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Abstract

Genomic selection has been widely used for complex quantitative trait in farm animals. Esti-

mations of breeding values for slaughter traits are most important to beef cattle industry,

and it is worthwhile to investigate prediction accuracies of genomic selection for these traits.

In this study, we assessed genomic predictive abilities for average daily gain weight (ADG),

live weight (LW), carcass weight (CW), dressing percentage (DP), lean meat percentage

(LMP) and retail meat weight (RMW) using Illumina Bovine 770K SNP Beadchip in Chinese

Simmental cattle. To evaluate the abilities of prediction, marker effects were estimated

using genomic BLUP (GBLUP) and three parallel Bayesian models, including multiple

chains parallel BayesA, BayesB and BayesCπ (PBayesA, PBayesB and PBayesCπ). Train-

ing set and validation set were divided by random allocation, and the predictive accuracies

were evaluated using 5-fold cross validations. We found the accuracies of genomic predic-

tions ranged from 0.195±0.084 (GBLUP for LMP) to 0.424±0.147 (PBayesB for CW). The

average accuracies across traits were 0.327±0.085 (GBLUP), 0.335±0.063 (PBayesA),

0.347±0.093 (PBayesB) and 0.334±0.077 (PBayesCπ), respectively. Notably, parallel

Bayesian models were more accurate than GBLUP across six traits. Our study suggested

that genomic selections with multiple chains parallel Bayesian models are feasible for

slaughter traits in Chinese Simmental cattle. The estimations of direct genomic breeding val-

ues using parallel Bayesian methods can offer important insights into improving prediction

accuracy at young ages and may also help to identify superior candidates in breeding

programs.

Introduction

Genomic prediction has been widely used to predict breeding values of candidates with

genome-wide SNP markers [1], this technology offers great promise to predict genetic merits

PLOS ONE | https://doi.org/10.1371/journal.pone.0179885 July 19, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Guo P, Zhu B, Xu L, Niu H, Wang Z, Guan

L, et al. (2017) Genomic prediction with parallel

computing for slaughter traits in Chinese

Simmental beef cattle using high-density

genotypes. PLoS ONE 12(7): e0179885. https://

doi.org/10.1371/journal.pone.0179885

Editor: Qin Zhang, China Agricultural University,

CHINA

Received: January 16, 2017

Accepted: June 6, 2017

Published: July 19, 2017

Copyright: © 2017 Guo et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: We confirm that all

data underlying our findings are publicly available

without restriction. Data is available from the Dryad

Digital Repository: http://datadryad.org/resource/

doi:10.5061/dryad.4qc06

Funding: This work was supported by the National

High Technology Research and Development

Program of China (863 Program 2013AA102505-

4), National Natural Science Foundation of China

(31201782, 31672384 and 31372294), the

Agricultural Science and Technology Innovation

https://doi.org/10.1371/journal.pone.0179885
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179885&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179885&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179885&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179885&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179885&domain=pdf&date_stamp=2017-07-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179885&domain=pdf&date_stamp=2017-07-19
https://doi.org/10.1371/journal.pone.0179885
https://doi.org/10.1371/journal.pone.0179885
http://creativecommons.org/licenses/by/4.0/
http://datadryad.org/resource/doi:10.5061/dryad.4qc06
http://datadryad.org/resource/doi:10.5061/dryad.4qc06


of selection candidates for economic traits which are difficult or expensive to measure, for

instance, traits which may only be measured by sacrificing potential breeding candidates, like

carcass traits [2]. With the advance of genomic prediction, the genomic breeding values can be

estimated at young ages, and help to promote the genetic progress of breeding in farm animals

[3–6].

Carcass traits are important traits in beef cattle, many studies have been conducted to esti-

mate the genomic breeding values of these traits including hot carcass weight, longissimus

muscle area, carcass average backfat thickness, lean meat yield and carcass marbling score

using BovineSNP50K Beadchip [2, 7–9].

Genomic prediction in beef cattle have been mainly carried out using lower-density SNP

chip including Illumina BovineSNP50K Beadchip [2, 8–15], 15K SNP chip and 25K SNP chip

[3]. In recent year, several studies have been conducted for genomic prediction using high-

density SNP panels [4, 7, 16, 17], and they found genotyping with high density SNP chip can

improve the accuracy of genomic prediction for Bayesian methods [18–20]. To obtain higher

accuracies from low-density SNP panels, previous studies have attempted to impute lower-

density SNPs into high density SNPs data [20–22], and these results suggested that predictive

accuracies using imputation data outperformed those using low-density SNPs, while perfor-

mance (both GBLUP and Bayesian methods) were also influenced by their imputation errors

[18].

Many methods have been proposed for genomic prediction including Genomic Best Linear

Unbiased Prediction (GBLUP) [23] and Bayesian methods [1, 24]. GBLUP is widely used for

its merits of high estimation accuracies and short running time. Bayesian methods, imple-

mented with Markov Chain Monte Carlo (MCMC), show high performances of predictive

ability (easy implementation and robustness) in animals and plants breeding [25–27]. How-

ever, the iteration process in MCMC requires long computation time. Parallel computing

using multiple processing units can shorten the running time of an intensive computational

task [28]. Recently, Wu et al. used parallel MCMC to explore high-performance Bayesian com-

putation in animal breeding, and their result suggested parallel MCMC could revolutionize

computational tools for breeding programs for animals [15]. In this study, we further extended

the parallel computing in genomic prediction by combining multiple chains parallel MCMC

with Bayesian models.The objectives of this study were to 1) estimate prediction abilities of

genomic selection for slaughter traits in Chinese Simmental beef cattle with GBLUP, parallel

Bayesian methods. 2) evaluate the predictive accuracies of these methods. 3) provide valuable

insights for application of genomic selection for slaughter traits in Chinese Simmental cattle.

Methods

Ethics statement

Animal experiments were approved by the Science Research Department of the Institute of

Animal Science, Chinese Academy of Agricultural Sciences (CAAS) (Beijing, China).

Simulation

We evaluated predictive accuracies and running time of our algorithm in simulation. Here,

GPOPSIM software was used to generate simulation dataset including markers and QTLs [29].

Heritability was set to 0.5, the population included 1000 individuals, each chromosome

included 10000 markers and the numbers of chromosomes per animal were set to 10. Muta-

tion rate of marker and mutation rate of QTL were both set to 1.25×10−3 per locus per

generation.
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Animals, phenotypes and SNP data

Analysis data were retrieved from the Dryad Digital Repository: http://datadryad.org/

resource/ doi:10.5061/dryad.4qc06 which have been previously described in [30]. Average

daily gain weight (ADG) was obtained with body weight gain divided by number of fatten day,

the weight gain was the difference between the weight before slaughter and the weight entering

in cattle farm. Live weights (LW) were measured before slaughter, and carcass weights (CW)

were measured before carcasses being moved to chilling room. Then, carcasses were placed in

chilling units for 48 hours before cuts. Retail meat weight (RMW) was estimated as RMW =

carcass weight—bone weight—weight of fat covering the carcass. Dressing percentage (DP)

were estimated as DP = carcass weight / live weight, and lean meat percentage (LMP) was

LMP = (carcass weight- bone weight) / live weight. Summary statistics of these traits including

number of animal, mean, standard deviation (SD), minimum and maximum of six traits were

listed in Table 1.

To eliminate potential impact of environmental effects including farm, year of measure-

ment and age for slaughter traits, we corrected phenotypes using the following equation as in

[31],

yijkm ¼ uþ Farmi þMonthj þ Year k þ eijkm

where, yijkm is the vector of phenotype, u is the population mean, Farmi is the category of the

farm where the animal was raised, Monthj is the number of months after birth, Yeark is the

year of slaughter, eijkm is the random residual. We processed SNP quality control using PLINK

v1.07 [32] software and selected SNPs based on minor allele frequency (>0.05), proportion of

missing genotypes (<0.05), Hardy-Weinberg equilibrium (p>10−6). 1217 individuals

remained after quality control (Table 2) and 671220 SNPs were included in autosomes.

Statistical model

In this study, linear mixture model was used as following,

yi ¼ mþ
XM

j¼1

Zijaj þ ei

where yi is phenotype for individual i, M is the number of SNPs, μ is the overall mean, aj is the

effect of locus j, Zij is the SNP genotype code for individual i at locus j (coded as 0, 1, 2),ei is the

random residual effect for individual i.

Table 1. Summary statistics of slaughter traits (number of animal, mean, and standard deviation (SD), maximum and minimum of each trait).

Trait Num. Mean±SD Maximum Minimum

ADG 1294 0.97 ±0.22 2.41 0.38

LW 1302 505.26±70.73 776 318

CW 1302 271.35 ±45.63 486 162.6

DP 1301 53.56±2.91 68.98 41.03

LMP 1301 45.47 ±3.08 61.56 32.51

RMW 1299 169.94±29.80 280.87 84

ADG: Average daily gain weight (kg), LW: Live weight (kg), CW: Carcass weight (kg), DP: Dressing Percentage (%), LMP: Lean meat percentage (%),

RMW: Retail meat weight (kg). Num: Number of animal, Mean±SD: phenotypic mean and standard deviation.

https://doi.org/10.1371/journal.pone.0179885.t001
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BayesA

All loci are assumed to have effects for the trait of interest in BayesA. The prior distribution of

effects αj is assumed to be a normal distribution with a mean 0 and a variance s2
aj

, whereas the

prior distribution of s2
aj

belongs to scaled inverted chi-square distribution, χ-2(ν,S), where S is

a scale parameter and ν is the number of degrees of freedom. ν = 4.012 and S = 0.0020 are used

as the prior distribution of s2
aj

. Gibbs sampling is used for the estimation of marker effects and

variances [1].

BayesB

BayesB assumes that some SNPs have zero effect, while other SNPs are assumed to have large

effects. Therefore, parameter π is used in BayesB to control whether the locus has a nonzero

effect or not.

s2
ai
¼ 0 probability p

s2
ai
� w� 2ðn; SÞ probability ð1 � pÞ

(

Where ν = 4.234 and S = 0.0429 are suggested to yield the mean and variance of s2
ai

. Metropolis

Hasting algorithm is used to implement the sampling of variances [1]. In our study, we set π to 0.99.

BayesCπ
BayesCπ modifies BayesB method by replacing the locus-specific variance components with a

common effect variance, and this method assumes an unknown fraction π [with uniform (0,

1) prior] of SNP with a nonzero effect, the common variance has a scaled inverse chi-square

prior with parameter ν = 4.2 and scale factor S, where S is derived as for BayesB [24]. The prob-

ability π is treated as an unknown with uniform (0,1) prior, and the effect of a SNP fitted with

probability (1-π) comes from a mixture of multivariate student’s t-distributions.

GBLUP

GBLUP uses mixed model equations with a genomic relationship matrix, assuming a prior

normal distribution for SNP markers. The relationship matrix (A) based on pedigree is substi-

tuted by the genomic relationship matrix (G) in GBLUP as defined by VanRaden [23], the G

matrix is formulated as follows,

G ¼
ZZ '

2
Xn

i¼1

qið1 � qiÞ

;

Table 2. Birth year distribution for genotyped animals.

Birth year Animals

2008 91

2009 193

2010 328

2011 276

2012 208

2013 121

Total 1217

https://doi.org/10.1371/journal.pone.0179885.t002
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where n is the number of loci, qi is the frequency of an allele of the marker i, and Z is a centered

incidence matrix of SNP effects, corrected for allele frequencies [23].

Implementation of multiple chains parallel Bayesian prediction

MCMC includes two steps, sampling in burn-in and sampling after burn-in. In multiple chains

parallel MCMC, sampling in burn-in should be implemented sequentially and parallelization

can only happen in sampling after burn-in [33]. Thus, sampling in burn-in in parallel MCMC

requires the same number of iteration as that in sequential MCMC. In experiments, the num-

ber of chains used in parallel Bayesian models in simulation were set to 1 chain (sequential

models) and 9 different multiple (2, 4, 6, 8, 10, 12, 14, 16, 18) chains, while the number of

chains was set to 16 on real dataset. The maximal iteration of MCMC (both on simulation

dataset and real dataset) was set to 50000 with 5000 burn-in.

In parallel computing, computing tasks are executed in process, and each process is dis-

patched to one computing core. In our study, computation in Bayesian model was divided

into sequential part and parallel parts, sequential part was implemented by master process,

and its tasks included loading data from files, initializing parameters, broadcasting data and

parameters to parallel parts. Parallel parts were implemented by slave processes independently,

slave processes computing tasks included random number seed setting, burn-in computing,

estimating locus effect and calculating GEBVs (Fig 1).

Multiple chains convergence diagnosis

Multiple chains convergence diagnosis followed Gelman and Rubin’s method [34]. R̂ is the

shrink factor, if
ffiffiffiffi
R̂
p

> 1, the chains don’t converge, if
ffiffiffiffi
R̂
p
� 1, the chains converge.

GEBV calculation

GEBV is calculated as the sum of all SNP effects according to marker genotypes and genotype

effects. Just as the following equation.

GEBVi ¼
X

j

Zijgj

where GEBVi is the genomic estimated breeding value of animal i, Zij is a genotype for SNP j of

animal i, and gj is the estimated effect of the jth SNP locus.

Cross-validation procedure

To evaluate the predictive accuracies, random masking cross-validation method was used in

this study [13]. A total of 1217 Simmental cattle were divided into validation set and training

set. Phenotypes of animals in the validation set were assumed unknown. Five-fold cross valida-

tion was used to assess the accuracies of prediction, and 1217 individuals were randomly parti-

tioned into five groups. In each time, about one-fifth of 1217 Simmental were randomly

picked out as the validation set and the remaining individuals were used as the training set.

For each trait, the procedure was repeated 10 times and the average value was calculated as the

GEBV.

Predictive criterion

To remove the influence of the heritability for predictive ability, we used Pearson’s correlation

between GEBVs and corrected phenotypes divided by square root of heritability (rĝ ;ŷ=
ffiffiffiffiffi
h2
p

),
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here, rĝ ;ŷ was the correlation between GEBVs and corrected phenotypes, ŷ was the vector of

corrected phenotype in validation set and ĝ was the vector of GEBVcalculated with SNP data

in validation set and effects obtained in training set [8]. Moreover, we compared results using

average values and standard deviations of predictive accuracies.

Fig 1. Workflow of multiple chains parallel Bayesian genomic prediction. Proc1: Process 1, Proc2: Process 2, ProcN:

Process N. σ2: variance of normal distribution for estimated effects.

https://doi.org/10.1371/journal.pone.0179885.g001
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Computer system

Our experiments were conducted on HP ProLiant DL585 G7 server, which was equipped with

AMD Opteron 6344(2.6GHz) CPU, 272G Memory and L2 cache size 4M, L3 cache size 16M.

We wrote programs in C language within Message Passing Interface (MPI) system, MPICH2

is an open source MPI implementation and a standard for message-passing in parallel comput-

ing, it is available freely (http://www.mpich.org/downloads). The Integrated Development

Environment we used is Dev-C++ 5.1, which is published freely (http://www.bloodshed.net/

index.html).

Result

Results using simulation dataset

Predictive accuracies using multiple chains were shown in Table 3. For PBayesA, PBayesB or

PBayesCπ, there were tiny differences of predictive accuracies among different chains’ results

from the same parallel Bayesian method, the maximal difference was from PBayesCπ, where

the largest accuracy (0.868763 using 10 chains) was 0.18% (percent point difference) higher

than the smallest accuracy (0.86716 using 4 chains), and the minimal difference was from

PBayesA,where the largest accuracy (0.836904 using 6 chains) was 0.04% higher than the

smallest accuracy (0.836559 using 8 chains). In this study, the descending order of predictive

accuracies for four methods were found (PBayesB> PBayesCπ>PBayesA>GBLUP) in simula-

tion. We evaluated the running time across PBayesA, PBayesB and PBayesCπ in simulation,

and we found the running time reduced obviously for the three parallel Bayesian methods

with increase of chain number (Fig 2).

Predictive accuracies

In this study, we calculated heritabilities of slaughter traits (Table 4) using restricted maximum

likelihood (REML) based on animal model. Random masking cross-validation method was

applied to assess the predictive accuracies of slaughter traits in Simmental cattle population. In

general, the predictive accuracies for most traits were slightly different between parallel Bayes-

ian models and GBLUP. Accuracies of genomic predictions were ranged from 0.195±0.084

(GBLUP for LMP) to 0.424±0.147 (PBayesB for CW). The average accuracies across traits were

Table 3. Predictive accuracies using four methods using PBayesA, PBayesB, PBayesCπ and GBLUP in simulation.

PBayesA PBayesB PBayesCπ GBLUP

1 ch 0.836777 0.887837 0.867312 0.829173

2ch 0.836731 0.887741 0.867161

4ch 0.836797 0.887449 0.867160

6ch 0.836904 0.888563 0.868017

8ch 0.836559 0.888305 0.868319

10ch 0.836770 0.888232 0.868763

12ch 0.836862 0.888997 0.868347

14ch 0.836814 0.888535 0.868426

16ch 0.836844 0.888852 0.868385

18ch 0.836820 0.888823 0.868210

ch means chains used in experiments, GBLUP: Genomic Best Linear Unbiased Prediction, PBayesA: multiple chains parallel BayesA, PBayesB: multiple

chains parallel BayesB, PBayesCπ: multiple chains parallel BayesCπ.

https://doi.org/10.1371/journal.pone.0179885.t003
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0.327±0.085 for GBLUP, 0.335±0.063 for PBayesA, 0.347±0.093 for PBayesB and 0.334±0.077

for PBayesCπ (Table 4). Prediction accuracies among the four methods for six traits were pre-

sented in Fig 3.

For most traits, parallel Bayesian methods resulted in slightly higher accuracies than

GBLUP. For LW, CW and DP, PBayesB performed best among these four methods, and the

percentage point differences between PBayesB and GBLUP were 9.02% for LW, 6.80% for CW

and 12.27% for DP respectively. For LMP, PBayesA showed higher predictive accuracy than

GBLUP (10.77%). For RMW, we found PBayesCπ, PBayesB and PBayesA were superior to

GBLUP, while GBLUP was superior over parallel Bayesian methods for ADG.

Fig 2. Comparisons of running time in simulation. Axis x indicates chains number used in parallelization and axis y indicates running

time.

https://doi.org/10.1371/journal.pone.0179885.g002
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Posterior samples of residual variance

Posterior samples of residual variance were used in convergence diagnosis analysis as

described in previous study [15]. The largest percent point difference among PBayesA,

PBayesB and PBayesCπ was found for ADG, the difference happened between PBayesB and

PBayesCπ (30.91%), posterior samples of residual variance approached 0.0061 (PBayesA),

0.0072 (PBayesB) and 0.0055 (PBayesCπ) which were shown in Fig 4P–Fig 4R.While the slight-

est percent point difference was found in RMW, the difference happened between PBayesA

and PBayesCπ (1.33%), posterior samples of residual variance were 152 (PBayesA),154

(PBayesB) and 150 (PBayesCπ) (Fig 4M–Fig 4O). For LW, CW, DP and LMP,we also observed

slight differences for posterior samples of the residual variances using PBayesA, PBayesB and

PBayesCπ (Fig 4A–4L).

Convergence diagnose of multiple chains

In multiple Markov chains parallel Bayesian genomic prediction, convergence diagnose helps

determine the equilibrium of MCMCs. With convergence diagnosis criterion proposed by Gel-

man and Rubin [34], we assessed the convergence of multiple chains for the genomic prediction

of slaughter traits, and we observed the shrink factors of PBayesA, PBayesB and PBayesCπ quickly

approached 1.00 for six traits (Fig 5), which indicated multiple chains converged in parallel Bayes-

ian models.

Discussion

In this study, we carried out genomic prediction for slaughter traits using GBLUP and Bayes-

ian models in Chinese Simmental cattle. In the last decade, beef cattle have been selected for

various economic traits such as growth [2, 7–9], carcass [10–14], meat [35] and reproduction

[35, 36]. To maximize the economic benefits of beef cattle reproduction, selection for econom-

ically important traits is desirable. Therefore, slaughter traits (live weight, carcass weight,

Table 4. Heritabilities estimation and predictive accuracies of GEBVs for slaughter traits in Chinese Simmental cattle.

Trait h2 Average value (standard deviation) of correlations Average value (standard deviation) of correlations divided by

square root of heritability

GBLUP PBayesA PBayesB PBayesCπ GBLUP PBayesA PBayesB PBayesCπ
LW 0.37 0.236

(0.060)

0.247

(0.032)

0.257

(0.040)

0.242

(0.044)

0.388

(0.099)

0.405

(0.053)

0.423

(0.066)

0.398

(0.072)

CW 0.45 0.266

(0.059)

0.271 (0.057) 0.285

(0.098)

0.268

(0.080)

0.397

(0.089)

0.404

(0.085)

0.424

(0.147)

0.399

(0.119)

DP 0.16 0.111

(0.031)

0.114

(0.021)

0.124(0.045) 0.114

(0.021)

0.277

(0.076)

0.285

(0.053)

0.311

(0.113)

0.285

(0.052)

LMP 0.14 0.073

(0.031)

0.081

(0.025)

0.080

(0.009)

0.074

(0.010)

0.195 (0.084) 0.216

(0.066)

0.214

(0.023)

0.198

(0.028)

RMW 0.43 0.258

(0.058)

0.265

(0.050)

0.265

(0.021)

0.271

(0.050)

0.393

(0.088)

0.404(0.076) 0.404

(0.032)

0.413

(0.076)

ADG 0.47 0.214

(0.052)

0.203

(0.029)

0.210

(0.120)

0.213

(0.079)

0.312

(0.076)

0.297

(0.042)

0.306

(0.175)

0.311

(0.115)

mean 0.193

(0.049)

0.197

(0.036)

0.204

(0.056)

0.197

(0.047)

0.327

(0.085)

0.335

(0.063)

0.347

(0.093)

0.334

(0.077)

LW: Live weight (kg), CW: Carcass weight (kg), DP: Dressing Percentage (%), LMP: Lean meat percentage (%), RMW: Retail meat weight (kg), ADG:

Average daily gain weight (kg).

https://doi.org/10.1371/journal.pone.0179885.t004
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dressing percentage, lean meat percentage, retail meat weight andaverage daily gainweight)

have been mostly focused by beef cattle industry.

Genomic predictions have aroused scientists’ interests for merits of robustness, easy imple-

mentation and higher predictive capability. The intensive computing of Bayesian models may

require days, weeks, or even months of computing time on personal computers or worksta-

tions [15] and this computational burden is the most obvious obstacle for its application in

animals and plants breeding. Stranden et al. used parallel preconditioned conjugate gradient

method to estimate breeding values in Finnish dairy cattle, running time using four processors

was obviously reduced in contrast to that of sequential mode [37]. Using theoretical and

Fig 3. Predictive accuracies using GBLUP, PBayesA, PBayesB and PBayesCπ for slaughter traits in Chinese Simmental

cattle. LW: Live weight (kg), CW: Carcass weight (kg), DP: Dressing Percentage (%), LMP: Lean meat percentage (%), RMW: Retail

meat weight (kg), ADG: Average daily gain weight (kg). PBayesA: multiple chains parallel BayesA, PBayesB: multiple chains parallel

BayesB, PBayesCπ: multiple chains parallelBayesCπ. GBLUP: Genomic Best Linear Unbiased Prediction.

https://doi.org/10.1371/journal.pone.0179885.g003
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Fig 4. Trace plots of posterior samples of residual variancesin burn-in (from start to equilibrium) from

multiple chains parallel Bayesian models for 6 traits. (A)Trace plots for live weight, (B) Trace plots for carcass

weight, (C) Trace plots for dressing percentage,(D) Trace plots for lean meat percentage (E) Trace plots for retail
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experiment analyses, Wu et al. found obvious reduction of running time for experimental

results using parallel MCMC method in breeding estimation [15]. Running time reduction of

PBayesA, PBayesB and PBayesCπ using simulation dataset (Fig 2) were consistent with previ-

ous studies [15, 37]. In current study, we used parallel BayesA, BayesB and BayesCπ to estimate

genomic breeding values for slaughter traits by dividing the heavy computing task into several

segments, and our results provided valuable insights for application of genomic selection using

parallel MCMC for these traits in Chinese Simmental cattle.

Model comparisons

GBLUP shows obvious superiority over Bayesian models on computing time, for instance, the

time taken in GBLUP is less than one minute for each of the 5-fold cross validation, while 3

days were required in the genomic prediction using Bayesian models. The reason for obvious

difference in computing time may be caused by model, population size and marker number.

In GBLUP, genomic matrix calculation is a time consuming process, and for a population with

certain number of individuals and genotyped data, genomic matrix calculation is implemented

only once and the result can be reused in genomic prediction for other traits in the same popu-

lation. While in Bayesian models, effect of each locus was estimated with MCMC method, the

MCMC sampling procedure should be implemented thousands of times.

Bayesian methods can appropriately model the architecture of QTL effects within the

genome, especially for traits that possess large effect QTLs [13]. It has previously been observed

that the genomic predictive ability depends on attributes of genetic architecture of the trait,

population size and particular model. We observed the predictive accuracies of Bayesian mod-

els were slightly different for 6 traits using 3 parallel Bayesian methods, and the performance

of accuracy was PBayesB > PBayesA > PBayesCπ.

Genomic prediction methods

In this study,we found parallel Bayesian models outperformed GBLUP for most traits. Previ-

ous studies have suggested that GBLUP outperformed Baysian methods using low-density

chip including 15K SNP chip [3] and 25K SNP chip [3, 38]. In contrast, Erbe et al.suggested

Bayesian method (Bayes R) was superior over GBLUP after analyzing genomic selection in

dairy cattle using imputed high-density panel, and their finding also implied Bayesian methods

may take full advantage of the increased marker density [25]. Bayesian methods outperformed

GBLUP for traits controlled by several SNPs with large effects, while GBLUP performed better

for those traits which were not controlled by large effects SNPs. This could be explained that

the genetic architecture of ADG was different from other traits. Our results also suggested that

GBLUP was suitable for ADG, while PBayesA, PBayesB and PBayesCπ were suitable for other

traits in Chinese Simmental cattle population.

Accuracies of genomic predictions

To comprehensively evaluate the accuracies of estimated breeding values among PBayesA,

PBayesB and PBayesCπ, we ran different multiple chains in simulation data set using the three

methods. For the same Bayesian methods, we found that slight difference among predictive

accuracies of sequential Bayesian method and multiple chains parallel Bayesian methods, this

indicated that parallel Bayesian methods can generate equivalent accuracies comparing to that

meat weight, (F) Trace plots for average daily weight gain.PBayesA: multiple chains parallel BayesA, PBayesB:

multiple chains parallel BayesB, PBayesCπ: multiple chains parallel BayesCπ.

https://doi.org/10.1371/journal.pone.0179885.g004
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of sequential Bayesian methods. In general, the descending order of predictive accuracies in

simulation was PBayesB > PBayesCπ> PBayesA > GBLUP.

Accuracies of genomic prediction can be impacted by the model, heritability of the trait, the

size of the reference population, the density of the SNP panel and level of LD [2]. Previous study

revealed that traits with a larger number of genotyped animals and higher heritability generated

the higher accuracy of GEBV [7]. For six studied traits, we found obvious differences among the

estimated heritabilities, heritabilities of LW (h2 = 0.37), CW (h2 = 0.45), RMW (h2 = 0.43) were

higher than those of DP (h2 = 0.16) and LMP (h2 = 0.14), while predictive accuracies for LW, CW

and RMW were higher than those for DP and LMP, and our findings were consistent with previ-

ous studies [7, 39]. Notably, we found the heritability for ADG was 0.47, and the predictive accu-

racies were 0.297±0.042 (for PBayesA), 0.306±0.175 (for PBayesB), 0.311±0.115 (for PBayesCπ)

and 0.312±0.076 (for GBLUP), thus, our results suggested that density of the SNP panel, level of

LD and the model may also have important impacts on predictive accuracies.

Compared to accuracies of CW in previous studies [7, 39], our results (0.397±0.089 for

GBLUP, 0.404±0.085 for BayesA, 0.424±0.147 for BayesB and 0.399±0.119 for BayesCπ) was

higher than those of Nellore (0.37±0.053 for Bayesian ridge regression, 0.36±0.058 for BayesC

and 0.37±0.056 for Bayesian Lasso) [39], Angus (0.16 for GBLUP), Shorthorn (0.19 for GBLUP),

Brahman (0.28 for GBLUP) and Santa Gertrudis (0.29 for GBLUP) cattle, Hereford (0.32 for

GBLUP), Belmont Red (0.33 for GBLUP), and was similar to that of Murray Grey (0.39 for

GBLUP) cattle [7].For ADG, accuracies of our results (0.312±0.076 for GBLUP, 0.297±0.042 for

PBayesA, 0.306±0.175 for PBayesB, 0.311±0.115 for PBayesCπ) were higher than Angus (0.24 for

GBLUP and for Bayes R), Belmont Red (0.24 for GBLUP and 0.18 for BayesR), Brahman crosses

(0.13 for GBLUP and 0.27 for BayesR), Santa Gertrudis (0.21 for GBLUP and 0.23 for BayesR)

[7]. This indicated that genomic selection using multiple chains parallel Bayesian models was

suitable for genomic prediction for LW, CW, RMW, DP and LMP in Chinese Simmental beef

cattle.

Multiple chains convergence diagnosis

In multiple chains MCMC, effective sampling should happen when chains converges. During

the evaluation of convergence of multiple chains, we observed sampling results from start to

the point when chains being in equilibrium in burn-in step. Sampling results and shrink fac-

tors in equilibrium were stable and we omited part of trace plots in equilibrium across traits.

For multiple chains MCMC, each one started with different initial value, and all chains

should converge after a certain number of iteration. We used Gelman and Rubin’s method

[34] to evaluate multiple chains’ convergence state. The convergence was examined using pos-

terior samples of the residual variance collected from each chain. Posterior samples showed

slight differences among parallel Bayesian models for the same traits and trace plots of poste-

rior samples of the residual variance indicated that most chains tended to stabilize after 2000

iterations (Fig 4).

We assessed parallel Bayesian models for six traits, and all shrink factors approached 1 (Fig

5(A)–5(F)). Wu et al. suggested that a burn-in of 3000 iterations being more appropriate [15],

our results showed that shrink factors approached 1 with less than 3000 iteration, this finding

suggested that multiple chains MCMC converged obviously in Simmental beef cattle dataset.

Conclusions

Our study demonstrated that it is feasible for the application of parallel genomic prediction for

slaughter traits in Chinese Simmental beef cattle. Our results indicated that parallel BayesB

outperformed GBLUP, parallel BayesA and parallel BayesCπ. Moreover, the predictive

Parallel genomic prediction in Chinese Simmental beef cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0179885 July 19, 2017 13 / 17

https://doi.org/10.1371/journal.pone.0179885


Fig 5. Trace plot of convergence of multiple chains (from start to equilibrium) for 6 traits. (a) Parallel

Bayesian models for LW, (b) Parallel Bayesian models for CW, (c) Parallel Bayesian models for DP, (d)
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accuracies of parallel Bayesian models were more accurate than GBLUP for most traits and

these methods are interest for the future application of genomic selection in farm animals.
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