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Abstract

Shot-gun next generation sequencing (NGS) on whole DNA extracted from specimens col-

lected from mammals often produces reads that are not mapped (i.e. unmapped reads) on

the host reference genome and that are usually discarded as by-products of the experi-

ments. In this study, we mined Ion Torrent reads obtained by sequencing DNA isolated

from archived blood samples collected from 100 performance tested Italian Large White

pigs. Two reduced representation libraries were prepared from two DNA pools constructed

each from 50 equimolar DNA samples. Bioinformatic analyses were carried out to mine

unmapped reads on the reference pig genome that were obtained from the two NGS data-

sets. In silico analyses included read mapping and sequence assembly approaches for a

viral metagenomic analysis using the NCBI Viral Genome Resource. Our approach identi-

fied sequences matching several viruses of the Parvoviridae family: porcine parvovirus 2

(PPV2), PPV4, PPV5 and PPV6 and porcine bocavirus 1-H18 isolate (PBoV1-H18). The

presence of these viruses was confirmed by PCR and Sanger sequencing of individual DNA

samples. PPV2, PPV4, PPV5, PPV6 and PBoV1-H18 were all identified in samples col-

lected in 1998–2007, 1998–2000, 1997–2000, 1998–2004 and 2003, respectively. For most

of these viruses (PPV4, PPV5, PPV6 and PBoV1-H18) previous studies reported their first

occurrence much later (from 5 to more than 10 years) than our identification period and in

different geographic areas. Our study provided a retrospective evaluation of apparently

asymptomatic parvovirus infected pigs providing information that could be important to

define occurrence and prevalence of different parvoviruses in South Europe. This study

demonstrated the potential of mining NGS datasets non-originally derived by metagenomics

experiments for viral metagenomics analyses in a livestock species.
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Introduction

Next generation sequencing (NGS) technologies have largely increased dimensionality of

DNA sequencing projects for many different applications in all fields of biology, including the

possibility to perform metagenomic studies, leading to a tremendous explosion of data that

will continue increasing trend in the future [1].

Metagenomics, defined as the sequencing of all nucleic acids present in a sample despite its

origin (e.g. environmental, specimen-derived), can explore complex microbial communities,

including viral components, in a culture- and sequence-independent manner, overcoming the

limits of traditional detection techniques (e.g. [2–4]). Viral metagenomics has been increas-

ingly used in clinical virology to identify new pathogenic viruses or to characterize the com-

plexity of pathogenic states in humans and livestock (e.g. [5–7]).

One of the most relevant challenges of viral metagenomics derives by the fact that viral

sequences are usually present at a very low proportion in the analyzed specimens compared to

the host DNA sequences [8]. The number of DNA sequences obtained from a specific virus in

a sample is correlated to the viral load in the samples under investigation [9]. Therefore, com-

mon viral metagenomic approaches include viral particles or viral nucleic acid enrichment

steps or other analytical procedures that reduce or remove non-viral DNA [2].

Metagenomic sequence data are generally analyzed by applying bioinformatic pipelines

that can be divided into two main classes: 1) sequence assembly approaches and 2) read map-

ping approaches. Both procedures are characterized by two common steps: i) a pre-processing

phase and ii) the filtering of reads against the host genome to remove the remaining host DNA

sequences (i.e. host subtraction procedure; [10]).

The sequence assembly procedure implies, in a first step, the assembly of reads into longer

contiguous sequences (contigs). This is not a trivial procedure, due to the uneven abundance (and

coverage) of viral species as well as to other technical issues (e.g. sample processing and library

preparation) that produce a limited read overlap required by the assembler. Up to date, several

tools have been tested for assembling metagenomic reads (e.g. [9–12]). Moreover, specific assem-

blers for metagenomic data have been developed (such as MetaVelvet) and tested against viral

metagenomic datasets [10,12]. In a subsequent step, contigs are then used for homology searches

against sequence databases. A first BLASTN search is usually performed against the NCBI nt/nr

database (looking for a virus sequence as best hit) while for contigs not assigned at DNA levels

search in protein databases using translated nucleotide sequences can be performed [12]. To facil-

itate virome studies from NGS data, a few sequence assembly approaches have been designed. For

example, a web server implementing a de novo assembly pipeline from NGS data (VirFind) has

been recently proposed for studies in plant virology and tested also in insect virology [13].

Read mapping approaches are less computationally demanding than sequence assembly

procedures, so resulting well suited for diagnostics or as a first filter before more extensive

analyses are performed [8]. In read mapping approaches, reads are mapped on a reference

sequence dataset from an ad hoc built database (e.g. [14]).

Metagenomics has been used as a tool in veterinary medicine to discover new viruses or to

disclose complex viral infections in livestock species (e.g. [15]). Several applications of viral

metagenomics have also targeted the pig for different objectives. For example, viral metage-

nomics studies have described the pig fecal virome [16], have identified a novel porcine boca-

like virus [17], have shown that domestic pigs might be potential reservoirs for Ndumu virus

[18], have identified porcine parvoviruses in complex infections [19], and have shown the use-

fulness of archived specimens in detecting parvovirus infections [20], among several other

important discoveries that have contributed to epidemiological evaluations of emerging virus

diseases in this livestock species.

Behind unmapped reads on the porcine reference genome: Viral metagenomics in pigs
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In general, all these experiments have been designed according to the usual viral metage-

nomic approaches that enriched viral-derived nucleic acids and mined sequencing data follow-

ing standardized and classic approaches optimized for these purposes. However, the large

amount of NGS data that has been already obtained from the pig (and the increasing amount

of generated sequences that is expected in the future) may open new possibilities to apply viral

metagenomics to data produced by experiments designed from many other purposes and that

did not have as first objective the identification of any viral sequences.

In this study, we identified viral sequences in pig specimens by mining NGS data that were

produced with the Ion Torrent PGM sequencer using two reduced representation libraries

(RRL) obtained from pooled DNA of many different pigs [21]. Data were from an experiment

that was not originally planned for a metagenomic study. Our metagenomic sequence data

mining strategy combined different approaches that i) used as main viral sequence reference

dataset the NCBI Viral Genomes Resource [22] and ii) considered unmapped reads on the ref-

erence pig genome as a potential source of sequences of viral origin [23].

Materials and methods

Datasets

All animals used in this study were kept according to Italian and European legislation for pig

production and all procedures described were in compliance with national and European

Union regulations for animal care and slaughtering. All animals were part of the routine Ital-

ian pig breeding programme and were slaughtered in a commercial authorized abattoir follow-

ing standard procedures. All animals were not raised or sampled for the purpose of this study.

As no treatment was given to any animals, no ethics approval was needed according to the

rules of the animal research ethics committee of the University of Bologna based on the Italian

legislation, as reported in the “DECRETO LEGISLATIVO 4 marzo 2014, n. 26”.

Next generation sequencing data were from a previous study [21]. The investigated pigs

were from the Italian Large White breed. Briefly, two DNA pools (LibP and LibN) were consti-

tuted including DNA from 50 performance tested pigs each. Performance tested pigs have

been described elsewhere [24–26]. DNA was extracted from lyophilized blood of all pigs indi-

vidually, using the Wizard1 Genomic DNA Purification kit (Promega Corporation, Madison,

WI, USA). Then, extracted DNA was quantified and pooled at equimolar concentration to

constitute the two DNA pools from which two RRLs were constructed and next generation

sequencing was carried out using the Ion Torrent PGM (Life Technologies, Carlsbad, CA,

USA) following the procedure described in [21].

Obtained reads were first filtered and trimmed using the Ion Torrent suite v.2.2 (Life

Technologies). Data were then inspected with FastQC v.0.11.22 available at http://www.

bioinformatics.bbsrc.ac.uk/projects/fastqc/. Then reads were trimmed and filtered using

PRINSEQ lite v.0.20.4 [27] as follow: i) trimming at the 3’-end up to 140 bp, ii) trimming of

the 5’-end and 3’-end for poly A/T sequences > 5, iii) trimming the 5’-end and 3’-end up to

reach a base with a quality score > 20, iv) exclusion of reads having average quality < 20, and

(v) exclusion of reads shorter than 20bp. Sequence data have been submitted to the European

Nucleotide Archive database (EMBL, http://www.ebi.ac.uk/ena/) and are indexed with the

accession number PRJEB15234. The use of this experimental design is not specific for the sub-

sequent data mining approach.

Databases

Bioinformatic analyses relied on different resources: i) the pig reference genome sequence,

version Sscrofa10.2 [28], available at the Ensembl database (release 85, July 2016); ii) the
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NCBI Viral Genomes Resource (December 2016, http://www.ncbi.nlm.nih.gov/genome/

viruses/), a collection of viral (and viroid) species represented by a reference sequence [22], iii)

the NCBI nucleotide collection (nr/nt), a collection of sequences from different resources; and

iv) the NCBI GSS database (dbGSS; release 130101), a collection of unannotated short single-

read, primarily genomic sequences from GenBank (http://www.ncbi.nlm.nih.gov/genbank/

dbgss/).

In silico detection of virus sequences

Virome characterization was carried out adopting read mapping and sequence assembly

approaches as described below. For clarity, the flowchart of the bioinformatics pipeline is pre-

sented in Fig 1.

Read mapping approach. Trimmed and filtered reads were aligned by using BWA v.0.7.7

[29] on the Sscrofa10.2 pig genome. Unmapped reads were extracted and used for virome cha-

racterization. The presence of viral sequences was tested by using a read mapping approach.

Unmapped reads were realigned, by using BWA, on the NCBI Viral Genomes Resource.

Duplicate reads were first removed by using Picard v. 1.107 (http://picard.sourceforge.net). To

test for the presence of viral genomes, we computed for each virus the coverage (number of

bases covered by reads over the length of the genome), expressed as percentage. As each data-

set originally showed a coverage of the reference pig genome of 5%, to accept the presence of a

viral genome we set this threshold as limit of detection.

To refine the results, for a more specific taxonomic classification, reads mapped on a partic-

ular viral genome were analysed using BLASTN (http://www.ncbi.nlm.nih.gov/BLAST/)

against the NCBI nucleotide collection (nr/nt). For each read all hits with an E-value < 0.0001

and showing the same statistics of the first hit were collected. The hit having the highest cover-

age was considered the closest viral strain or isolate.

Sequence assembly approach. VirFind web-service [13] was used for the sequence assem-

bly approach. Unmapped reads were analyzed setting BLASTN E-value to 0.0001 and setting a

coverage of 1% as limit of detection.

PCR and Sanger sequencing analyses

The presence/absence of the in silico detected viruses was verified by PCR on DNA pools and

on individual pig DNA samples. Primer pairs were designed with Primer3 v.0.4.0 (http://

primer3.ut.ee/; Table 1). Primers were selected in the most conserved regions within virus spe-

cies, identified using multiple sequence alignments (see notes to Table 1) obtained with Clustal

Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/; [30]).

PCR was carried out twice using a 2720 thermal cycler (Life Technologies, Carlsbad,

CA, USA) in a 20 μL reaction volume containing ~50 ng of DNA, 1 U DNA Taq DNA poly-

merase (Kapa Biosystems, Wilmington, MA 01887, USA), 1X PCR buffer containing MgCl2,

2.5 mM dNTPs and 10 pmol of each primer. PCR cycle was as follow: 5 min at 95˚C; 35 ampli-

fication cycles of 30 s at 95˚C, 30 s at the specific annealing temperature for each primer pair

(Table 1), 30 s at 72˚C; 5 min at 72˚C. Amplified DNA fragments were electrophoresed on

2.5% agarose gels and visualized with 1X GelRed Nucleic Acid Gel Stain (Biotium Inc., Hay-

ward, CA, USA).

PCR fragments were sequenced using the BrightDye Terminator BrightDye1 Terminator

Cycle Sequencing Kit (Nimagen). Samples were loaded on an ABI3100 Genetic Avant Ana-

lyzer sequencer (Applied Biosystems, Carlsbad, CA, USA). Sanger sequence data were con-

firmed by BLASTN analyses.
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Results

Preprocessing of NGS datasets

Ion Torrent sequencing of the two RRLs produced a total of 3,581,496 and 3,887,066 reads for

the LibP and LibN, respectively ([21]; Table 2). A total of 936,056 and 1,097,061 reads (27.6%

and 28.2% of the whole reads generated from LibP and LibN) did not map to the Sscrofa10.2

pig reference genome. These reads were classified as unmapped reads and used for the subse-

quent analyses.

Fig 1. Flowchart of the bioinformatic analyses for identification of viral sequences from unmapped

reads by using read mapping and sequence assembly approaches. a) Steps adopted in the virus

discovery: after the preprocessing phase, reads were analyzed by using both a sequence assembly approach

(yellow) and a read mapping approach (green). b) The flowchart proposed in box “a” is presented highlighting

the number of reads obtained in each step of the analysis.

https://doi.org/10.1371/journal.pone.0179462.g001
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Read mapping detection of viral sequences

Re-alignment of unmapped reads against the NCBI Viral Genomes Resource, followed by the

pruning of PCR duplicates (Fig 1), produced 1,879 and 1,741 reads (Table 2). These values cor-

responded to 0.20% and 0.19% of the unmapped fraction of LibP and LibN, respectively.

The largest number of reads from both libraries (with a total of 399 reads) matched the por-

cine endogenous retrovirus E (PERV-E) genome. These reads might derive from integrated

retroviruses into the porcine genome that were not filtered out by the in silico analyses (consid-

ering the homology level we set). If we exclude PERV-E matched reads, other seven and six dif-

ferent groups of viral genome sequences were identified among LibP and LibN generated

Table 1. PCR primers and PCR conditions of the amplified fragments of the detected viruses.

Primer pair name/Virus a Primers (5’-3’) PCR

conditions b
Expected Amplified

region (bp)

Use

PPV2 Forward: CAGCAGACTGGCGATTTATT;Reverse:

TTTGACGTAACCACCAGGAT
54/1.5 397 PCR/

Sequencing

PPV4 Forward: TGGTTTTCCTGAGACTCCTG; Reverse:

GTCGGCATTCTGTATTGTCC
58/1.5 250 PCR/

Sequencing

PPV5 Forward: AAGGGGAAATTGGTGAAAAG; Reverse:

TATATGGCGCCCAAATGTAT
54/1.5 351 PCR/

Sequencing

PPV6 Forward: GACCTTCTGGACGGGTATTT; Reverse:

TCAAGCCCTCTACACCAAAG
58/1.5 383 PCR/

Sequencing

PBoV1-H18_317-616nt Forward: GGTGAGTAACCATGCCTCTG; Reverse:

GCGGTTTCAGCAAATATAGC
58/1.5 270 PCR/

Sequencing

PBoV1-H18_1-316nt_317-

616nt

Forward: GCACTCGCAGAAAGACTGTT; Reverse:

CTTTCCGCATTCCTCTCTTT
58/1.5 226 PCR/

Sequencing

PCV2_flank Forward: AAGAATGGAAGAAGCGGACC; Reverse:

CAAGGCTACCACAGTCACAA
59/1.5 429 PCR

PCV2_ovlp Forward: CATTCAATGCAAGCGGTGTC; Reverse:

CAAGGCTACCACAGTCACAA
59/1.5 263 PCR

a Primers were built checking for conserved regions (if present) among the reference sequence and the different strains identified by using the refinement

procedure adopted in the read mapping method. The following strains were used: PPV2—GenBank accession numbers: KP245947, GU938300,

GU938301, KP765690, KC701309 and JX101461; PPV4—GenBank accession numbers: GQ387499 and GQ387500; PPV5—GenBank accession

umbers: JX896319, JX896320 and JX896321; PPV6—GenBank accession: KF999682, KF999683, KF999684 and KF999685. Primers PBoV1-H18_317-

616nt and PBoV1-H18_1-316nt_317-616nt were built based on the assembled sequence obtained by VirFind and on the reference sequence HQ291308.

Primers PCV2_flank and PCV2_ovlp were built based on the assembled sequence obtained by VirFind and on the reference sequences KM259933

(truncated genome) and AY424401 (full genome adopted as reference).
b Annealing temperature (˚C) / [MgCl2].

https://doi.org/10.1371/journal.pone.0179462.t001

Table 2. Summary of the Ion Torrent reads utilized for the detection of viral genomes. The number of

reads are reported for the LibP and LibN DNA pools.

Information a LibP LibN

Sequenced reads 3,581,496 3,887,066

Reads after preprocessing 3,390,796 3,731,776

Pig–Unmapped 936,056 1,097,061

Virus 9,926 11,752

Virus–no duplicates 1,879 1,741

a “Pig–Unmapped” refers to reads unmapped on the S. scrofa nuclear genome; “Virus” refers to reads

unmapped on the S. scrofa reference genome and mapping on viral genomes; “Virus–no duplicates” is the

same of “Virus”, but after removing PCR duplicates.

https://doi.org/10.1371/journal.pone.0179462.t002
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reads, respectively (S1 Table). Most of these detected viral sequences in both libraries matched

sequences of porcine parvovirus 2 (PPV2), PPV4, PPV5 and PPV6, for a total of 260 reads.

PPV2 had the most covered genome (89.73%) in the LibP with a total of 164 reads and 9 pro-

duced contigs. In LibN, the largest number of reads (no. = 48) matched PPV4 genome with a

coverage of 8.70%.

Other reads matched sequences of viruses that have not been previously associated or

detected in pigs: Shamonda virus (15 reads, matching the small segment of the negative-

stranded tripartite RNA genome), Malvastrum leaf curl Philippines betasatellite (nine reads)

and Glypta fumiferanae ichnovirus (28 reads).

To confirm or filter out false positive matches obtained with the read mapping approach,

the procedure was refined using BLASTN against the NCBI nucleotide collection (nr/nt). For

each read all hits with an E-value < 0.0001 and showing the same statistics of the first hit were

collected. Then, for each hit, coverage was computed to confirm and identify a possible viral

strain from which sequences were putatively originated or were closely related. Hits having the

highest coverage on a specific viral strain sequence entry (or group of entries) were assumed to

putatively identify that specific viral strain or isolate. It should however be pointed out that,

according to the pooling strategy of our experiment, it is possible that more than one strain for

each detected virus could be present among these reads. This BLASTN refining step might

identify the most frequent strain (and/or the closest putative strain) that provided the largest

number of reads. Information on the first three entries ranked by BLASTN for each detected

viral genome identified in the preliminary step of the read mapping approach is reported in S2

Table. Results of this BLASTN refining analysis for the putative viral sequences detected in the

LibP and LipN datasets were the following (S3 Table): i) PERV-E sequences were confirmed as

PERV-E only as third hits, further supporting that the identified matches were from integrated

retrovirus sequences in the porcine genome (the first two hits were from pig DNA sequences);

ii) PPV2 sequences matched with higher coverage different strains than that used as reference

by the NCBI Viral Genome Resource; iii) PPV4, PPV5 and PPV6 viral sequences were con-

firmed to match the same strains used as reference by the NCBI Viral Genome Resource; iv)

sequences that were supposed from Malvastrum leaf curl Philippines betasatellite, Shamonda

virus and Glypta fumiferanae ichnovirus actually were not confirmed to derive from these

viruses as they matched pig or human genomic sequences (suggesting that they originated

from the host genome and not from contaminating viruses of the investigated specimens).

Sequence assembly detection of viral genomes

The sequence assembly approach we used was based on VirFind web-service [13] for the

detection of virus sequences (Fig 1). To overcome limits of the bioinformatic pipeline and to

facilitate sequence mining, we analyzed only nuclear unmapped reads obtained as described

above. Twenty-two and six contigs from LibP and LibN datasets aligned 17 and six viral

genome entries, respectively (four were in common between the two datasets; S3 Table).

VirFind assembled 10 contigs (seven from LibP and three from LibN) that aligned with

seven different retrovirus sequences (eight contigs from PERV sequences and two from Molo-

ney Murine Leukemia Virus), probably derived by different integrating events in the porcine

genome that remained in the unmapped read fraction. Other 11 contigs (all from the LibP

dataset) aligned five PPV2 sequences from different strains (six contigs mapped on the same

strain JH13 genome that was covered for a total of ~39% of its genome size). The longest PPV2

contig (577 nt) mapped on the strain YH14 genome (~10% of coverage).

Contigs matched with PPV5 and PPV6 genomes on both LibP and LibN datasets. Two

PPV5 contigs were generated from LibP and one was obtained from LibN, all matching non-
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coding regions 5’ to the non-structural protein 1 (NS1) gene. A PPV6 contig obtained from

LibN matched a 5’ flanking region to the NS1 gene. Another contig constructed for this virus

from LibP was quite puzzling as it seems to have been generated from a circularized genome.

BLASTN analysis identified two matched regions at its extreme ends to the most similar Gen-

Bank entry (KR709268), regions that were identical or almost identical to corresponding

sequences at the beginning and at the end of the reported virus genome (nucleotides 1–112

and 6148–6103 of KR709268 matched with nucleotides 286–397 and 24–70 of contig1 with

100% and 98% identical matches, respectively). As parvoviruses have linear genomes this result

could be also obtained by a chimeric sequence or could be derived by an artifact of the assem-

bly procedure. Further studies are needed to clarify this question.

A match with the PPV4 genome (in the 5’ flanking region of the NS1 gene) was identified

only in the LibN dataset. In the LibP dataset, four reads aligned to the PPV4 genome, produc-

ing three contigs. A long contig (from 12–431 nt) was not built (even if the presence of PPV4

sequences was evident from visually inspected alignments) since there were no overlapping

reads in the region around the 217 nt, explaining only a genome coverage<1% that was not

reported in S3 Table (data not shown).

VirFind contigs matched genome sequences of two other viruses not previously detected

with the read mapping approach: porcine bocavirus 1-H18 isolate (PBoV1-H18; in LibP) with

the longest assembled contig of this approach (616 bp) and porcine circovirus 2 (PCV2), strain

ZJ-R, truncated genome sequence (in LibP and LibN).

Identity of the assembled contigs with the matched virus genome regions ranged from

about 95 to 100% (S3 Table). As most of these contigs were constructed from more than one

infected animal (considering the DNA pool approach and the individual validation analyses

described below) they might not be considered as derived from a single isolate as this question

was not addressed in our study. All generated contigs are available in the S1 File.

PCR validation of in silico detected viruses

A PCR primer pair was designed for each detected parvovirus (PPV2, PPV4, PPV5 and PPV6;

Table 1) to validate the presence of these DNA fragments in the original DNA pools. PCR anal-

yses confirmed the presence of PPV4, PPV5 and PPV6 DNA in both DNA pools (Fig 2A, Fig

2C and Fig 2F, respectively) whereas PPV2 DNA was detected only in the LibP DNA pool

probably due to the very low load and diluted sequences of this virus in the animals of this

DNA pool (Fig 2B; Table 3). Sanger sequencing of the obtained amplicons confirmed that the

amplified fragments corresponded to what was expected (GenBank/EMBL accession numbers:

LT622854 and LT622855 for PPV2; LT622856 for PPV4; LT622857 and LT622858 for PPV5;

LT622859 and LT622860 for PPV6; LT622861).

Two PCR primer pairs were used to verify the presence of PBoV1-H18 DNA in the original

DNA samples (S1 Fig). Only a region from nucleotides 317 to 616 (317-616nt) of a 616 bp long

PBoV1-H18 contig (Contig_1–616) perfectly aligned with the viral reference genome, leaving

~50% of the remaining contig as unaligned (region 1-316nt). To exclude that the Contig_1–

616 would have been derived by an artefact of the de novo assembly, we proved the real exis-

tence of the two parts of this contig as follows: the first primer pair was designed within the

317-616nt region, while the second pair was constituted by a forward primer placed in the 1-

316nt region and a reverse primer selected in the 317-616nt region (PBoV1-H18_1-316nt_

317-616nt primer pair; Table 1). The presence of the PBoV1-H18 DNA was confirmed in the

LibP DNA pool by both primer pairs (Fig 2D and Fig 2E). Sanger sequencing of the two ampli-

cons confirmed the expected DNA, including the amplification of the 1-316nt_317-616nt frag-

ment (S1 Fig; GenBank/EMBL accession no. LT622861). No amplification was obtained for
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both PCR primer pairs when tested using LibN pool DNA, confirming the results of the

sequence assembly bioinformatic analysis (Fig 2D and Fig 2E). Amplification of individual

DNA samples confirmed the results of the DNA pool analyses (Table 3).

The design of a PCR validation strategy for PCV2 ZJ-R was adapted to the specific sequence

composition of this strain. Normally, PCV2 has a single-stranded circular genome of 1766

Fig 2. PCR validation of the in silico detected porcine viruses. Boxes are named after the primer pairs

utilized for the validation reported in Table 1. a) PPV4; b) PPV2; c) PPV5; d) PBoV1-H18_1-316nt_317-616nt;

e) PBoV1-H18_317-616nt and f) PPV6. Each box presents the following columns: “M”—ladders molecular

size markers; “LibP”—amplification products (in duplicate) in the LibP DNA pool; “LibN”—amplification

products (in duplicate) in the LibN DNA pool.

https://doi.org/10.1371/journal.pone.0179462.g002

Table 3. Summary of the viruses identified in the two next generation sequencing datasets (LibP and LibN). Identification was obtained by in silico

analyses (with the read mapping and sequence assembly approaches) and on DNA samples from which libraries were generated by PCR analyses on DNA

pools and on individual DNA samples.

Virus/Primer pair DNA pools (in silico): rm/sa a DNA pools (PCR) b Individual DNA samples (PCR) c

LibP LibN LibP LibN LibP LibN

PPV2 +/+ +/- + - 5 0

PPV4 +/- +/+ + + 7 5

PPV5 +/+ +/+ + + 4 3

PPV6 +/+ +/+ + + 6 7

PBoV1-H18_1-316nt_317-616nt -/+ -/- + - 1 NA*

PBoV1-H18_317-616nt -/+ -/- + - 1 NA*

a Identification of viral sequences by in silico analyses: rm = read mapping approach; sa = sequence assembly approach. “+” indicates presence of

sequences; “-” indicates absence of sequences.
b Identification of the presence of viral sequences by PCR analysis on DNA pools: “+” indicates presence of amplification (positive); “-” indicates absence of

amplification (negative).
c Identification of the presence of viral sequences by PCR analysis on individual DNA samples. The number of positive samples is reported out of 50 pigs for

the two groups (LibP and LibN).
* Not amplified.

https://doi.org/10.1371/journal.pone.0179462.t003
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nucleotides. The ZJ-R strain have a small circular genome sequence of 694 nucleotides (trun-

cated genome), containing a 180 nucleotide non-viral insertion (with 99% homology with a

swine derived sequence; GenBank accession number: HE214143; that also shows a high num-

ber of BLAST matches with P<0.0001 in the pig genome; data not shown), for which possible

recombination with cellular protein-coding sequences was observed [31]. For this virus strain,

a PCR primer pair (PCV2_flank; Table 1) was designed on the virus specific sequence (highly

conserved in many different PCV2 strains; data not shown) that flanked the inserted sequence.

A second PCR primer pair (PCV2_ovlp; Table 1) included a forward primer placed in the pig

DNA homolog part and a reverse primer in the virus specific region. No amplification was

obtained on both DNA pools (LibP and LibN). A retrospective further look at sequences of the

putative PCV2 contig generated by VirFind was obtained by BLASTN analysis against the

dbGSS resource, that identified an almost complete alignment (~95%) of this sequence with

several porcine genomic sequences (S2 File). These additional results, taken together with the

lack of PCR amplification, may indicate that the sequence assembly analysis generated a spuri-

ous sequence match attributed to the PCV2 ZJ-R strain due to the particularity of its genome

sequence that includes a host-derived inserted sequence.

Analysis of individual pig DNA samples

A retrospective analysis of the positively amplified DNA samples extracted from the perfor-

mance tested pigs could provide interesting information from the occurrence, distribution

and prevalence of virus infections and co-infections (S4 Table). The analysed pigs were perfor-

mance tested in a period spanning 11 years (from 1996 to 2007) and coming from different

Italian farms [21]. Considering the 100 individually PCR amplified pigs, 31% were infected by

at least one virus. Among these pigs, 7 were infected by two different parvoviruses. The first

detected parvovirus positive pig, infected with PPV5, was slaughtered in 1997. The other PPV5

positive pigs were slaughtered in 1998 (n. 2; from two different slaughtering batches), 1999 (n.

2; from two different slaughtering batches) and 2000 (n. 2; from the same slaughtering batch).

One of these pigs was also positive for PPV4 whereas one of the PPV5 positive pig slaughtered

in 1998 and one slaughtered in 1999 were also positive for PPV6. Two other pigs slaughtered

in 1998 were positive for PPV6 in our study. The remaining pigs infected by PPV6 were

slaughtered from 2000 to 2004 (S4 Table). PPV6 was the most frequent detected virus in our

analysed individual pigs (13% of the analysed samples). PPV4 was the second most frequently

detected parvovirus in the analysed pigs (12%) whereas PPV2 and bocavirus were the least fre-

quent ones (5% and 1%, respectively). Two pigs were co-infected by PPV2 and PPV4. It is

worth to mention that previous studies that first described several parvoviruses identified also

in our study (i.e. PPV5, PPV6 and PBoV1-H18; i.e. [20, 32]) reported their occurrence in spec-

imens isolated from pigs living in a period spanning from 2006 to 2010, later than the life span

period of our archived samples.

Discussion

The large amount of NGS data already available in most livestock species is opening new possi-

bilities for mining these sequence datasets to extract additional information that was not the

main target of the original experiments. DNA extraction procedures from tissue specimens

not only isolate genomic DNA of the host organism but also of all other infecting microorgan-

isms and viruses contained in the sampled tissues and cells. Therefore, NGS datasets generated

from shot-gun sequencing approaches may contain reads that are derived from infecting

organisms potentially transforming the original experiment in a metagenomic study even if

not previously designed for this specific purpose [33]. One of the main challenges is however
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the application of appropriate bioinformatic steps that can extract relevant information from

the large amount of generated sequences coming from the host organism.

To this aim, we first filtered generated reads by using the Sscrofa10.2 porcine reference

genome [28] and considered for subsequent analyses only unmapped reads that might be

enriched of sequences that could not be derived from the genomic DNA of the host organism.

Unmapped reads have been also used in [23] to identify absent, incomplete or misassembled

genomic sequences on the reference Bos taurus genome version and nematode sequences

derived by a blood-borne parasite that was unexpectedly found to have infected the cattle

whose DNA was used to construct the bovine reference genome. It is also clear from our study

that most of the unmapped reads are derived from porcine genomic sequences not yet incor-

porated in the Sscrofa 10.2, considering the preliminary and incomplete assembly of the cur-

rently available porcine reference genome [34]. For example, several unmapped reads in our

study matched PERV sequences that are retroviruses (whose sequences are included in the

NCBI Viral Genomes Resource; [22]), known to pervade the Sus scrofa genome but that did

not match (considering the used thresholds) any other sequence of the Sscrofa10.2 genome

version (and for this reason were not filtered out by the preliminary mapping approach against

the host pig genome). This is probably due to the fact that the reference pig genome does not

contain all types of PERV sequences that however were integrated in the genome of the pigs

that were used to construct sequenced RRLs. It is well known that different pig lines or breeds

have different contents of these retrovirus sequences (e.g. [35–36]).

Despite these problems, using virus genome sequences available in the NCBI Viral

Genomes Resource [22] to align unmapped reads, we identified viral sequences produced by

several parvoviruses that originally infected the pigs that were used in the construction of the

DNA pools. Our study and [23] demonstrated that it is possible to consider NGS datasets as

source of metagenomics information. We could envisage that routine mining of NGS data

against viral genome sequences might become a common method to discover novel viral infec-

tions and novel viruses in the future. One limit could be due to the absence of reference viral

sequences for all viruses in the NCBI Viral Genomes Resource database that is used for

sequence alignments, even if this resource is in rapid expansion [37–38]. That means that it

could be also possible to obtain novel information by re-analysing NGS datasets against future

updated versions of the reference viral database.

A few examples could be mentioned to evaluate the strength and limits of our viral metage-

nomic study that can be refined or adapted according to the features of the mined NGS data-

sets. PPV4 sequences were detected by the read mapping method in both LibP and LibN but

was only confirmed with the sequence assembly approach in the LibN as in its dataset the

small number of reads did not provide enough overlapping sequences to construct any contig.

The presence of PPV4 sequences in LibN was however validated by in vitro analyses. That

means that viral load, that in turn may affect read depth and coverage related to the genome of

the infecting organisms (in particular, in an experiment that already has a low coverage and

read depth related to the porcine reference genome; [21]) is very important to obtain a valida-

tion with the sequence assembly approach and relaxed thresholds might be needed in this spe-

cific case.

Another example was provided by PCV2 sequences that were detected with the sequence

assembly approach but results were not confirmed by additional laboratory investigations and

close evaluation of the bioinformatic analyses. PCR validation did not confirm the presence of

PCV2 sequences that were in silico attributed to a peculiar strain (ZJ-R) whose genome

includes a host-derived sequence [31]. This part of its genome, that was not possible to distin-

guish (just by looking at the raw bioinformatic outputs) from host derived sequences that

remained among unmapped reads, was the source of this false positive result.
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An example in which NGS reads might be more powerful than PCR validation could be

provided by the detection of PPV2 sequences in the LibN dataset. The read mapping approach

(that might perform better when read depth and genome coverage are very low) identified the

presence of PPV2 sequences coming from this library (only 4 reads in the pool). PCR could

not validate the presence of this (putative) very low virus load (eventually diluted in different

animals) probably due to the sub-optimized PCR efficiency for this PPV2 amplified region.

Low PCR efficiency was suggested to be the cause of partially validated results also in other

parvovirus detection experiments (e.g. [20]).

As pigs from which DNA was extracted to construct DNA pools were slaughtered in a

period from 1996 to 2007, our study retrospectively identified pigs that were infected by several

parvoviruses. Subsequent analyses on individual DNA samples showed that several pigs were

also co-infected by more than one virus. It is worth to mention that, according to available vet-

erinary records, all investigated animals were considered healthy, without any apparent signs

of infections. In addition, as all these pigs were part of a performance testing selection program

[21], in which only veterinary inspected animals could be moved in a performance testing

station, all animals were analysed following the routine laboratory tests needed at that time

and were not considered positive for any pathogen under monitoring. Several other studies

reported apparently asymptomatic infections from viruses of the Parvoviridae family in many

different pig herds and countries with sometimes a very high prevalence of positive animals

[39–41]. As our archived samples were from performance tested pigs, it could be interesting to

use growth data of these animals to evaluate if infected animals, that were apparently asymp-

tomatic, could show sign of subclinical infections (and that could be eventually considered as

pre-clinical cases, considering also the quite low infection loads that they showed), by compar-

ing their growth rates with contemporary pigs that were negative at the PCR tests we designed.

According to the year when investigated pigs were sampled, we could mention that

PPV5-related viruses circulated in Italian pigs much earlier than the first detection of positive

animals for PPV5 in the world. This virus was identified in US archived samples collected in

2006 [20], after its first identification in pigs that lived in 2013 [42]. In our study, PPV5-posi-

tive pigs were slaughtered in a period ranging from 1997 to 2000.

Again, we detected PPV6-related sequences in pigs that were slaughtered even in 1998 (and

in a period spanning 1998–2004), more than 10 years before this virus was first recognized in

China from specimens collected in 2010–2013 [32] and then identified in the United States

and Mexico [19].

In our study, pigs that were infected by PPV2 were slaughtered in 1998, 2000, 2003 and

2007 whereas pigs that were positive for PPV4 sequences were slaughtered in 1998–2000.

PPV4 was first discovered in archived samples collected in 2005 during high mortality out-

breaks associated with porcine circovirus associated disease in North Carolina [43] and subse-

quently detected in tissues collected again in US in 1998 [20], matching the earliest detection

we obtained in a few Italian samples. The first detection of the porcine bocavirus 1 isolate H18

(PBoV1-H18) was reported in specimens collected in several Chinese provinces in 2008–2009

[44]. This virus was then classified into the PBoV G1 group [45] and first detected in Sweden

in pigs infected also with PCV2 [17]. In our study, only one Italian Large White pig slaugh-

tered in 2003 was positive for PBoV1-H18 indicating that similar isolates circulated in South

Europe a few years earlier than the first detection in China and North Europe.

Cadar et al. [46] suggested that PPV2, PPV3 (both probably originated in Romania) and

PPV4 (probably originated in Croatia) have been present in European domestic pig popula-

tions at least since the 1920s, 1930s and 1980s, respectively. It could be important to analyze

additional historic samples to evaluate when genetic diversity among the Parvovinae subfamily

emerged. Moreover, phylogenetic analyses including our sequences will be useful to clarify the
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precise origin of the parvoviruses we detected in our investigation. However, contigs we

obtained from the sequence assembly approach could be of limited value for this purpose as

they provided short sequences mainly from non-coding regions of different parvoviruses. Iso-

lation of full genome sequences from our historic samples might help to better address this

question.

Conclusions

This study demonstrated the potential of mining NGS datasets non-originally derived by

metagenomic experiments for viral metagenomic analyses that might be useful to disclose new

information and to clarify the origin of viruses infecting livestock species. We showed that

interesting sequence information remains in the unmapped fraction of NSG datasets. This

fraction can be explored for many other purposes than those derived by the experiments that

generated these datasets.

Results we obtained made it possible to provide a retrospective analysis of putative asymp-

tomatic viral infections of pigs raised in Italy. Using archived samples, we identified pigs that

were infected by several viruses of the Parvoviridae family, indirectly demonstrating that their

genetic differentiation might have occurred earlier and in different geographic regions than

those previously reported, opening new questions and opportunities for virus epidemiological

studies.
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