appear to influence either lichen species richness or site species composi-

tion. The high number of lichen species found, and the number of ‘Threatened’, ‘At Risk’ or

‘Data Deficient’ species indicates that these larger mangrove trees are important habitat for

lichens and are in need of conservation.
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36. ter Braak CJF, Šmilauer P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide:

Software for Canonical Community Ordination (version 4.5). Ithaca NY, USA; Microcomputer Power.

2002. 500 pp.

37. Er O, Reynolds C, Blanchon DJ. Additional lichen records from New Zealand 49. Pertusaria puffina A.

W.Archer & Elix. Australasian Lichenology. 2015; 77:28–31.

38. Marcelli MP. Ecologia Liquenica nos Manguezias do Sul-Sudeste Brasileiro. Bibliotheca Lichenologica.

1992; 47:1–288.

39. Logesh AR, Kalaiselvam M, Upreti DK, Nayaka S, Kathiresan K. Mangroves—An abode for unique

lichens. Coastal ecosystems of India, special publication. Annamalai University: Parangipettai; 2013.

39–44.

40. Santra SC. Mangrove lichens. Indian Biologist. 1998; 30(2):76–78.

41. Gopal B, Chauhan M. Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquatic

Sciences. 2006; 68:338–354.

42. Mongkolsuk P, Buaruang K, Polyiam W, Vongshewarat K, Phokaeo S, Seeiam D et al. Lichen in Man-

grove forest at Ban Pak Klong Num Chiew Mueng district, and Black Sand Beach Laem Ngob District,

Trat Province. 37th Congress of Science and Technology of Thailand; Bangkok. 2011

43. Barclay-Estrup P. Lichens of Cocos nucifera on Caye Caulker, Belize. The Lichenologist. 1992; 24

(03):249–254.

Lichens on mangroves in New Zealand

PLOS ONE | https://doi.org/10.1371/journal.pone.0180525 June 30, 2017 14 / 15

https://doi.org/10.1126/science.317.5834.41b
http://www.ncbi.nlm.nih.gov/pubmed/17615322
https://doi.org/10.1146/annurev.marine.010908.163809
https://doi.org/10.1146/annurev.marine.010908.163809
http://www.ncbi.nlm.nih.gov/pubmed/21141670
https://doi.org/10.1371/journal.pone.0180525


44. Akil JM, Jiddawi NS. A preliminary observation of the flora and fauna of Jozani-Pete mangrove creek,

Zanzibar, Tanzania. Proceedings of the 20th Anniversary Conference on Advances in Marine Science

in Tanzania; Jun 28-July 1; Zanzibar, Tanzania. IMS, WIOMSA; 1999.

45. Ellis CJ. Lichen epiphyte diversity: a species, community and trait-based review. Perspectives in Plant

Ecology, Evolution and Systematics. 2012; 14:131–152.

46. Altman J, Dolezal J, Cizek L. Age estimation of large trees: New method based on partial increment

core tested on an example of veteran oaks. Forest Ecology and Management. 2016; 380:82–89.

47. Nascimbene J, Ackermann S, Dainese M, Garbarino M, Carrer M. Fine-scale population dynamics help

to elucidate community assembly patterns of epiphytic lichens in alpine forests. Fungal Ecology. 2016;

24:21–26.

48. Ranius T, Johansson P, Berg N, Niklasson M. The influence of tree age and microhabitat quality on the

occurrence of crustose lichens associated with old oaks. Journal of Vegetation Science. 2008; 19:653–

662.

49. Aragon G, Martinez I, Izquierdo P, Belinchon R, Escurado A. Effects of forest management on epiphytic

lichen diversity in Mediterranean forests. Applied Vegetation Science. 2010; 13:183–194.

50. Johansson P, Rydin H, Thor G. Tree age relationships with epiphytic lichen diversity and lichen life his-

tory traits on ash in southern Sweden. Ecoscience. 2007; 14:81–91.

51. Rosabal D, Burgaz AR, & De la Masa R. Diversity and distribution of epiphytic macrolichens on tree

trunks in two slopes of the montane rainforest of Gran Piedra, Santiago de Cuba. The Bryologist. 2010;

113(2): 313–321.

52. Palmqvist K. Carbon ecology in lichens. New Phytologist. 2000; 148:11–36.

53. Gauslaa Y. Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epi-

phytic lichens. The Lichenologist. 2014; 46:1–16.

54. Burns BR, Ogden J. The demography of the temperate mangrove (Avicennia marina (Forsk.) Vierh.) at

its southern limit in New Zealand. Australian Journal of Ecology. 1985; 10:125–133.

55. Green TGA, Lange OL. Ecophysiological adaptations of the lichen genera Pseudocyphellaria and Sticta

to south temperate rainforests. Lichenologist. 1991; 23:267–282.

56. Galloway DJ. Flora of New Zealand. Lichens. Wellington: Government Printer; 1985. 662p.

57. Fritz O, Gustafsson L, Larsson K. Does forest continuity matter in conservation?–A study of epiphytic

lichens and bryophytes in beech forests of southern Sweden. Biological Conservation. 2008; 141:655–

668.

58. Osunkoya OO, Creese RG. Population structure, spatial pattern and seedling establishment of the grey

mangrove, Avicennia marina var. australasica, in New Zealand. Australian Journal of Botany. 1997;

45:707–725.

59. Young BM, Harvey LE. A spatial analysis of the relationship between mangrove (Avicennia marina var.

australasica) physiognomy and sediment accretion in the Hauraki Plains, New Zealand. Estuarine,

Coastal and Shelf Science. 1996; 42:231–246.
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quinho C. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natu-

ral Mediterranean evergreen woodlands. Biogeosciences. 2012; 9:1205–1215.

66. Geiser LH, Neitlich PN. Air pollution and climate gradients in western Oregon and Washington indicated

by epiphytic macrolichens. Environmental Pollution. 2007; 145:203–218. https://doi.org/10.1016/j.

envpol.2006.03.024 PMID: 16777297

67. Blanchon DJ, Braggins JE, Stewart A. The lichen genus Ramalina in New Zealand. Journal of the Hat-

tori Botanical Laboratory. 1996; 79:43–98.

Lichens on mangroves in New Zealand

PLOS ONE | https://doi.org/10.1371/journal.pone.0180525 June 30, 2017 15 / 15

https://doi.org/10.1016/j.envpol.2006.03.024
https://doi.org/10.1016/j.envpol.2006.03.024
http://www.ncbi.nlm.nih.gov/pubmed/16777297
https://doi.org/10.1371/journal.pone.0180525

