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Abstract

Empirical research has shown performance improvement of many different technological

domains occurs exponentially but with widely varying improvement rates. What causes

some technologies to improve faster than others do? Previous quantitative modeling

research has identified artifact interactions, where a design change in one component influ-

ences others, as an important determinant of improvement rates. The models predict that

improvement rate for a domain is proportional to the inverse of the domain’s interaction

parameter. However, no empirical research has previously studied and tested the depen-

dence of improvement rates on artifact interactions. A challenge to testing the dependence

is that any method for measuring interactions has to be applicable to a wide variety of tech-

nologies. Here we propose a novel patent-based method that is both technology domain-

agnostic and less costly than alternative methods. We use textual content from patent

sets in 27 domains to find the influence of interactions on improvement rates. Qualitative

analysis identified six specific keywords that signal artifact interactions. Patent sets from

each domain were then examined to determine the total count of these 6 keywords in each

domain, giving an estimate of artifact interactions in each domain. It is found that improve-

ment rates are positively correlated with the inverse of the total count of keywords with Pear-

son correlation coefficient of +0.56 with a p-value of 0.002. The results agree with model

predictions, and provide, for the first time, empirical evidence that artifact interactions have

a retarding effect on improvement rates of technological domains.

Introduction

Within the large and complex field of technical change, empirical research has demonstrated

technological performance improves exponentially over time, but with widely varying

improvement rates across the domains. In addition, knowledge of how and at what rate perfor-

mance of a given technology improves is important for corporate product planners and

designers, policy makers, and investors [1–7]. To improve consistency and reduce ambiguity
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in measurement of technology performance and its improvement, we have chosen technologi-

cal domains as the unit of analysis, which are defined as a set of designed artifacts that utilize a

recognized body of knowledge to achieve a specific generic function [7]. The artifacts consid-

ered can be products, software, or processes. The body of knowledge is principally scientific

and engineering knowledge of particular relevance to the domain of interest; so each func-

tional category (e.g., energy storage) is decomposed into technological domains (e.g., electro-

chemical battery, capacitor, and flywheel) based on the scientific knowledge utilized by the

artifacts considered. The performance metric of a technological domain, defined from the per-

spective of users of technology, is a composite indicator which includes essential functional

outputs and a resource constraint (e.g., cost, volume or mass of the artifact) important to the

users [7]. The performance metric is formulated so that as the functional outputs improve

the performance metric increases, and is expressed per unit of resource considered. The avail-

able data has been, accordingly, adapted to construct performance data for 71 metrics in 27

domains [7]. The analysis of empirical data has demonstrated that performances of the 27

technological domains considered improve exponentially, but the annual improvement rates

(KJ) vary widely ranging from 3 to 65 percent (shown in Fig 1 for the most reliable estimates).

An artifact typically consists of number of components, where the components work

together to achieve the overall function of the artifact. In attempting to improve performance

of the artifact, components are repeatedly modified [8]. When a component, say B, is modified,

it affects other components, such as C, D and E, requiring changes in them. If the overall per-

formance of the artifact degrades after the changes, instead of improving, such changes are not

acceptable, and additional iterations have to be initiated with components B, C, D, and E until

an acceptable solution is found. Such an interaction requires negotiations going back and

forth in order to improve performance by resolving dependency and conflicts. A special case

arises when component B changes, but C, D and E are not affected or they can accommodate

any degree of change in B. In such a case, there is no need for back and forth negotiation, in

short, there is no interaction.

A quantitative model of the effect of such interactions on technological improvement was

developed first for simple artifacts and changes in cost [8]. For a simplified artifact with inter-

action parameter d for each component (defined as the average number of components

affected by a design change in a given component including itself, with effects as described in

the prior paragraph), McNerney et al.’s treatment [8] for unit cost results in the following rela-

tionship:

dC
dm
¼ � B � Cdþ1 ð1Þ

Where, C = unit cost normalized with respect to initial cost, m = number of attempts,

d = interaction parameter, B = constant. The normalized unit cost C is 1 or less by definition,

so increases in d in Eq 1 results in less improvement per attempt.

Considering a broader framework, Basnet and Magee [9] and Basnet [10] have extended

these results into the form tested here. Their overall result is summarized by an equation giving

improvement rate of a technological domain based on the three factors on the right hand side

of Eq 2:

KJ ¼
d lnQJ
dt

¼ ð�ÞAJ
1

dJ
K ð2Þ

Where QJ is the performance of a domain J and KJ its performance improvement rate (or, the

slope of the performance curve in a semi-log plot with time). AJ, and dJ are respectively a set of
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scaling and interaction parameters specific to a domain. K is domain independent, and repre-

sents the rate of growth in the number of individual operating ideas (IOI) generated through a

combinatorial analogical transfer process encompassing all of science and technology. These

IOI are then assimilated into the components of domain artifacts, where the influence of inter-

action and scaling parameters manifest. The equation predicts that KJ (improvement rate) is

proportional to the inverse of the interaction parameter dJ, stating that domains with a higher

average number of interactions (dJ) will be retarded leading to slower improvement rate. How-

ever, is there evidence that demonstrates artifact interactions retard improvement rates of

technological domains? The goal of the study described in this paper is to investigate artifact

interactions empirically and to test whether it has a retarding effect on improvement rates of

technological domains. However, what are artifact interactions in a physical sense, and in what

forms, do they manifest in artifacts?

Fig 1. Annual performance improvement rates (KJ) for 27 domains. The value of KJ for each domain is the slope of a linear curve

fitted to log of the performance metric versus time using data from 1976 until 2013. The rates vary widely, from 3 to 65 percent. Adapted

from Magee, Basnet, Funk and Benson 2016.

https://doi.org/10.1371/journal.pone.0179596.g001
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In design of artifacts, Simon [11] introduced the notion of interactions in his essays on the

complexity of artifacts. When a design of an artifact is changed from one state to another (with

differences between the two states as defined by multiple attributes, say F1, F2, and F3) by tak-

ing some actions (say, A1, A2, and A3), in many cases, any specific action taken may affect

more than one attribute, thus potentially manifesting as interactions of the attributes. In an

artifact, attributes (F1, F2 and F3) can be interpreted as functional performance of a product,

while actions (A1, A2, A3) can be interpreted as design parameters of components. This inter-

pretation leads to the notion of interaction/conflicts as captured by the concept of coupling of

functional requirements in Axiomatic Design [12], or dependencies between characteristics

[13], which can occur when two or more functional requirements are influenced by a common

design parameter, and are captured through tools such as Design Structure Matrix (DSM).

Such coupling leads to the potential necessity of going back and forth negotiating before a

new state is decided and thus introducing an interaction of the kind important in the models

described above [8, 9, 10]. Theoretically, it would be ideal to have one design parameter con-

trolling one functional requirement to achieve a fully decomposable (modular) design [12, 14].

Such fully decomposed design would not require any negotiation between components when

changing from one state to another and thus would have minimal interactions.

Using an in-depth qualitative analysis of two technologies, VLSI (very-large-scale integra-

tion) systems and complex electro-mechanical-optical (CEMO) systems, Whitney [15, 16],

however, has argued that the decomposability of a design of an artifact depends on the physics

involved and/or additional design or resource constraints, such as permissible mass, and

space. These aspects predispose some technological artifacts to be more decomposable than

others. In other words, some technologies will inherently have more interactions than others

will. Physically, these couplings or constraints manifest as component-to-component, and

component-to-system interactions, or as a need to have multi-functional components. In such

interactions, the component (or systems) involved affect other components and require nego-

tiation in resolving constraints or complying with the physics involved. As illustration of the

degree of interactions involved, and physical or design-related reasons behind them, Whitney

noted that CEMO artifacts operate by processing significant amounts of power while VLSI

artifacts operate by processing information, usually in electrical form, at very low levels of

power. He showed that designers face fundamentally different challenges designing these two

types of artifacts. The efficiency of CEMO artifacts depends on matching input and output

impedances, which inherently creates interactions between the components, whereas VLSI

designs decouple (that is, eliminate interactions between) the components by deliberately,

hugely mismatching the impedances. Furthermore, high power levels create side effects at sim-

ilar proportions, forcing CEMO designers to spend a large portion of their effort predicting

and mitigating these side effects. These side effects manifest as additional interactions other

than the functional ones designed between components (or systems). Whitney argues that

CEMO systems additionally face several resource constraints on mass, size, and power con-

sumption, forcing their designs to conserve these resources by utilizing multi-function compo-

nents, further increasing inter- and intra-component interactions.

Material and methods

Approaches to study interactions in artifacts

Two potentially applicable approaches exist for studying artifact interactions. One method

that is well recognized is the design structure matrix (DSM) [17], which when applied to prod-

ucts captures interactions between components in any artifact. The empirical method utilizes

interviews with a broad variety of engineers who are knowledgeable about development of an
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artifact and are associated with effort on various components or systems that make up the arti-

fact. Such interviews can capture geometrical, energy, material and information interactions

and the DSM can be defined at different levels of abstraction of the product and the method

has been well developed for some time now. If one could obtain reliable DSM data across a

wide range of domains, this would be an effective way to study interactions. However, it is

labor intensive to develop a DSM for a complex product such as a jet engine, an aircraft, and a

MRI machine. Perhaps for this reason, the number of DSM publicly available in papers and at

websites is limited. Further, it will be very hard, perhaps even impossible, to develop DSM of

artifacts that were designed some time ago such as 30 years. Due to the scarcity of available

data, (only one DSM is apparently available for a domain where the improvement rate is

known), and the prohibitive cost of developing them, this approach was not pursued further to

test the influence of interactions on improvement rate.

Another similar technique to represent interactions is networks with nodes and edges.

Complex networks allow modeling and characterizing nonlinear behaviors underlying com-

plex systems; for some novel and efficient complex network analysis theories, see [18–21]. For

both DSM and network representation, information on artifact interactions first must be col-

lected through techniques such as interviews or documents before it can be represented.

Another approach is to use documents: One set of documents potentially relevant for study-

ing interactions are design manuals and engineering books related to specific domains, which

could be analyzed using text mining techniques. Hommes and Whitney [22] have used docu-

ments describing product, and sub-systems level requirements to pursue case studies of system

level interactions. Since very few documents describing interactions in artifacts belong to

domains for which we have performance data, this was not a viable approach either.

Another set of promising documents are patents. Patents are particularly attractive; as a

data source, they are generalizable, objective, and publically available. They provide meta-data,

and qualitative data (drawings and text). The textual data describes state-of-art prior to the

inventions, and associated problems that were solved. Second, the data is available for many

generations of inventions, and easily accessible from USPTO or other websites such as Google.

com. Additionally, the Classification Overlap Method (COM) [23, 24, 25], a recently developed

tool based on UPC and IPC classification codes, enables identification of patents for each spe-

cific technological domain. Unlike in DSM of products in which interactions have already

been identified, no interactions, however, are inherently defined in patents as patents are writ-

ten for the protection of intellectual property, and patentability does not require interactions

to be identified. Thus, it was necessary to develop a method for identifying and extracting

interactions from patent documents.

Procedure for text mining and analysis of patents

Procedure overview. The patent analysis using a text mining approach was conducted in

two phases. In a pilot study, using patents from 5 domains—battery, wind power, solar PV,

capacitors and computer tomography scanning (CT scan), feasibility for extracting data about

artifact interactions from patent text was explored using Latent Semantic Analysis, Latent

Dirichlet Analysis, and keyword-based techniques. Only the keyword-based technique was

found to be useful in extracting data on interactions, and hence will be discussed further. In

the extended study, the keyword-based technique developed in the pilot study was imple-

mented in 27 domains.

Both the pilot and extended study consist of four broad steps: (1) preparation of textual

data from patents (2) identification of interactions and associated keywords (3) keyword-

based text mining (4) analysis and interpretation of variations in keywords across domains. In
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step 1, domain-specific patents were identified, electronically retrieved from the web, and

cleaned to prepare text for analysis. In step 2, patents were read in detail to identify potential

generic keywords associated with interactions. In step 3 the raw data on interactions was

extracted using keyword-based text mining, which was then analyzed in step 4. Subsequent

sections describe these four steps. Since step 2 is the most critical among these, we describe

this step first.

Identification of artifact interactions and associated keywords (step 2). Based on the

qualitative work of Simon [11], Suh [12], Weber [13], and Whitney [15, 16] described above,

we have classified interactions into three broad classes of interactions, which provide a useful

framework for identifying text describing interaction and associated keywords. In The three

classes of interactions are:

1. Between functional requirements: These interactions are consequences of the dependencies

between multiple functions and design parameters [12]. For example, increasing the size of

a mechanical component can increase its stiffness, a desirable quality. But, increasing size

results in increase of mass, which can affect dynamics of the artifact adversely. When one

function is improved, such interactions can lead other coupled functions to be adversely

affected.

2. Between component and component, or between component and system: A good example

of this type of interaction is the necessity to match impedance between sub-systems in

order to maximize power transfer [15, 16].

3. Parasitic/side effects: These represent undesirable effects exhibited by the components and

sub-systems, while they fulfill their main functions [15, 16]. Some examples of these are cor-

rosion in battery electrodes, and heat dissipation in computers.

Using the above framework, as part of step 2 in the pilot study, two researchers, including

the current lead author and an Intern working with the author for several months, carefully

read a set of 60 patents from the 5 domains noted earlier (battery, capacitor, wind power,

solar PV, and CT scan) to identify text describing technical issues that reflect interactions

of the types discussed above. Three patents from each decade starting from the 1970’s

until the present were selected to make a total of 12 patents in each of the 5 domains. It

was observed that background or prior art sections, as expected, described problems

with the state-of-art artifacts. It was also found that many patents, while summarizing the

current invention, also discussed problems that were not previously discussed in the back-

ground or prior art section. In both of these sections, descriptions of problems consistent

with the prior research [11–13, 15, 16] and with our classification scheme were accepted as

interactions. The detailed description and claims sections focused on describing the current

invention and novelties inventors wanted to claim as assignee’s intellectual property, and

rarely included descriptions of interactions. Based on these findings in the pilot study, the

decision was made to include text from the title, abstract, background, and summary sec-

tions, and not include the detailed description and claims sections to maximize signal to

noise ratio.

The essential part of step 2 was to extract text samples that contained the description of the

interactions. These text samples were examined for keywords that tended to appear as reliable

signals of interactions but that were not domain specific. Two examples of such text (italicized)

indicating interactions with associated keywords in bold are presented below in Table 1, set 1,

and an extensive list is in the SI. Below each example text, our interpretation of the interaction

using the framework and typology described above is presented. The first example text in the

table may be interpreted as an interaction of functional requirements, specifically energy
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storage and preservation of electrical waveform. The second example clearly describes a side

effect, where leakage of electrolyte leads to failure.

From reading of the 60 patents, a total of 30 keywords were found that potentially indicated

interactions. These keywords were used to study 430 additional patents from the 5 domains

for interactions. Using the raw data from text mining of these patents, three criteria were used

to cull the keywords: (1) count of occurrence, (2) cross-domain usage of the keywords across

the domains, and (3) relevancy of keywords in reflecting interaction. First, high occurrence

of a keyword was necessary to get a statistically strong signal capable of showing variation

across the domains. For example, the words ‘problem’ and ‘prevent’ were common keywords in

description of technical issues. Second, since the goal of the study is to conduct a comparative

study, it was also necessary to ensure that keywords were not domain specific but instead gen-

erally used. For this reason, the word ‘corrosion’ was not considered a good keyword, since it is

too specific to particular domains, and may see no usage in many domains. The word ‘prevent’
or ‘undesirable’ was selected as a better choice in such instances, since it captures the notion of

bad side effect that needs to be mitigated, but without being limited as to the detailed nature of

the side effect. Third, it was also important to ensure that the keyword when it was used in text

reflected interaction most of the time, that is the keyword has high sensitivity. This is assessed

by relevancy of a keyword, which estimates how often a specific keyword reflects interaction

when it is used in the text. This is defined as a ratio of count of keywords signaling interactions

Table 1. Examples of text from patents describing interactions, and associated keywords.

Patent text with keywords (in bold) Interpretation of interactions

Set 1: Keywords usage in patent text indicating an interaction

1 Generally, conventional aluminum electrolytic

capacitors have an energy storage value or

capacitance which increases with applied voltage.

This is probably due to penetration of the liquid

electrolyte into the aluminum oxide surface coating

on the anode. Sometimes, however, such

penetration is undesirable, as it can result in a

change in the dielectric characteristics and hence

in a distortion of the waveform in pulse

applications.

One function of this device—a capacitor—is to

store energy, and another function is to preserve

the waveform (applicable to some applications).

The penetration described leads to increase in

voltage, which improves the energy storage

capability (first function); but at the same time, it

deteriorates the second function, thus causing

interaction of the two functions. The

deterioration may also be viewed as an undesirable

side effect.

2 In such electrolytic capacitors there exists the risk

that the liquid electrolyte will leak out. Accordingly,

the capacitor must be hermetically sealed to

prevent any leakage of the liquid electrolyte

therefrom, since if the liquid were to come into

contact with the other electronic components

encapsulated in the device, it could damage them

sufficiently to cause the device to fail to operate

properly.

The electrolyte, which has leaked, attacks

neighboring components causing failure. Thus, this

leakage and failure are undesirable side effects.

The keyword that reflects this side effect is the

word ‘prevent’.

Set 2: Example of keyword usage not describing an interaction (irrelevant)

1 A primary problem with most CT methods is that

they are time consuming. Consequently, prior to

this invention, CT technology has not been a

feasible alternative to such problems as screening

luggage for concealed items. Screening luggage

for concealed items is of vital importance. Such

monitoring is necessary to avoid smuggling of

drugs and to detect explosives planted in luggage

by terrorists. Present techniques for screening

luggage include manual inspection. Manual

inspection is a time consuming and therefore

expensive operation.

This example text describes an unsatisfactory

performance of the CT methods referenced by this

patent, specifically slow speed of scanning. The

usage of the keyword ‘problem’ does not

indicate an interaction. Second usage of the

keyword is for an application, which may be seen

as a design opportunity.

https://doi.org/10.1371/journal.pone.0179596.t001
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to the total count of the keyword usage in the patent set for a domain. Example patent text in

Table 1, set 1 provides examples of relevant usage of the keywords. For comparison, the patent

text in Table 1, set 2 provides an example of non-relevant usage of the keyword ‘problem’.

The keyword ‘problem’ in this example is used to indicate inadequate performance and design

opportunity, not interactions.

Data from the pilot study of 430 patents showed that majority of the 30 keywords words

had low count, and hence were removed from the list. Additionally, using the cross-domain

usage criteria, the remaining keywords were reduced to 8 keywords: parasitic, problem, pre-
vent, undesirable, requirement, failure, disadvantage, and overcome. The root of each key-

word searched is shown as bold and italicized text. The root is chosen so that the searched

keyword is able to identify the maximum number of instances of the keyword, but without

reducing the relevancy percentage. These 8 keywords had high count and are relatively

general.

Relevancy percentages for the keywords were determined from reading of the 60 patents

(described above) for identifying interactions and associated keywords. Mean relevancy per-

centages for these 8 keywords across the 5 domains are listed here inside the parentheses: para-
sitic (97%), problem (58%), prevent (83%), undesirable (94%), requirement (75%), failure (72%),

disadvantage (81%), and overcome (98%). The relevancy percentage for each individual

domain is presented in S3 Table. The keyword ‘overcome’ had indicated interactions in nearly

all instances (on average 98% of the cases). In contrast, the keyword ‘problem’ has poor rele-

vancy percentage; almost half the times (42%) it did not indicate interactions. This is because

it is common among engineers to use the word ‘problem’ to describe design opportunities to

improve main functions of a technology, or to take advantage of new applications. This con-

vention is reflected in the patent text as exemplified by the example in Table 1, set 2. Because

of the low relevancy percentages and its possibility to add much noise to the data, the keyword

‘problem’ was removed from the list.

The remaining 7 keywords were further vetted in the extended study with patents from 27

domains. The raw data from keywords showed that the keyword ‘parasitic’ did not have wide

cross-domain usage. In fact, 12 domains did not use it even once, and only 5 domains—Camera

Sensitivity, Capacitor, Electric Power Transmission, Fuel Cell, IC chips—used it often. Fig 2a

shows the distribution of the “parasitic” keyword across all patents in 27 domains. To provide

perspective, the distribution of the keyword “prevent” is presented in Fig 2b. It is clear the key-

word “prevent” is used by all domains frequently. Due to a low cross-domain usage, the key-

word ‘parasitic’ was also eliminated, leaving a final list of 6 keywords for cross-domain analysis.

Preparation of text from domain patents (step 1). The outcome of this step was the raw

text from the 100 most-cited patents for each of the domains being studied. (Please see S4 and

S5 Tables for the list of patents used for each domain.) The following procedure was used to

retrieve the text: (1) Patents in each specific technological domain were identified using the

COM method [23, 24, 25]; out of which one hundred and fifty most-cited patents in each

domain were chosen and read to eliminate any irrelevant patents from the set; then the 100

most-cited relevant patents were selected from the patent set. The patents had been identified

as part of doctoral research [25] in which both authors of this paper participated in reading the

patents for relevancy. (2) Four sections of the text—title, abstract, background, and summary

—in each patent were downloaded from Google’s patent database. (3) To prepare the text for

mining, extraneous text -such as stop words- was removed using Python scripts. Stop words

are a set of commonly used words, such as the, a, it, and in. Although they are critical in natural

language, they do not add any value to the data. Removing them makes it possible to focus on

the important words, and to reduce computational cost as well as noise in the data. The com-

pletion of this step prepared the text for mining.
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Fig 2. Cross-domain usage of keywords (KW) ‘parasitic’ (panel a) and ‘prevent’ (panel b) across 27 domains. The

keyword ‘parasitic’ is not widely used; in fact, 12 domains do not use the ‘parasitic’ keyword at all. Compare this to wide

cross-domain usage of keyword ‘prevent’. The count of KW presented is a normalized count of the respective keyword,

with normalization carried out against 100 thousand total words.

https://doi.org/10.1371/journal.pone.0179596.g002
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Out of the 2700 patents used for extended study (sub-step 2 above), 2400 patents were

downloaded using a web-scraping tool from the Google patent database, which provides

patents in searchable html files. Out of the remaining patents, we successfully downloaded

276 manually, thus resulting in 97 to 100 patents in each domain. Almost all of these manu-

ally downloaded patents either lacked proper titles describing the sections, or background

and summary were merged with detailed descriptions. For these cases, the background

information and summary had to be identified by reading the patents and then manually

extracted.

Text mining for keywords (step 3) and analysis (step 4). The prepared patent text for

the 27 domains was mined using Python scripts for determining the count of the keywords as

well as the total number of words in the patent set in each domain. The total number of words

in the patent set was used for normalizing the count of keywords in each domain, and the nor-

malized keyword count is expressed per 100 thousand words in the patent set.

For analysis, we assumed a linear relationship between normalized count of keywords and

artifact interactions described by the models [8, 9, 10]. We then tested dependence of improve-

ment rates on artifact interactions as predicted by the models by conducting a correlation anal-

ysis of improvement rates and normalized keyword count from the patent text for the 27

domains.

Results and analysis

Total count of words across domains

The total count of words (all text including keywords) in patent text varies widely between

the individual patents, with the ratio of total word count between the patent with the highest

word count to the patent with the lowest count was more than 100. However, when the total

word count of domain-specific patent sets is compared, the distribution of total word count

is much narrower, shown in S1 Fig. The domain-level total word count ranges from roughly

191,000 down to 95,000, a ratio of slightly over two. The five domains with the highest total

word count in descending order are genome sequencing, 3D printing, optical memory, CT

scan, and wireless telecommunications. The domains with lowest count in ascending order

are electric motor, electrical telecommunications, milling machine, optical telecom, and fly-

wheel. Since domains with more text can potentially have higher occurrence of keywords,

the variation in total word count between domain patent sets indicates that it is necessary to

normalize keyword count with respect to total word count. Reading of genome sequencing

patents shows they have much higher occurrence of chemical formulas than any other

domain. Since keywords representing interactions are not found in these formulas, the nor-

malized count was highly distorted for this domain so the domain is eliminated in all analysis

reported here.

Normalized count of keywords (KW)

The count of the 6 keywords is summed, normalized with respect to total word count in the

respective patent set, and finally expressed in terms of keywords per 100,000 words. Fig 3

shows the distribution of the normalized count of 6 keywords across the 27 domains. The five

domains with the highest normalized 6-keyword count in descending order are Aircraft, Elec-

tric power transmission, Flywheel, Electric telecommunication, and Milling machine. The

domains with the lowest count in ascending order are CT scan, Superconductors, MRI, 3D

Printing-SLA.
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Correlation analysis of improvement rates and reciprocal of normalized

count of keywords

According to the model [8, 9, 10], the improvement rates should be inversely proportional to

the interaction parameter dJ. The normalized keyword count is assumed to provide a relative

estimate of artifact interactions encountered in generating inventions in the various domains:

we assume a linear relationship between the normalized keyword count (KWJ) and the degree

of interactions characteristic of a domain (dJ). With this assumption, the prediction based

upon Eq (2) then becomes

KJ ¼
d lnQJ
dt

/
1

dJ
/

1

KWJ
ð3Þ

Fig 3. Comparison of count of normalized 6-keywords (KW) for 27 domains. The count of KW is the normalized total count of 6

keywords identified to indicate interactions in the text (abstract, title, background, and summary of invention) from the 100 most-cited

patents in each domain, where normalization is carried out with respect to total number of all words in the text, and expressed per 100

thousand words.

https://doi.org/10.1371/journal.pone.0179596.g003
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Relationship 3 is expressed as a hypothesis as follows:

Hypothesis: The performance improvement rate of technological domains are positively corre-
lated with the inverse of the normalized count of interaction keywords in a set of patents belong-
ing to each of the domains.

The hypothesis was tested empirically using the 6-keyword results. The improvement rate

in a domain is plotted as a function of the inverse of normalized count of the 6-keywords in

the same domain in Fig 4. Although there is significant scatter in the data, a clear upward

trend can be visually observed, implying that higher improvement rates (KJ) positively corre-

late with higher values of the inverse of normalized count of the 6-keywords (KWJ).

The correlation coefficients using two widely used methods, Pearson (parametric method)

and Spearman Rank Order (non-parametric method), have been calculated. Assuming a nor-

mality of the population of K values and of 1/normalized count of KW, the Pearson correlation

coefficient calculated using EXCEL2013 is +0.56 with a p-value of 0.002. The Spearman’s Rank

Order coefficient is 0.632 with p-value slightly less than 0.001. Note that the Spearman’s corre-

lational method does not assume any distribution. Both p-values are much smaller than 0.05, a

threshold value employed by many researchers; the value of 0.002 and 0.001 indicate a very

strong likelihood that the correlation is not due to random effects. This result supports the the-

oretical prediction that domains associated with higher degree of interactions improve at a

slower pace. How reliable is this correlation? We further examine the reliability of this finding

using a robustness study using Pearson’s correlation coefficients.

Robustness test

The robustness study was conducted by creating 20 groups of 14 domains (about half of the

total number of domains in the study), where each group was generated by randomly selecting

a combination of 14 domains from the 27 domains. For each group of 14 domains, the Pear-

son’s correlation coefficient between K and 1/KW was calculated.

The results of those 14 groups are presented in Fig 5 with the index number of each group

plotted along the X-axis, and Pearson’s correlation coefficient along the Y-axis. It is clear from

the figure that the correlation values are all positive and range relatively narrowly from +0.41

to +0.81. The average correlation coefficient value is +0.59. These results show that the correla-

tion value is relatively stable, and further supports the conclusion that the correlation coeffi-

cient that was obtained in the initial study (+0.56) was not due to random effects or errors

associated with particular domains.

Discussion

The goal of this study was to investigate artifact interactions empirically, and to test the theo-

retical prediction in Eq (2) that interactions associated with technological domains retard their

performance improvement rates. The qualitative descriptions of interactions described in the

previous literature [11–13, 15, 16], specifically, component-to-component (or component to

system), conflict between functional requirements, and side effects, were utilized as the foun-

dation for investigating artifact interactions in textual content in patent sets for different

domains. The normalized count of selected keywords associated with patent text reflecting

artifact interaction was used to estimate the degree of artifact interactions in the technological

domains. The correlation study found that performance improvement rates are positively

related to the inverse of the normalized keyword counts. In other words, the study empirically

demonstrates that artifacts interaction has a retarding effect on improvement rates.

The first methodological finding of the empirical study is that patents can be a useful

resource for studying artifact interactions, and to our knowledge, this is the first time patents
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Fig 4. Scatter plot of KJ (annual improvement rates) and 1/KW (reciprocal of normalized count of keywords for 27 domains.

Improvement rates are positively correlated with Pearson correlation coefficient = +0.56 with p-value = 0.002, and Spearman Rank Order

correlation = +0.632 with p-value = 0.001. Note that capacitor and electric power transmission data points overlap, and hence appear as

one point. The dashed line shows a linear trend line between KJ and 1/KW.

https://doi.org/10.1371/journal.pone.0179596.g004
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have been used to study interactions. This finding potentially opens up the possibility of using

patents as a new generally available data source for studying artifact interactions and other

similar attributes in artifacts, including those designed many decades in the past.

The seconding methodological finding is that the selected six keywords–prevent, undesir-
able, requirement, failure, disadvantage and overcome—signal different types of interactions:

component-to-component, component-to-system, side effects, and coupling of functional

requirements. The keywords have been selected based on three criteria: (1) that they have at

least a moderate level of occurrence (that the signal is strong enough); (2) that they are widely

used across domains hence requiring them to be non-domain specific; (3) that they signal

interaction most of the time in the text in which they are used. In order to satisfy criterion 2,

keywords are chosen such that they describe interactions at a higher abstraction level. For an

example, usage of the keyword ‘prevent’ implies prevention of some problem, but without

specifying what the problem is. The further specification (such as a word ‘corrosion’) would

potentially make it domain specific and not useful in the kind of cross-domain test performed

here. Importantly, criterion 3 requires that the keyword is relevant, that is, the text marked by

the selected keywords needs to signal interactions most of the time (true positives). The diffi-

culty arises when the keyword used may have two (or more) meanings, such that the text in

which it is used signals interaction in one case, but not in the other. The keyword ‘problem’

discussed earlier (see Material and methods) represents such a word. This keyword was

screened out because it was associated with text reflecting design opportunities 44% of the

time, although the other 56% of the time, it represented interactions. The work reported here

Fig 5. Scatter plot of Pearson correlation coefficients for KJ (improvement rates) and 1/KW (reciprocal

of normalized count of keywords) for 20 groups. The average correlation coefficient (r) is +0.59 with

standard deviation of 0.10. The coefficient value for 27 domain as a whole is 0.56. Each group consists of a

combination of 14 randomly selected domains from the 27 domains.

https://doi.org/10.1371/journal.pone.0179596.g005
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demonstrates that such keywords can be found and the six utilized here are demonstrated to

be applicable to a fairly diverse range of 27 technological domains.

The analysis showed that improvement rates and the inverse of normalized keyword counts

are positively correlated with the Pearson coefficient (r) equal to +0.56 with p-value equal to

0.002, and Spearman rank order coefficient of 0.632 with p-value 0.001. The correlation is

medium, and does not explain all the variation in the rates. This can be understood in the

context of Eq (2). According to the model, another factor contributing towards variation of

improvement rates is the scaling of design variables. Assuming that the influence of scaling

(AJ) on improvement rates across the 27 domains is as indicated by the Eq (2), the equation

implies that improvement rates and inverse of keywords by itself can be expected to have

medium correlation.

Although this work is the first of its kind in using patents to study domain interactions,

the approach has some limitations. First, it can be observed that the noise is quite significant.

Although much of this could be due to the other missing theoretical variable, scaling or to

inaccuracy in measuring KJ, another very likely source is due to limited resolution of the

keywords as an estimate of interactions. An additional possible source of noise might be due

to the limited number of patents (100 most-cited patents) being used for the study (due to

limited resolution of Classification Overlap Method (COM) in its current state (Material and

methods)). This issue should be more significant for domains with low normalized count

of keywords, which is consistent with the higher spread of data points at lower count of key-

words in the graphs (see right side Fig 4). An open issue is whether the keywords we have iden-

tified would work to reliably estimate interactions in domains that we have not examined.

Although the keywords were carefully selected to be general, we did find that the estimate was

distorted in a domain with extensive use of chemical symbols. In this study, the only problem-

atic domain was genome sequencing but other domains could have this specific issue or other

text “anomalies” that badly interfere with obtaining a meaningful estimate. Further research

on more domains including reading patents would increase our understanding of the gener-

alizability of the method.

Overall, the correlation analysis from this empirical study strongly supports the theoretical

prediction that the domain interaction parameter is a factor that can lead to variation in

improvement rates, where a higher interaction parameter leads to lower improvement rates.

Further, it also supports the relational form the model predicts.
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