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Abstract

While many data are available on genes encoding proteins for degradation of hydrocarbons

in bacteria, the impact of alkane on transporter protein expression is unclear. Pseudomonas

aeruginosa SJTD-1 is a strain that can consume medium- and long-chain n-alkanes. In

order to study the proteins involved in n-octadecane uptake, we use iTRAQ and label free

comparative proteomics analysis to identify the proteins of alkane uptake in response to n-

octadecane (C18) comparing with n-hexadecane (C16) in P. aeruginosa SJTD-1. A total of

1102 and 1249 proteins were identified by iTRAQ-based and label free quantitative method-

ologies, respectively. By application of 1.5 (iTRAQ) or 2-fold (label free) for upregulated and

0.65 (iTRAQ) or 0.5-fold (label free) for downregulated cutoff values, 91 and 99 proteins

were found to be differentially expressed comparing SJTD-1 cultivated on C18 with C16

respectively. There are six proteins with the common differential expression by iTRAQ and

label free-based methods. Results of bioinformational analysis suggested the involvement

of bacterial chemotaxis in responds to C18. Additionally, quantitative reverse transcriptase

PCR (qRT-PCR) results confirmed C18-induced change in levels of FleQ, FliC, NirS, FadL

and FadD proteins and the role of the proteins in n-octadecane uptake was further dis-

cussed in P. aeruginosa. In conclusion, results of the present study provided information

about possible target-related proteins of bacterial chemotaxis, swimming performance,

alkane transport to stimulus of n-ctadecane rather than n-hexadecane in P. aeruginosa

SJTD-1.

Introduction

Some microorganisms are able to use hydrocarbons, although are toxic to animals and plants,

as carbon and energy sources [1, 2]. Among multiple hydrocarbon pollutants, n-alkanes are a

large class of saturated hydrocarbons with extremely low water solubility. Many strains, for
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example Alcanivorax, Thalassolituus, Pseudomonas, Rhodococcus, or Acinetobacter, have been

found possess the ability to degrade short- (C4-C8), medium- (C5–C16) and long-chain

(C10-C36) linear n-alkanes [3–6]. Among them, Pseudomonads have been surveyed for their

efficient utilization of n-alkanes for a long time. A strain of P. aeruginosa SJTD-1 was isolated

from oil-contaminated soil; its hydrocarbon utilization capability and n-alkane breakdown

efficiency were investigated [7].

Many genes encoding proteins for degradation of hydrocarbons has been studied [1,8],

yet the proteins involved in the alkane uptake have not been much worked out. The mecha-

nism of alkanes enter the cell may differ depending on the bacterial species considered, the

molecular weight of the alkane and the physico-chemical characteristics of the environment

[9,10]. It has been shown that the short alkane can be acquired directly by bacteria due to

the high water solubility [11,12]. However, the water solubility of n-alkanes decreases expo-

nentially as their molecular weight increases [13], and long-chain alkanes are more persis-

tent in the environment than shorter-chains. It is summarized by Rojo that for medium-

and long-chain-length n-alkanes, microorganisms may gain access to them either by adher-

ing to hydrocarbon droplets or by a surfactant-facilitated process [1]. Biofilm formation at

the hydrocarbon-water interface has been observed with various alkane-degrading strain

including Pseudomonas sp. strain 8909N [14,15], and a strong link between biofilm forma-

tion and the utilization of alkanes has been indicated in Marinobacter hydrocarbonoclasticus
SP17 [16]. Hemamalini and Khare presented that the outer membrane porins showed sig-

nificant differential expression in presence of alkanes [17]. AlkL in Pseudomonas putida
GPo1, was identified as the first known bacterial alkane importer [18]. The FadL membrane

transport was firstly characterized in E. coli to specifically recognize and transport a long-

chain fatty acids (LCFAs) [19,20]. Recently, FadL was also confirmed to server as the major

route for medium-chain alkane import in E. coli.[21]. In our previous study, we use iTRAQ

strategy firstly to compare the proteomes of P. aeruginosa SJTD-1 degrading alkane [22].

Our previous results indicate FadL and type VI secretion system (T6SS) subunits might play

significant roles in alkane uptake in P. aeruginosa.

Although many possible proteins related with alkane assimilation have been identified, the

information of alkane uptake offered by the results is limit in P. aeruginosa, and the passage of

proteins of transport and their regulator is still unclear. Hence, it seems quite worthwhile to

investigate the proteome profile of P. aeruginosa cultivated on C18 comparing with C16, espe-

cially to see which proteins get differentially expressed in response to n-octadecane and thus

play a role in the cellular alkane uptake.

In this case, we used iTRAQ and label free comparative proteomics to characterize the n-

octadecane uptake comparing with n-hexadecane in P. aeruginosa SJTD-1, 91 and 99 pro-

teins were found to been differentially expressed respectively. Additionally, the overexpres-

sion of FleQ, FliC, NirS and FadL was confirmed by qRT-PCR in transcript level. In this

sense, results of the present study provided information about possible target-related pro-

teins of alkane uptake and of course be important for understanding alkane use in P. aerugi-
nosa SJTD-1.

Materials and methods

Strains and culture media

P. aeruginosa SJTD-1 was cultured at 37˚C with a shaking speed of 200 rpm. Luria-Bertani

medium (LB) and C18 or C16 medium containing (K2HPO4 3.815 g, KH2PO4 0.5 g, (NH4)

2HPO4 0.825g, KNO3 1.2625 g, Na2SO4 0.2 g, CaCl2 0.02 g, FeCl3 0.002 g, MgCl2 0.02 g/l

and 500 mg/l n-octadecane or n-hexadecane) were used in this study.

Quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1 in alkane uptake
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Bacteria cultivation and protein preparation

P. aeruginosa SJTD-1 was precultured overnight in LB at 37˚C with vigorous shaking followed

by being harvested by centrifugation and washed three times with 1× PBS buffer. The obtained

precultures were inoculated to two flasks containing 100 ml C18 or C16 respectively and be

cultured as the described above. The C16-grown cells were been selected as the control group

in both iTRAQ-based and label-free analysis. Cells of the late exponential phase was harvested

after SJTD-1 has been cultivated for 30 hours in alkane medium (OD600 = 0.5~0.8) and re-

suspended into the pre-cooled lysis buffer (7 M Urea, 4% CHAPS, 1mM PMSF, 2mM EDTA,

0.5 mM EGTA, 40 mM Tris-HCl, pH 7.4). Sonication was used to shear the cells, and cell

debris was removed by centrifugation at 15,000 rpm for 20 min at 4˚C. The supernatant was

quantified using the Bradford method [23] and store at -80˚C.

Protein digestion and iTRAQ labeling

Each sample of 200 μg protein was reduced using 2 μl 1M DTT at 60˚C for 1 h. Cysteine resi-

dues were blocked using 10 μl 1M iodoacetamide (IAM) for 10 min at room temperate. Pro-

teins were digested with Sequencing Grade Modified Trypsin (Promega, USA) via the FASP

protocol with spin ultrafiltration units of nominal molecular weight cutoff 10,000 [24]. Protein

digestions were conducted overnight with trypsin in a 1:25 trypsin-to-protein mass-ratio.

After digestion, the liberated peptides were collected by centrifugation and the filtration units

were washed with 50 μL of dissolution buffer two times. Samples were labeled using 4plex

iTRAQ reagent kit (AB Sciex, Framingham, MA) as follows: Sample C18-1:115; C16-1:117;

C18-2:115; C16-2:117; C18-3:116; C16-3:114. Sample C18-1 and C16-1, C18-2 and C16-2, or

C18-3 and C16-3, then pooled together respectively and dried by SpeedVac.

High pH reverse phase liquid chromatography

The peptide mixture was re-dissolved with the buffer A (20 mM ammonium formate,

pH10.0), and then fractionated on a Survey HPLC system (Thermo scientific, Wilmington,

DE, USA) using a reverse phase column (Agela, Durashell-C18 Column, 2.1 mm × 250 mm,

5 μm, 100 Å). The peptides were eluted with gradient 5~15% B (20 mM ammonium formate

in 80% ACN, pH 10.0) in 25min, 15~38% B in 15min, 90% B hold for 10 min at a constant

flow rate of 0.8 ml/min. The absorbance at 214 nm was monitored, and a total of 38 fractions

were collected and then combined into 9 fractions based on peak intensities.

One-dimensional gel electrophoresis and In-gel digestion

Four replicates of concentrated P. aeruginosa SJTD-1 on C18 or C16 were separated on 10%

SDS-PAGE gel, and stained with Coomassie Blue. After extensive decolorization, each gel lane

was excised into 8 sections. Each excised section was destained by incubation in 50% acetoni-

trile in 50 mM ammonium bicarbonate. After destained, the gel pieces were reduced by incu-

bation in a solution of 10 mM DTT in 25 mM ammonium bicarbonate at 60˚C for 20 min. For

alkylation of proteins, the gel was incubated in a solution of 100 mM IAM at room tempera-

ture for 15 min, followed by dehydrating in 100% acetonitrile for 15 min. After gel pieces were

completely dried by SpeedVac, the pieces were swollen in 100μl of 25 mM ammonium bicar-

bonate buffer containing 0.01 mg/ml trypsin (Promega, Madison, WI) and incubated over-

night at 37˚C. Peptides were extracted with 60% acetonitrile containing 5% formic acid and

100% acetonitrile successively, dried by SpeedVac, and stored at -20˚C for further analysis.

Quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1 in alkane uptake
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Nano LC-MS/MS

The digested peptides were analyzed using an LC system (Nano Pump, Ultimate 3000, Dionex,

Thermofisher) coupled with an ESI-Q-TOF mass spectrometer (maXis, Impact, Bruker Dalto-

nik, Germany). Each peptide sample was re-dissolved in 2% acetonitrile with 0.1% formic acid,

and then loaded onto a Peptide trap column (0.75 mm�2 cm, 3 μm, Dionex, Thermofisher)

with the autosampler of the LC system. To desalt and concentrate the sample, the trap column

was washed with 2% acetonitrile and 0.1% formic acid at a flow rate of 5μl/min for 10 min.

Then the trapped peptides were released and separated in a C18 capillary column (75 μm�15

cm, 3 μm, Dionex, Thermofisher). The peptides were separated using a solvent system with

solvent A consisting of 99.9% water and 0.1% formic acid, and solvent B consisting of 99.9%

acetonitrile and 0.1% formic acid. The peptides were eluted with gradient 2~30% B in 80

(iTRAQ) or 60 min(label free), 30~80% B in 10 min, and 80% B hold for 10 min with a con-

stant flow rate of 400 nl/min. The LC setup was coupled online to a Q-TOF using a nano-ESI

source (Bruker Daltonik, Germany) in data dependent acquisition mode (m/z 350–1500). The

Source Capillary was set at 2000~2400 v, the flow and temperature of dry gas was 2.0 L/min

and 150˚C respectively. The mass spectrometer was set as one full MS scan followed by ten

MS/MS scans on the ten most intense ions from the MS spectrum with the following dynamic

exclusion settings: exclusion duration = 15 s.

Data analysis of iTRAQ-based proteomic analysis

The data analysis method of iTRAQ-based proteomic analysis was the same as the mentioned

before [22]. The database being used to search is the NCBI_SJTD1_20140411 database (5618

entries) which was established as the mentioned before [22]. Scaffold Q+ (version_4.4.0, Prote-

ome Software Inc., Portland, OR) was used to quantify the isobaric tag peptide and protein

identities. Peptide identifications were accepted if they could be established with probability

greater than 81.0% to achieve an FDR less than 1.0% by the Scaffold Local FDR algorithm. Pro-

tein identifications were accepted if they could be established at greater than 99.0% probability

to achieve an FDR less than 1.0% and contained at least 2 identified peptides. Proteins that

contained similar peptides and could not be differentiated on the basis of MS/MS analysis

alone were grouped to satisfy the principles of parsimony. Proteins sharing significant peptide

evidence were grouped into clusters. Acquired intensities in the experiment were globally nor-

malized across all acquisition runs. Individual quantitative samples were normalized within

each acquisition run. Intensities of peptide identification were normalized within the assigned

protein. The reference channels were normalized to produce a 1:1 fold change. All normaliza-

tion calculations were performed using medians to multiplicatively normalize data. Permuta-

tion Test (P-Value) Test analysis was performed to examine the biological reproducibility (P�
0.05). The final list of protein ratios was an average of the protein ratios (115-1/117-1, 115-2/

117-2 and 116-3/114-3).

Data analysis of label free-based proteomic analysis

Quantification of these proteins was performed by a label free approach using the fractionation

workflow implemented in the Progenesis LC-MS software [25]. The acquired MS raw data

were loaded into Progenesis LC-MS (version 4.1, Nonlinear Dynamics, Newcastle, U.K.), and

label free quantification was performed for each condition after peak detection, automatic

retention time calibration, and normalization in Progenesis LC−MS. The peaklist was created

by Progenesis LC-MS and searched in Mascot (version 2.4.1, Matrixscience, London, U.K.).

The NCBI_SJTD1_20140411 database (5618 entries) was the same as mentioned above and

the decoy option was selected in Mascot. The following parameters were considered for the

Quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1 in alkane uptake
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searches: peptide mass tolerance was set to 40 ppm, fragment mass tolerance was set to 0.05

Da, and a maximum of two missed cleavage of trypsin was chosen. Carbamidomethyl (C) was

set as fixed modification, and oxidation (M), deamidation (NQ) were set as variable modifica-

tions. All search results were filtered by 1% FDR by Mascot Percolator algorithm and at least

two identified unique peptides for each protein. All highly confident identified peptides were

exported and quantified in Progenesis LC−MS. Finally, we considered a fold change�2 or

�0.5 and ANOVA p-value� 0.05 in protein expression as a threshold of biological effect.

Enrichment and protein-protein interaction network analysis

GO classifications and the pathway analysis of the proteins involved in metabolic process

are obtained using PANTHER (Version 11.0, Protein Analysis THrough Evolutionary Rela-

tionships, http://pantherdb.org), a widely used online resource for comprehensive protein

evolutionary and functional classification. Protein-protein interaction network and KEGG

pathways analysis for the differential expression proteins were built using the Search Tool

for the Retrieval of Interacting Genes/Proteins (STRING, version 10.0) (accessed at Septem-

ber 20, 2016) with a medium confidence level (0.4) and all available prediction methods

(http://string-db.org/) [26].

RNA extraction and quantitative reverse transcription-PCR (RT-qPCR)

P. aeruginosa SJTD-1 was cultured to the late exponential phase (OD = 0.5~0.8) as described

in “Materials and Motheds” above, and the alkanes were the sole carbon sources. RNA was iso-

lated using the RNA Bacteria Protect Reagent (TaKaRa, Dalian, China). RNA yield was esti-

mated using a NanoDrop UV spectrometer (Thermo Scientific, Wilmington, DE, USA).

About 1μg of RNA was reversely transcribed using PrimeScriptTM RT Master Mix (TaKaRa,

Dalian, China). Quantitative real-time PCR was performed using StepOnePlus Real-Time

PCR System (Applied Biosystem, USA) with SYBR Green mix (TaKaRa, Dalian, China) and

gene-specific primers (F and R). 16S rRNA was used as reference gene of this quantitative sys-

tem. The qRT-PCR procedure carried out was as follows: 30 seconds of pre-denaturing, 40

cycles of 95˚C for 10 s; 58˚C for 30 s; and 72˚C for 30 s; followed by a melting curve stage from

58˚C to 95˚C. The relative fold change in mRNA quantity was calculated using the DDCt

method [27]. The cDNA amplification efficiency of the samples and internal standards (16S

rRNA) were equivalently modulated. At least three independent quantitative real-time PCR

experiments were conducted for each RNA sample. All primers which were used in this

research were shown in the S1 Table.

Results

Proteins identified in iTRAQ-based and label-free analysis

In iTRAQ-based analysis, 1102 proteins were been identified and quantified, and totally 91

proteins showed a significant change in expression comparing with control, including 57

being upregulated and 34 downregulated, in C18-cultivated strain (S2 and S3 Tables). In the

label-free analysis, 1249 proteins are been identified and quantified and totally 99 proteins

showed a significant change, including 89 being upregulated and 10 downregulated, in

C18-cultivated strain (S4 and S5 Tables). As shown in Fig 1, by comparing results from

iTRAQ and label free-based analysis, we identified 907 proteins in common for both analysis.

A total of 184 proteins showing a significant change in expression comparing with control

were identified by iTRAQ and label free-based analysis with C18-cultivated strain, and six

common proteins showing differential expression were found to be overlapping between the

Quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1 in alkane uptake
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two approaches, of which five proteins were been upregulated. The names of the six common

proteins with differential expression and their comparison of the expression levels (ratio

between cells cultivated on C18 and C16) were listed in Table 1.

Functional category of differently expressed proteins

Those proteins of significant changes by two methods were profiled on basis of GO functional

classification and pathway analysis (Fig 2). As shown in Fig 2, for differentially expressed

Fig 1. Comparison of results obtained from iTRAQ and label free-based analysis. Number of proteins

identified in iTRAQ or label free-based analysis.

https://doi.org/10.1371/journal.pone.0179842.g001

Table 1. Identification of common target proteins differentially expressed during n-octadecane growth by iTRAQ and label free-based methodsa.

Accession Number b Gene Product c NCBI Locus ID_PAO1 Gene name Ratio d Label free Ratio e iTRAQ

gi|15595963 Serine protease MucD PA0766 mucD 2.86 1.53

gi|15599785 Probable outer membrane protein PA4589 fadL 2.51 1.60

gi|15596964 Uncharacterized protein PA1767 2.26 1.77

gi|15595513 D-3-phosphoglycerate dehydrogenase PA0316 serA 2.11 1.5

gi|15598528 Uncharacterized PhzA/B-like protein PA3332 2.02 2.23

gi|15598222 Uncharacterized protein PA3026 0.5 0.57

Note:
a Proteins with fold changes of�2 or�0.5 (label free) and�1.5 or�0.65 (iTRAQ) are considered significantly more or less abundant in the presence of n-

octadecane, based on statistic and normalization analysis for four or three biological replicates respectively.
b GI number in accordance with records of P. aeruginosa PAO1 NCBI database
c Gene products documented in NCBI database and IMG/ER system or annotated on basis of sequence similarities using BLAST tools.
d average ratio from four biological replicates for label free study (C18 /C16)
e average ratio from three biological replicates for iTRAQ study (C18 /C16)

https://doi.org/10.1371/journal.pone.0179842.t001
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proteins identified by label-free and iTRAQ methods, the most important biology process was

“metabolic process”. The proteins belong to metabolic process were analyzed by PANTHER to

confirm the pathways being involved. Most of upregulated proteins were involved in serine,

threonine, alanine, arginine, valine and isoleucine biosynthesis. However, the downregulated

proteins were involved in tryptophan biosynthesis. The second largest section of protein level

change was found in “cellular process”. Over half of the proteins have the “catalytic activity” of

molecular function (Fig 2). The pathways enrichment was achieved by analyzing the differen-

tially expressed proteins from two methods using string 10.0. As shown in Fig 3, except metab-

olism and biosynthesis related pathways, “Bacterial chemotaxis” pathway was found to be the

most distinct pathway in responds to C18.

Protein-protein interaction network

We built protein-protein interaction network for those significantly changed proteins from

two methods using STRING 10.0 (S1 Fig) [26]. Proteins were grouped into two large units:

unit associated with or involved in genetic information processing (left) and bacterial chemo-

taxis (right). On that condition, we got a clearer insight into the bacterial effect and the hidden

relations behind the changes of protein levels in face of C18 environment comparing with C16

by means of a computer-assisted analytical approach.

Confirmation of the role of FleQ, FliC, NirS, FadL and FadD roles in the

n-octadecane acquisition and consumption comparing with n-

hexadecane

Five genes (FleQ, FliC, NirS, FadL and FadD) from P. aeruginosa SJTD-1 were selected for

qRT-PCR analysis to quantify their transcriptional levels. As shown in Fig 4, transcripts of

Fig 2. Enrichment analysis results of possible target-related proteins found in label free, iTRAQ, and

both two methods.

https://doi.org/10.1371/journal.pone.0179842.g002

Fig 3. The KEGG pathways in statistically significant differentially expressed proteins of P.

aeruginosa obtained by iTRAQ and label-based methodology.

https://doi.org/10.1371/journal.pone.0179842.g003
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FleQ, FliC, NirS and FadL genes were significantly different comparing C18-grown cells with

C16-grown cells. Despite the different fold changes obtained from qRT-PCR and proteomics,

the overall trends of gene expression are consistent. FadD has no change in transcriptional lev-

els, which is the same with the results of comparative proteomics analysis (S2 and S4 Tables).

In all, results of qRT-PCR means the agreement with those of proteomics.

Discussion

iTRAQ and label-free quantitative proteomic analysis

The quantification proteomics methods of label-free and iTRAQ have been published in sev-

eral studies [28–31]. It has been indicated that each method had its advantages and disadvan-

tages by comparison of these two methods in previous reports. In order to study the different

expressed proteins depending on n-octadecane comparing with n-hexadecane, iTRAQ and

label-free quantitative proteomic analysis were both conducted to identify the proteins in P.

aeruginosa SJTD-1. In our study, the number of proteins identified in label free analysis (1249

proteins) was slightly higher than that of iTRAQ based analysis (1102 proteins), while the fact

that there were 907 common proteins identified in both methods suggested the consistence of

both methods.

Enrichment and protein-protein interaction network analysis

Bioinformatics analysis was conducted to analyze the differential expressed proteins found in

quantification proteomic analysis. Enrichment analysis results showed that “metabolic pro-

cess” and “cellular process” were the most important biology process. Interestingly, despite

of the difference in number of proteins, enrichment analysis results based on differential

expressed proteins found in label-free and iTRAQ-based method were consistent with each

other. Interestingly, most of upregulated proteins were involved in serine, alanine, arginine or

other amino acid biosynthesis except tryptophan biosynthesis in which the downregulated

proteins were involved. Phosphorylated enolpyruvate, offered by gluconeogenesis pathway,

was demanded in the synthesis of tryptophan. Yet, the synthesis of serine, alanine, arginine or

Fig 4. Transcriptional validation of proteomic output using RT-qPCR assays. The value of fold-change

in Y-axis indicates the ratio of either protein or mRNA level observed for strain SJTD-1 growing on C18 as

opposed to C16 grown cells.

https://doi.org/10.1371/journal.pone.0179842.g004
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other amino acid was related with fatty acid metabolism, glycolysis and tricarboxylic acid

cycle. It would be speculated that the C16-cultivatd stains has more usage efficiency of n-hexa-

decane than C18-cultivated stains with n-octadecane by the inhibited gluconeogenesis path-

way and increased serine, alanine, arginine or other amino acid biosynthesis. “Bacterial

chemotaxis” was found to be the important pathway, of which the proteins included showed

the strong interaction among them by protein-protein interaction network analysis. Chemo-

taxis pathways have been found to mediate flagellum- and type IV-pili mediated motility, play-

ing important role in access compounds that serve as carbon/nitrogen sources or electron

acceptors [22,32]. In sum, the results of comparative proteomics suggested chemotaxis still

play an important role in responds to n-octadecane comparing with n-hexadecane in order to

acquire alkanes of longer carbon chain.

Swimming performance of P.aeruginosa SJTD-1

The study before has shown that n-hexadecane is the greatest substrate of P.aeruginosa SJTD-

1, followed by n-octadecane [7]. It has been proposed that the rapid depletion of n-alkanes by

microorganisms may be driven by two factors: the activity of monooxygenases for oxidation of

n-alkanes and the transport of alkanes into the cells [33]. Our previous results have proved

that the increased expression ratio of monooxygenases for oxidation of n-alkanes (C12-C24)

was largely different for P. aeruginosa SJTD-1 to maintain the greatest depletion rate [19]. Yet

the degradation rates of alkanes by monooxygenases exceed the rates of diffusive flux into

microbial cells and dissolution into the aqueous phase [34–36]. Thus, the uptake rates of

alkane may play the key role in determining the rates of alkanes assumption.

n-Octadecane have the much higher hydrophobicity than n-hexadecane. It has been

reported that the pseudo solubilized rates of n-octadecane is lower (1.91±0.17mg) than n-hexa-

decane (2.63±0.21 mg) at 120 h [37]. In order to improve the capture of n-octadecane, some

strategies have been used to increase the swimming performance to overcome the low solubil-

ity of n-octadecane and enhance transport of bacteria. In our study, FleQ, FliC and NirS pro-

teins have been demonstrated to be upregulated in responds to n-octadecane comparing with

control (C16-grwon cells) (S3 and S5 Tables, Fig 4). FleQ is NtrC/NifA-type transcriptional

activator, which is identified to be involved in flagellar gene expression [38]. FliC and NirS

have been found play an important role in flagellum formation and motility [39]. Thus, the fla-

gellar genes would be over-expressed by the upregulated FleQ, as well as NirS and FliC pro-

teins, which would lead to the strengthened swimming performance of P. aeruginosa SJTD-1

being benefit to capture n-octadecane with higher hydrophobicity than n-hexadecane.

n-Octadecane transport

Recently, FadL has been characterized in E. coli to specifically recognize and transport not only

the long-chain fatty acids, but also the medium-chain alkane [19,21]. In our previous research,

we also proposed that the FadL and FadD would play an important role in uptake alkanes in P.

aeruginosa [22]. In this comparative proteomics analysis, FadL has an abundance expression

by both label free and iTRAQ-based methods comparing cells cultivated on C18 with C16, and

this result has been further confirmed by qRT-PCR. Thus, our results not only further demon-

strated that FadL was very important in uptake alkane into cells in P. aeruginosa, but also pro-

posed that the longer the chain alkane, the more requirement the FadL transport protein. In

our study, FadD showed no increment during C18 growth by two methods, suggesting that

although the expression of FadD is related with alkane growth [22,40], the length of carbon

chain may have no influence on its expression.
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Concluding remarks

In conclusion, it is benefit to identify uptake proteins of differential expression comparing the

C18-cultivated stains with C16-cultivated stains in P. aeruginosa SJTD-1 by iTRAQ and label-

free comparative proteomics analysis. 91 and 99 proteins showing different abundance com-

paring SJTD-1 cultivated on C18 with C16 were identified by label-free and iTRAQ compara-

tive proteomics analysis respectively. The number of common differentially expressed proteins

of both methods was 6 proteins. Specifically, our analysis evidenced that bacterial chemotaxis

was the important pathway in responds to n-octadecane. Moreover, five genes (FleQ, FliC,

NirS, FadL and FadD) from P. aeruginosa SJTD-1 were confirmed to be abundance on C18.

Further studies are needed to determine the significance of these proteins, but overall these

data provide a solid foundation for alkane consumption mechanism for future.
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