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Abstract

Underwater dam crack detection and classification based on sonar images is a challeng-

ing task because underwater environments are complex and because cracks are quite

random and diverse in nature. Furthermore, obtainable sonar images are of low resolution.

To address these problems, a novel underwater dam crack detection and classification

approach based on sonar imagery is proposed. First, the sonar images are divided into

image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the

crack fragments. Third, the crack fragments are connected using an improved tensor vot-

ing method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an

improved evidence theory combined with fuzzy rule reasoning is proposed to classify the

cracks. Experimental results show that the proposed approach is able to detect underwa-

ter dam cracks and classify them accurately and effectively under complex underwater

environments.

Introduction

Numerous factors such as cracks, abrasions, cavitation, and erosion can threaten the safety of a

dam [1]. Out of these, cracks represent the primary danger because they can exist not only at

the dam’s surface but also extend into the interior [2]. In other words, cracks in dams are the

equivalent of mutations as dams accumulate internal damage [3]. Thus, cracks are always used

to indicate the degree of risk in the field of dam damage, which has attracted the attention of

numerous scholars [4].

Various traditional methods such as electrical prospecting, elastic wave testing, tomogra-

phy, and ground penetrating radar [5–7] are employed to detect cracks in dams. However,

some of these methods are expensive, and others are neither sufficiently convenient nor reli-

able. Recently, detecting underwater dam cracks using sonar images has become one of the

most important methods because it is nondestructive, intuitive, convenient and efficient

[8].

Sonar data is obtained based on echo intensity when the sonar beam scans the crack area.

And the echo intensity is displayed on the sonar image screen using different gray levels. The
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gray levels in these sonar images represent information that can accurately reflect crack depth.

However, the sonar images can not accurately reflect the crack features on the dam surface,

since their echo intensities are always the same. Thus, the sonar systems used in practice always

provide only low-resolution imagery [9]. In addition, underwater environments are complex,

vary over time, and are susceptible to substantial interference [10–12], which leads to measure-

ment signals being overcome by noise. Moreover, unstructured cracks are random and

diverse, which makes them difficult to describe. Finally, the images obtained from sonar lack

calibration, and features obtained from a sample image without manual review cannot accu-

rately reflect the relationship between a crack in the image and an actual crack. As a result,

sonar images of dam cracks are highly uncertain and fuzzy, making detection and classification

difficult.

Many crack detection algorithms based on imagery such as neural networks, genetic algo-

rithms, mathematical morphology and tensor voting methods, have been proposed [13–16].

Chen et al. [17] presented an adaptive underwater dam crack edge detection algorithm based

on multi-structure and multi-scale elements. Kabir et al. [18] evaluated various edge-detection

algorithms and noted that the statistics-based approach was the most efficient technique for

damage assessment. Bernstone and Heyden [19] proposed a digital image analysis technique

for crack monitoring using a standard webcam to acquire continuous data sets from concrete

dams. Xu and Zhang [20] suggested an integrated model using digital image processing to

develop a numerical representation of concrete structure defects.

The characteristic based detection methods mentioned above are always subject to substan-

tial noise, thereby leading to low detection rate and high false alarm rate [13, 21]. In particular,

when the interference exhibits the same characteristics as the target, it will make the detection

more difficult. In addition, the methods mentioned above are focused on de-noising and edge

detection. Clustering and region growing methods have also been used [22], but apparently

not for underwater sonar images. Moreover, for the underwater sonar images, few methods

jointly consider the crack detection and classification, which is common in the optical images

of pavements [23]. In sonar images, fuzziness and uncertainty must also be taken into account

in making a correct classification.

In this paper, a novel detection and classification approach for underwater dam cracks

based on dual-frequency sonar images is proposed. Images obtained from DIDSON are used

to conduct evidence fusion for classification purpose. Both frequencies are used in this paper

as source evidence. These two types of source evidence are fused to perform classification. In

this paper, two main tasks are considered together: underwater dam crack detection and classi-

fication. This paper proposes an improved crack detection algorithm based on clustering anal-

ysis and tensor voting. And then, with the results of the crack detection, an improved evidence

theory combined with fuzzy rule reasoning is put forward to distinguish different types of

cracks. In the proposed method, fuzzy evidence is used to reflect the fuzzy information in the

images, and the uncertainty is decreased via evidence fusion.

To perform these two tasks, the classification scheme relies on following two characteris-

tics of the target cracks: 1) the image regions are darker than their surroundings, and 2) the

connected domain of the crack region is thinner than that of other regions. A workflow for

the proposed approach is shown in Fig 1. Two main tasks are considered together: underwa-

ter dam crack detection and classification. First of all, the sonar images are obtained from

the DIDSON with two different frequencies. And then an improved crack detection algo-

rithm based on clustering analysis and tensor voting is proposed to detect underwater dam

cracks. The detailed detection process is as follows. First, the sonar images are divided into

image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack

fragments. Third, the crack fragments are connected using an improved tensor voting

Underwater dam crack detection and classification
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method. Fourth, a minimum spanning tree is used to obtain the cracks. After obtaining the

cracks, an improved evidence theory combined with fuzzy rule reasoning is proposed to clas-

sify the cracks. The detailed classification process is as follows. First, the characteristics of the

crack regions are calculated to obtain the basic belief assignments (BBAs) based on the likeli-

hood measure. Second, the BBAs of the characteristics are combined to classify the cracks

based on the fuzzy rules and edge random set’s expansion guidelines. And the BBAs for the

two sonar frequencies from different perspectives can be obtained in the same way. Third, in

order to reduce the uncertainty of the classification and improve the robustness of the deci-

sion making, BBAs from the two sonar frequencies and different perspectives are combined

based on the conditional masses. The proposed method will be introduced in detail in the

next sections.

The main contributions of this paper are: 1) A detection and classification approach based

on sonar images for underwater dam crack is presented. 2) In the proposed approach, both the

local and global features are combined and used with block clustering and statistical analysis

techniques. 3) The crack information gained from the sonar images, which contain substantial

Fig 1. The workflow of the proposed approach.

https://doi.org/10.1371/journal.pone.0179627.g001
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uncertainty, is mapped to a basic belief assignment. 4) The uncertainty of classification is

decreased by updating the evidence, and the update rule is improved.

The next section illustrates the basic idea of the proposed approach. Some experiments are

performed in the Experiments and Results section. A comparison with other methods proves

the efficiency of the proposed approach. The last section concludes the paper.

Materials and methods

Sonar images

In this paper, we obtained statistical crack detection results using twenty sonar images taken

from a hydropower project, which were used as the sample database and the test database. All

the sonar images were obtained using the DIDSON sonar from Dam of Longyangxia Hydro-

power Station by the author’s research team. DIDSON is a dual frequency identification sonar

with operating frequencies of 1.1 MHz/1.8 MHz. The model of DIDSON sonar is shown in Fig

2. Detailed information concerning DIDSON can be found in [24]. When the images were

obtained, the sonar system was perpendicular to the face of the dam which was more than 30

yeas old with cracks and other defects on it. The distance from the sonar to the defects was 500

cm, and the depth from sonar to the surface of the water was about 10 m. The images obtained

from sonar were part of the dam and the resolution of the sonar images was 360 x 144 pixels.

The experiments coded in Matlab 2011 were conducted on a PC with a 2.6 GHz CPU and 4

GB of RAM.

Underwater dam crack detection

The proposed underwater dam crack detection method mainly consists of two steps: 1) Clus-

tering analysis of image blocks. 2) Adaptive tensor voting of the crack fragments. The details of

the proposed method is fully represented in the flow chart in Fig 3.

Fig 2. The model of DIDSON sonar.

https://doi.org/10.1371/journal.pone.0179627.g002
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A. Clustering analysis of image blocks. First, the image matrix’s rows and columns are

divided by a fixed value. Then, the image is divided into non-overlapping blocks. The block size

should be chosen properly. When the blocks are too small, the number of false positive crack

detections will tend to increase. In contrast, when the blocks are too large, the computation of

the statistical features of tiny cracks will tend to vanish. The selection of the block size which

will affect the detection results obviously is a limitation of this algorithm. In this paper, the

blocks are 9 × 9 pixels, which represent a good trade-off between computational performance

and crack detection accuracy. Three characteristic values are calculated for each block, which

construct three feature matrix for the image: 1) the mean value matrix (Mm), 2) the standard

deviation matrix (STDm), and 3) the information entropy matrix (IFE). A clustering analysis

method is used to distinguish cracks from the background using 3-D spatial classifiers; each

point identifies one image block. Then, the feature set in the 3-D space is defined as follows:

F2 ¼ fðV1; y1Þ:::ðVn; ynÞ : Vi 2 R3; yj 2 fc1; c2gg ð1Þ

where n is the number of block points for the pattern vector V, which is constructed using

Mm, STDm and IFE, and yi corresponds to the ith block. The blocks are divided into two

classes, namely, c1 and c2, denoting blocks containing non-crack information and blocks

containing crack information, respectively. Furthermore, the K-means classification

approach is used to facilitate the clustering analysis [23]. The clustering result in the 3-D fea-

ture space is shown in Fig 3(i). The classes that are labeled with red circles in the 3-D feature

space belong to the target class c2, and the rest belong to the target class c1. After removing

those blocks that are confirmed to have non-crack information, the remaining blocks are

binarized by the Otsu method [25]. The binary image which contained crack segments and

noise is shown in Fig 3(d).

B. Adaptive tensor voting of the crack fragments. Following the cluster analysis step,

cracks marked with independent segments are actually an integrated crack. Unless those seg-

ments are connected, a full understanding of the crack is difficult. In this paper, a self-adaptive

tensor voting algorithm is presented because the spatial proximity and the smoothness of the

cracks are the main interfering factors. Thus, the crack fragments can be expressed in a tensor

field that contains a ball tensor and a stick tensor. The two tensors can be defined as follows

[26]:

Ball tensor: if point P is an isolated point, the tensor is expressed as
1 0

0 1

" #

.

Stick tensor: if point P is a point on the curve, the tensor is expressed as

cos 2 y sin y cos y

sin y cos y sin 2 y

" #

. θ is the tangent angle between the tangent and the horizontal

direction.

The stick tensor along the y-axis from the coordinate origin O and the voting strength from

P can be calculated using the degradation function [27]:

DF s; k; sð Þ ¼ e
�

s2 þ ck2

s2

� �

ð2Þ

where σ is the voting scale, s ¼ yl
sin y

is the arc length, c ¼ � 16 log 0:1�ðs� 1Þ

p2 controls the degradation

speed of the function curvature, and k ¼ 2 sin y

l is the curvature. σ is the free parameter of the

voting field design; it directly controls the scale of the voting field. In previous studies, σ was

usually set from prior knowledge; however, prior knowledge is difficult to obtain in underwa-

ter dam crack detection. Thus, parameter-adaptive fracture fragments are presented based on

Underwater dam crack detection and classification
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Fig 3. Flow chart of the proposed method. (i) clustering analysis, (ii) adaptive tensor voting, (iii) minimum spanning tree construction and edge

pruning.

https://doi.org/10.1371/journal.pone.0179627.g003
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the clustering analysis. The scale of the voting field determines how much the neighborhood

of the corresponding point impacts and also determines how much the neighborhood of the

corresponding point is affected by its neighbors. As shown from the experiment, the number

of marked cracks is inversely proportional to the voting field scale. Thus, the voting field scale

is obtained as

s ¼ k=n2 ð3Þ

where k is the adjustment coefficient and n2 is the number of c2, which is obtained from the

clustering step.

Then, a minimum spanning tree and edge pruning are used to further remove image noise

and other false positives [28].

The proposed algorithm was used to analyze three typical cracks found in underwater

dam surface sonar images captured at a hydropower dam project. And the sonar images

taken at 1.8MHz were used to illustrate the detection algorithm process in detail. The first

crack type is a large crack with a complex background (see a(i) in Fig 4); the second type is a

medium crack (see a(ii) in Fig 4); and the third type is a tiny crack (see a(iii) in Fig 4). First,

the three original sonar images were pre-processed; the results are shown in Fig 4(b). Then,

the images were divided into blocks for clustering analysis, to mark the blocks that contains

the crack information, as shown in Fig 4(c). Then, adaptive tensor voting was used to con-

nect the marked crack fragments, as shown in Fig 4(d). Finally, the minimum spanning tree

algorithm and edge pruning are used to obtain the marked cracks. The final crack shapes are

shown in Fig 4(e).

Underwater dam crack classification based on the fusion of images

obtained from dual-frequency sonar

After obtaining the crack, a new crack classification algorithm based on the fusion of crack

characteristics is put forward. There are three crack types: tiny cracks, medium cracks and

large cracks. The tiny/medium/large cracks represent different severity levels of dam cracks.

The division criteria of crack types is defined by the author’s research team according to the

accurate measured dam crack of Longyangxia station. The crack classification are shown in

Table 1. In this paper, the rare types of crack are not taking into account such as a crack is tiny

in length but large in depth.

The crack characteristics obtained from the images are used to classify the three crack

types. There are several shape characteristics that can be used to describe a crack [29]. The

relatively accurate features obtained from the detection part are the relative length (C) and

the gray intensity ratio (D). The sonar images show that the relative length of cracks can

accurately reflect their linear characteristics-slenderness. The grayscale intensity of cracks in

an image reflects the fact that cracked region are darker than their surroundings. However,

decision-making process based on C and D is different. Thus, a fuzzy expert rule base is

established based on the statistical properties and experience. Here, the relative length and

the gray intensity ratio obtained from the sonar images with high frequency patterns are

denoted as C1 and D1. In addition, those with low frequency pattern features are labeled as

C2 and D2.

In D-S theory, the total set of interested targets with mutually exclusive and exhaustive propo-

sitions is referred to as the frame of discernment (FoD), which is denoted as Θ = {θ1, θ2, � � �, θm},

where θi is the minimum identified level of information and m is the number of elements in the

universal set. 2Θ is used to denote the power set of Θ. In D-S theory, support for proposition A is

provided via the basic belief assignment, which maps mΘ(.) : 2Θ! [0, 1]. This mapping function

Underwater dam crack detection and classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0179627 June 22, 2017 7 / 17

https://doi.org/10.1371/journal.pone.0179627


 

Fig 4. Image detection process results. a(i*iii): original images, b(i*iii): image blocks, c(i*iii): crack fragments, d(i*iii): crack probability map,

e(i*iii): final crack curves.

https://doi.org/10.1371/journal.pone.0179627.g004
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satisfies

mYð�Þ ¼ 0 and
X

A�Y

mYðAÞ ¼ 1: ð4Þ

Let Θ be the universal set representing all possible states under consideration. The pattern

set of crack types is Θ = {θ1, θ2, θ3}, where θ1 represents tiny cracks, θ2 represents medium

cracks, and θ3 represents large cracks. We observed that sonar used at 1.8MHz is sensitive to

the relative lengths of cracks, providing one method for distinguishing between the three types

of cracks. However, 1.8MHz sonar is insensitive to crack depth; therefore, it cannot be used to

distinguish tiny cracks from medium cracks based solely on the gray intensity ratio. In con-

trast, sonar used at 1.1MHz is insensitive to crack relative length but it is sensitive to crack

depth; thus, it provides another method for distinguishing between the three types of cracks.

Based on these observations, three fuzzy partitions are established for C1 and D2. The fuzzy

linguistic terms for C1 are S (Small amplitude), M (Medium amplitude), and H (Large ampli-

tude). And the gaussian membership functions are constructed by calculating the mean value

and the standard deviation value of relative length sample set which is obtained from each type

of crack on the 1.8Hz sonar images. Similarly, the membership functions for D1, C2 and D2 are

chosen by experiment statistics of sample characteristic set in the same way. The linguistic

terms’ universe of C1 is U(C1) = (C11, C12, C13) and that of D2 is U(D2) = (D21, C22, C23), where

the linguistic terms’ subscripts 1, 2, and 3 represent S, M, and H, respectively. In addition, two

fuzzy partitions are established for D1 and C2, and the fuzzy linguistic term is S (Small ampli-

tude) and H (Large amplitude). The linguistic terms’ universe of C2 is U(C2) = (C21, C22) and

that of D1 is U(D1) = (D11, D12), where the linguistic terms’ subscripts 1 and 2 represent S and

H. The membership function is shown in Fig 5.

In this paper, the BBAs are calculated using the likelihood measure τ(Ck(x), Ckq(x)), where

Ck(x) refers to the relative lengths of cracks. In addition, the likelihood measure τ(Ck(x),

Ckq(x)) refers to the matching degree of Ck(x) belonging to the linguistic terms Ckq(x).

tðCk;CkqÞ ¼ supx minfCkðxÞ;CkqðxÞg;

q ¼ 1; 2; 3; k ¼ 1

q ¼ 1; 2; k ¼ 2:

ð5Þ

The matching degree is the maximum value of the intersecting point ordinate between the test

membership degree curve and the sample membership degree curve. When the intersecting

degree increases, the matching degree increases, which in turn provides greater evidence. The

evidence reflects the extent of support, which is directly used as a basic belief assignment func-

tion after normalization. Thus, the BBA values can be calculated as follows:

mYðCÞ½k� ¼
tðCk;CkqÞ

Xn

k¼1

½tðCk;CkqÞ�

:
ð6Þ

Table 1. Classification for different crack types.

The crack type Length(mm) Width(cm) Depth(mm)

Tiny <100 <2 <30

Medium 100 * 500 2 * 5 30 * 100

Large >500 >5 >100

https://doi.org/10.1371/journal.pone.0179627.t001
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Obviously,
Xn

k¼1

mYO
ðCÞ½k� ¼ 1. Similarly, the BBAs of the gray intensity are obtained as fol-

lows:

mYðDÞ½k� ¼
tðDk;DkqÞ

Xn

k¼1

½tðDk;DkqÞ�

:
ð7Þ

Fig 5. Statistical properties of sample characteristic set and test characteristics. (a) sonar images for 1.8 MHz pattern. (b) sonar images for 1.1 MHz

pattern.

https://doi.org/10.1371/journal.pone.0179627.g005
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The likelihood measure τ(Dk, Dkq) can be calculated in the same way as τ(Ck, Ckq), where

tðDk;DkqÞ ¼ sup x minfDkðxÞ;DkqðxÞg;

q ¼ 1; 2; k ¼ 1

q ¼ 1; 2; 3; k ¼ 2:

ð8Þ

The previous item of the BBA can be calculated based on the Cartesian product stochastic

relation, and the next item of the BBA can be calculated based on the edge random set’s expan-

sion guidelines. The linguistic terms’ set of inputs e is U(e) = U1 × U2 × � � �Un; here, e can be C
or D. Thus, the random sets (Uk, mkq), q = 1, � � �, Jk, are marginal random sets. In addition,

(U, MIn) can be obtained as the stochastic relation of a decomposable Cartesian product. Here,

mInðIÞ ¼ m1ðI1qÞm2ðI2qÞ � � �mnðInqÞ; ð9Þ

where I = (I1q, I2q,� � �Inq) 2 U, q 2 {1, � � �, Jk}, k = 1, � � �, n. Among the fuzzy rule bases, the rela-

tionship between the input and output can be expressed as h ¼ f ðI1q; I2q; � � � InqÞ; thus, the

image of (U, mIn) of the crack type space Θ is (<, mOut), which can be obtained based on the

random set extended criterion.

< ¼ fRj ¼ f ðIiÞjIi 2 Ug ð10Þ

mOutðRjÞ ¼
P
fmInðIiÞjRj ¼ f ðIiÞg; ð11Þ

where < is the set class composed of the nonempty set of the Θ and Ii are the elements of U.

The mass function established using the matching degree of fuzzy features is the basic belief

assignment of uncertainty. First, the two frequencies of the sonar images at arbitrary angles are

used. Then, a fuzzy expert rule base is established based on the statistical properties and expert

experience, as shown in Table 2.

To reduce the uncertainty of the classification and improve the robustness of the decision

making, evidence from sonar imagery using both the high-frequency pattern and low-fre-

quency pattern should be combined using the Dempster Combination Rule (DCR) [30]. Fur-

thermore, this combination should increase the credibility of the classification, reducing the

uncertainty to the maximum extent. Additional evidence for the two patterns from different

perspectives can be obtained and combined in the same way. When new perspective evidence

B is used to update the existing evidence A, the crack’s information becomes more comprehen-

sive. In addition, conditional masses are used in this paper to update the evidence. The condi-

tional masses can be calculated as follows [31]:

mYðAÞ½kþ 1� ¼ a½k�mYðAÞ½k� þ
X

B�Y

bðBÞ½k�mYðAjBÞ½k�; ð12Þ

where a½k� þ
X

B�Y

bðBÞ½k� ¼ 1, 8k� 0, and β(B)[�] = 0, 8B =2 IΘ[�]. mΘ(A|B)[k] can be calcu-

lated as follows:

mYðAjBÞ ¼

X

E:E�A

mðEÞ

PlðAÞ �
X

X:X2lðAÞ

mðXÞ
�
X

E:E�A

mðEjBÞ; ð13Þ

where lðAÞ ¼ fX 2 Y : X ¼ F [ E;⌀ 6¼ F � B;⌀ 6¼ E � A � Bg.

Underwater dam crack detection and classification
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Results

To test the performance of the proposed approach, some experiments were performed. In this

section, the results of the proposed algorithm for the 1.8 MHz and 1.1 MHz sonar images were

given out. The BBA values of the relative lengths of the dam cracks in the sonar imagery can

be obtained using formula (5) and (6). Similarly, the BBA values of the gray intensities are

obtained using formula (7) and (8). Subsequently, the BBA values of the crack types are calcu-

lated using formula (9) and (11). To reduce the uncertainty of the classification, evidences

from the two images at different frequencies are combined by DCR. The results are shown in

Table 3 as evidence from one perspective. By rotating the sonar, 5 other pieces of evidence for

the same area of dam surface from different perspectives are obtained in the same manner,

and the results are shown in Table 4. Finally, evidence from all 6 perspectives is updated using

formula (12) and (13). The results are shown in Fig 6.

Discussion

To test the performance of the proposed approach for detection, the results are compared with

those obtained using tensor voting [28] and the wasp colony algorithm [32]. The results are

shown in Fig 7, in which the wasp colony algorithm is unable to effectively perform crack

detection. The tensor voting method is able to detect the large cracks but could not detect

Table 2. The fuzzy rules for BBA values of relative lengths and gray intensity ratios.

The number

α
IF input THEN output IF input THEN output

m(C1) m(D1) Type m(C2) m(D2) Type

1 C11 D11 θ1 C21 D21 θ1

2 C11 D12 θ1,θ3 C21 D22 θ2

3 C12 D11 θ2 C21 D23 Θ
4 C12 D12 θ2,θ3 C22 D21 θ1,θ3

5 C13 D11 Θ C22 D22 θ2,θ3

6 C13 D12 θ3 C22 D23 θ3

https://doi.org/10.1371/journal.pone.0179627.t002

Table 3. The BBA values obtained from sonar imagery using different frequencies and the results of the evidence fusion.

The Source of Evidence The BBA values of the type of crack

m(θ1) m(θ2) m(θ3) m(θ1θ2) m(θ1θ3) m(θ2θ3) m(Θ)

1.1MHz 0.2378 0.4539 0.0192 0 0.0797 0.1520 0.0573

1.8MHz 0.3280 0.3725 0.0239 0 0.0865 0.0983 0.0908

fusion 0.3229 0.6488 0.0194 0 0.0311 0.0541 0.0137

https://doi.org/10.1371/journal.pone.0179627.t003

Table 4. The BBA values for different perspectives.

The angle

α
ε{θ1,θ2,θ3,θ1 θ2,θ1 θ3,θ2 θ3, Θ}

m(θ1) m(θ2) m(θ3) m(θ1θ2) m(θ1θ3) m(θ2θ3) m(Θ)

α1 0.3229 0.6488 0.0194 0 0.0311 0.0541 0.0137

α2 0.2142 0.5934 0.0308 0.0016 0.0298 0.0969 0.0333

α3 0.1033 0.5888 0.0096 0 0.0601 0.1241 0.1141

α4 0.1918 0.5934 0.0732 0.0911 0.0297 0.2297 0.0085

α5 0.1395 0.6114 0.0312 0 0.0669 0.0998 0.0512

α6 0.2318 0.6321 0.0315 0.0311 0.0297 0.0297 0.0141

https://doi.org/10.1371/journal.pone.0179627.t004
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small cracks. The results demonstrate that the proposed approach effectively solves the sonar

crack detection problem.

The performance of the proposed approach for classification was tested using different fre-

quencies and their fusion. The results show that the uncertainty of classification decreases sub-

stantially after the fusion of the different frequencies and perspectives. A total of 30 cracks for

each type were conducted to test the proposed approach. The criteria of the classification is as

follows: 1) The maximum BBA value should be greater than 0.65. 2) The m(Θ) should be less

than 0.05. 3) The difference between the maximum BBA value and the other values should be

greater than 0.2. The statistical results are shown in Table 5.

Conclusions

This paper considered the underwater dam crack detection and classification problem, and

proposed a novel approach. The statistical parameters of the image blocks constructed in the

3-D feature space and the image blocks are used to facilitate crack clustering analysis. Then,

adaptive fracture fragments based on tensor voting are used to connect the crack fragments.

The proposed crack detection algorithm can be applied to sonar images with low resolution,

even though the cracks are tiny and subject to interference from other factors. The proposed

crack classification algorithm can solve the underwater crack classification problem. In partic-

ular, when the test dam crack images and the sample images are both fuzzy, the proposed

method still manages to obtain good performance. The experiments show that the proposed

approach is able to effectively detect cracks and classify them accurately under complex under-

water environments.

Fig 6. The fusion results from different perspectives alongside a comparison of different frequencies

and their fusion.

https://doi.org/10.1371/journal.pone.0179627.g006
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Fig 7. Image detection results comparing the proposed method and other classical methods. (a) Original image, (b) Tensor voting, (c)

Wasp colony algorithm and (d) The proposed method.

https://doi.org/10.1371/journal.pone.0179627.g007

Table 5. Classification accuracy results for different crack types.

The crack type 1.8 MHz 1.1 MHz Fusion of the two frequencies Fusion of different perspectives

Tiny 46.7% 36.7% 76.7% 86.7%

Medium 63.3% 56.7% 83.3% 93.3%

Large 66.7% 76.7% 93.3% 93.3%

https://doi.org/10.1371/journal.pone.0179627.t005
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