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Abstract

The objective of this study was to explore the potential of genomic prediction (GP) for soy-

bean resistance against Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white

mold (WM). A diverse panel of 465 soybean plant introduction accessions was phenotyped

for WM resistance in replicated field and greenhouse tests. All plant accessions were previ-

ously genotyped using the SoySNP50K BeadChip. The predictive ability of six GP models

were compared, and the impact of marker density and training population size on the predic-

tive ability was investigated. Cross-prediction among environments was tested to determine

the effectiveness of the prediction models. GP models had similar prediction accuracies for

all experiments. Predictive ability did not improve significantly by using more than 5k SNPs,

or by increasing the training population size (from 50% to 90% of the total of individuals).

The GP model effectively predicted WM resistance across field and greenhouse experi-

ments when each was used as either the training or validation population. The GP model

was able to identify WM-resistant accessions in the USDA soybean germplasm collection

that had previously been reported and were not included in the study panel. This study dem-

onstrated the applicability of GP to identify useful genetic sources of WM resistance for soy-

bean breeding. Further research will confirm the applicability of the proposed approach to

other complex disease resistance traits and in other crops.

Introduction

Sclerotinia stem rot or white mold (WM), caused by Sclerotinia sclerotiorum (Lib.) de Bary, is a

devastating disease of many economically important crops including soybean [1]. Since its

first report from Ontario, Canada [2], WM has become one of the major diseases impacting

soybean production in the United States [3]. Current strategies, such as increased row spacing,

reduced irrigation before and during crop flowering, and biocontrol, have not effectively con-

trolled this disease [4]. Despite that fungicides reduce the WM disease severity and yield losses

are reduced, the profit does not increase using fungicides [5]. Considering the low effective-

ness for all of these strategies, the development of resistant cultivars remains an effective and

economic approach to cope with WM [6].
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Plant breeders have traditionally used specialized disease nurseries or indoor growth envi-

ronments to determine the expression of resistance in cultivars. However, due to the low to

moderate heritability of trait [7] and its vulnerability to environmental influences [8], pheno-

typing for WM resistance is time-consuming and costly. Several quantitative trait loci (QTL)

associated with the disease’s resistance have been reported [9], demonstrating the quantitative

inheritance of WM resistance in soybean. Although marker-assisted selection (MAS) has

played an important role in soybean breeding for disease and pest resistance (e.g. soybean cyst

nematode resistance [10], its application in the improvement of WM resistance is challenging

because WM resistance is controlled by many loci with small effects.

Genomic prediction entails building a prediction model by associating marker information

with phenotypic information in a model training step [11]. Individual genetic material(s) that

have been genotyped and phenotyped comprise the training population. The prediction model

is then applied to a set of selection candidates that have been genotyped but not evaluated phe-

notypically (validation population). The primary difference between GP and traditional forms

of MAS is that GP foregoes QTL identification through statistical significance tests and testing

of significant markers by modeling all scored markers simultaneously. By utilizing genome-

wide molecular markers, GP is becoming a promising method for the selection of complex

traits in plant breeding programs [12] and has been applied to multiple crops including wheat,

maize, and barley [13–15]. The prediction accuracies of GP have been reported to be 28%

greater than some MAS and 95% as accurate as phenotypic selection for a single trait in wheat

[16].

Relatively few GP studies have been reported in soybean [17–20] for quantitative traits

including seed yield [17], seed weight [20], resistance to sudden death syndrome [21] and soy-

bean cyst nematode [18]. However, the efficiency of GP on WM resistance, a complex trait in

soybean, is currently unclear, making it an ideal trait to examine the efficiency of GP on soy-

bean complex traits.

The effectiveness of GP depends on the correlation between the predicted genotypic value

and the underlying true genotypic value [22]. This correlation, also called prediction accuracy,

of GP has been expressed as a function of the training population size (TPS), trait heritability

on an entry-mean basis (h2), and marker density [23,24]. Simulation and cross-validation

studies have indicated that prediction accuracy generally increases as more individuals are

included in the training population [16,25–30] and more markers were used [31]. However,

when genome wide selection (GWS) is applied in a structured population, increasing the num-

ber of markers or the number of individuals of training population did not necessary lead to

an increase of prediction accuracy [32]. Therefore, the first steps are to determine the training

population size and number of markers to use for GP of genomic estimated breeding value

(GEBV), and the appropriate prediction model to use to obtain high predictive ability, the cor-

relation between the predicted breeding values and the observed phenotypic values as true

breeding values are unknown in real datasets. The next steps are to validate the models and

testing them to predict diverse accessions previously unseen in the training models. These

efforts will not only provide information on the applicability of these prediction models but

also complement the efforts to diversify the genetic basis of commercial soybean breeding pro-

grams by identifying and utilization of diverse accessions to broaden the genetic base of disease

resistance.

Here we report the results of performing GP cross-validation for WM resistance from a col-

lection of 465 plant introduction (PI) soybean lines from the USDA soybean germplasm col-

lection. For the GP models, the training population composition, marker number, and the

statistical method for the calculation of GEBV were varied to determine their effect on WM

GP accuracy. To assess GP accuracy, cross validation was done to predict white mold (WM) in

Genomic prediction to screen genebank for crop improvement

PLOS ONE | https://doi.org/10.1371/journal.pone.0179191 June 9, 2017 2 / 19

program” at Iowa State University. Tara Moellers

was supported by the R. F. Baker Center for Plant

Breeding. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: This study was partially

supported by the Monsanto Chair in Soybean

Breeding at Iowa State University. This does not

alter our adherence to the PLOS ONE policies on

sharing data and materials.

https://doi.org/10.1371/journal.pone.0179191


the field and greenhouse in 2014 and 2015. Finally, using the GP models, we validated previ-

ously reported sources of WM resistance as well as identified new sources of WM resistance in

the entire USDA soybean germplasm collection, which houses 19,652 accessions from several

geographical origins.

Results

Phenotypic evaluation and GP method comparison

Continuous distribution was observed in the field experiments, asymmetric distribution was

observed in GH2014, and a kurtotic distribution was observed in GH2015 based on the predicted

value of the accession random effects in the logistic model (Fig 1). Asymmetric distribution was

observed to Field2014, Field2015 and GH2014 and normal distribution to GH2015 for original

Fig 1. White mold phenotypic data distribution transformed using logistic regression of 465 soybean accessions tested in

field and greenhouse specialized tests.

https://doi.org/10.1371/journal.pone.0179191.g001
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data (S1 Fig). Few resistant accessions (score = 0) in the greenhouse experiments and several resis-

tant accessions in the field experiments were observed (S1 Fig). The PI lines were considered resis-

tant when their predicted value was low or equal compared with the resistant checks.

High genotypic correlation was observed between all experiments (S2 Fig). The genetic

correlation between Field2014 and Field2015 was the highest (cor = 0.72) while the lowest cor-

relation was between GH2014 and GH2015 (cor = 0.46). Correlations between field and green-

house were almost the same ranging from 0.53 (Field2014 and GH2015) to 0.54 (Field2014

and GH2014, Field2015 and GH2014, Field2015 and GH2015).

The broad-sense heritability estimate for disease severity index (DSI) was 0.64 across field

environments, suggesting that selections done for white mold resistance in a field setting

would be effective. Genetic diversity estimated by principal component analysis (PCA) showed

the diversity in the mini-core panel used in this study, and no pattern among PI accessions

was detected (S3 Fig). When applying PCA to the genomic relationship matrix, 141 compo-

nents of a total of 465 were needed to explain 80% of the total variance of genotypes. The first

component captured 15.41% of the total variation of marker genotypes, whereas the second

component explained 6.66% of the total variation (S3 Fig).

All GP methods tested in this study had similar prediction abilities of WM resistance in soy-

bean, and these ranged from 0.43 to 0.47 in the field and from 0.18 to 0.25 in greenhouse test-

ing (S4 Fig). The predictive ability from the field experiments was approximately twice that of

the greenhouse experiments using the same model.

Effect of marker density and training population size in the genomic

prediction

For all experiments and training population sizes, minimal increase was observed in the pre-

dictive ability for a given training population size beyond 5k SNPs (Fig 2). The increase for

prediction ability comparing 100 markers and 5k markers was 14%, 7%, 8% and 35% in

Field2014, Field2015, GH2014 and GH2015, respectively. Little or no difference in predictive

ability was observed with sets of 10k, 15k, 20k, 25k, 30k and 36,105 SNPs. Variation in popula-

tion size did not affect prediction accuracies, so only training population with 352 genotypes

(80%) is shown (Fig 2). The effect of marker number and training population size is reported

using RR-BLUP because this model maintained prediction accuracies similar to other models

and had a lower computational requirement compared with Bayesian models.

A slight increase in predictive ability was observed with increased TPS from 220 genotypes

(50% of the panel) to 396 genotypes (90% of the panel) (Fig 3). Similar results were obtained

for varying sizes of marker sets for all TPSs; therefore, only data for the 5k-marker set are

shown (Fig 3).

Genomic prediction capacity in different experiments

When the same experiment was used to train and validate the model, 10-fold cross-validation

was used, and those models were used as control to compare with models performed using

different experiments in training and validation population. When one field experiment

(Field2014 or Field2015) was used as a TPS and another as the validation population set (VPS),

the prediction accuracies were very similar (Table 1). The predictive ability dropped 62% when

one greenhouse experiment (GH2014 or GH2015) was used as the TPS and the other as the

VPS. When field data were used as the TPS, the predictive ability in the greenhouse decreased.

For example, when Field2014 is used as the TPS, the predicted accuracy of GH2014 was 20%

less than the predictive ability of GH2014 when GH2014 was the TPS. When greenhouse exper-

iments were used as the TPS, the predictive ability in the field decreased significantly. For
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example, when GH2014 was used as the TPS, the prediction accuracies for Field2014 and

Field2015 were 0.31 and 0.30, respectively, while the best prediction accuracies for Field2014

and Field2015 were 0.44 and 0.47, respectively. The GP model using Field2014 as the TPS accu-

rately predicted the Field2015 phenotype, and vice versa.

Testing GP model

The GEBV estimated by the GP model using RR-BLUP with 5k markers and 352 genotypes for

twenty-nine previously and independently reported resistant accessions was similar to the

GEBV of the 10% most resistant genotypes (Fig 4).

The comparison of the 5% most resistant accession in the USDA soybean germplasm col-

lection with the 5% (23 accessions) and 10% (46 accessions) most resistant accessions identi-

fied in this study revealed that thirty-five of the fourth-six (76%) accessions were common

with the 5% most resistant accessions from the USDA soybean germplasm collection (Fig 4

and S1 Table). The country of origin of the 5% most resistant accessions in the USDA soybean

Fig 2. Relationship between predictive ability and the number of SNP markers using a training population of 352 genotypes

among 465 diverse soybean accessions tested for white mold in 2014 and 2015 field and greenhouse experiments.

https://doi.org/10.1371/journal.pone.0179191.g002
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germplasm collection varied: Japan (431 accessions), South Korea (326 accessions) and China

(46 accessions) (S5 Fig); and belonged to maturity groups III (114 accessions), IV (241 acces-

sions), V (185 accessions) and VI (124 accessions) (S6 Fig).

Fig 3. Predictive ability for white mold reaction phenotyped for WM in field and greenhouse screening in 2014 and 2015 using

RR-BLUP for differing training population sizes using 5 k SNP markers using 465 diverse soybean accessions.

https://doi.org/10.1371/journal.pone.0179191.g003

Table 1. Predictive ability and standard deviation reported using RR-BLUP from white mold evaluation experiments in field and greenhouse (2014

and 2015), when one environment was used to train the model and validated on another environment. The predictive ability (estimated by 10 fold

cross-validation) using the same experiment for training and validation population was used as control.

Training\Validation Field2014 Field2015 GH2014 GH2015

Field2014 0.44 ± 0.05 0.45 ± 0.06 0.20 ± 0.08 0.22 ± 0.08

Field2015 0.46 ± 0.04 0.47 ± 0.07 0.20 ± 0.08 0.20 ± 0.08

GH2014 0.31 ± 0.07 0.30 ± 0.07 0.25 ± 0.07 0.15 ± 0.09

GH2015 0.36 ± 0.06 0.32 ± 0.07 0.17 ± 0.09 0.24 ± 0.08

https://doi.org/10.1371/journal.pone.0179191.t001

Genomic prediction to screen genebank for crop improvement

PLOS ONE | https://doi.org/10.1371/journal.pone.0179191 June 9, 2017 6 / 19

https://doi.org/10.1371/journal.pone.0179191.g003
https://doi.org/10.1371/journal.pone.0179191.t001
https://doi.org/10.1371/journal.pone.0179191


Fig 4. Scheme demonstrating the use of genomic selection models in training, validating, and testing sets. Top– 5% and

10% most resistant accessions for WM found in the present study (F2015); Bottom– 5% and 10% most susceptible accessions for

Genomic prediction to screen genebank for crop improvement
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Discussion

Phenotypic evaluation and GP methods comparison

Variability among accessions for white mold based on phenotypic distribution (Fig 1 and S1

Fig) and PCA (S3 Fig) was identified. The identification and mobilization of useful genetic var-

iation from germplasm bank for use in breeding programs is clearly a necessity not only for

sustaining current rates, but also for increasing future rates of crop genetic improvement [33].

And it was also observed that the variability between field and greenhouse experiments were

different (Fig 1 and S1 Fig).

Based on the differences between field and greenhouse experiments, they were evaluated

for white mold separately and the correlation between them were estimated (S2 Fig). This

allowed the comparison of different environments in an attempt to understand the modes of

resistance underlying each of them and possibly explain the lack of correlation between field

and greenhouse evaluations that has been previously reported [34–39]. These low correlations

observed in this study support the fact that greenhouse experiments, although informative, do

not correlate as well with field responses. At a correlation coefficient of 0.72, Field2014 and

Field2015 observed the highest correlation coefficient between experiments. Therefore, in

order to identify new sources of WM resistance, field screenings should be utilized as they are

more representative of farmers’ fields.

Moreover, the heritability estimate in this study was similar to previously reported estimates

for DSI among recombinant inbred line (RIL) populations which ranged from 0.30 to 0.71 in

individual field environments and 0.59 across environments [8]. This heritability means that it

is possible to obtain gain with selection in our study.

Since the genetic material used in this study consisted of diverse accessions from the USDA

soybean germplasm collection (S3 Fig), it does not represent the pedigreed structure that a soy-

bean breeding program, developing commercial cultivars, will encounter. However, the results

from the genetic structure and composition of entries in this study would be applicable to

germplasm enhancement programs using diverse collections to obtain parental materials.

Therefore, the genetic variability observed in the study panel make it suitable to develop

genome wide predictions for the identification of soybean accession resistant to white mold.

There was no difference between GP methods compared in this study (S4 Fig). Several stud-

ies have shown that, in comparison with ridge regression methods, more complex statistical

methods give little increase in the accuracy of GP for polygenic traits [40–43]. Despite there

were no statistics differences between methods in this study, RR-BLUP performed a little bet-

ter than some Bayesian methods in certain experiments. Moreover the RR-BLUP model has

other advantages compared with Bayesian methods such as relative simplicity, reduced com-

puting time, and the well-known optimality properties of mixed models for selection [44].

Effect of marker density and training population size in the genomic

prediction

Models fitted using at least 5K markers were capable enough to predict WM (Fig 2). Poland

et al. (2012) evaluated the number of markers influencing wheat populations and verified that

1,827 genotyping-by-sequencing (GBS) markers had a similar prediction accuracy to 34,729

GBS markers [45]. Spindel et al. (2015) evaluated differently sized SNP subsets from the 73,147

WM found in the present study (F2015); USDA_Top– 5% most resistant accessions found in USDA soybean germplasm collection;

Test–Resistant accessions previously reported by other researches. GWS = Genome wide selection, GEBV = Genomic estimated

breeding value, WM = white mold.

https://doi.org/10.1371/journal.pone.0179191.g004
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SNP set and verified that there was no significant difference in the best performing GP method

for grain yield, days for 50% flowering and plant height [31]. Jarquı́n et al. (2014) evaluated the

effect of SNP filtering on accuracy assessed by building a series of G-BLUP models using SNP

datasets created by applying combinations of MAF and PMV filtering criteria [17]. Overall,

marker filtering criteria did not have a large effect on accuracy for grain yield in soybean, but

it had effects on the accuracy for plant height and days to maturity, when was observed that

the accuracy improved when more markers were used to train the GP model.

The comparable performance of a limited number of markers (5k) relative to the complete

marker data set (36,105) could be due to marker saturation because random markers was

selected per chromosome, but the same number of marker were picked in each one, i.e., in the

5k samples, 250 markers were selected randomly per chromosome. With larger linkage dis-

equilibrium (LD), the addition of more markers will not increase the accuracy of predictive

models [31]. Therefore, it might be desirable to reduce the SNP numbers to ease computa-

tional requirements when predicting individual SNP effects and summing effects for GP.

However, more saturated SNP datasets may be more desirable for computing GP of multi-

family selection schemes of more diverse germplasm. The RR-BLUP approach is more compu-

tationally efficient compared with Bayesian models with computational demands scaling with

individual number rather than marker number [17]. Because correlation between the number

of markers and predictive ability was not observed in this research, a good GP model to predict

WM in soybean can be fitted using about 5k markers in a diverse genotype collection. The use

of a small SNP set can lead to cost savings. Use of a uniform or common SNP set will allow

consistent utilization of genome wide prediction in the research and breeding programs.

When the training population size increased, a small increase in the predictive ability was

observed (Fig 3). Several studies have demonstrated that the accuracy of GP is highly influ-

enced by the population used to calibrate the model [29,32,43,46]. However, Charmet et al.
[2014] observed that predicted accuracies did not improve significantly with the increase of

the training population size when unrelated populations from different breeding programs

were merged to create a new population. Similarly, the lack of significant increase in predictive

ability with an increased number of individuals in the training population could therefore be

explained by the high diversity of soybean lines in this study (S4 Fig).

On the other hand, Boligon et al. (2012) concluded that strategies that maximize the pheno-

typic variance, by selecting individuals from the two-tail distribution, are preferred to those

using genotypes with the largest or lowest phenotypic deviation [47]. Thus, capturing most of

the phenotypic variance in the training population seems to be the key to increase the predic-

tion ability [32]. Indeed the TPS did not influence the predictive ability because the highest

and lowest classes were represented by few individuals (Fig 1). Therefore, it may be useful to

choose genotypes that provide equal distribution across the rating scale (resistant, score = 0 to

susceptible, score = 3) to compose the training population in future analyses. The variability

would then be maximized, the predictive ability improved, and fewer plants should be pheno-

typed for use in the training population, saving money and time.

Prediction in different environments

The main objective in GP analysis is to use one generation of data to train the model which

would then be used to predict the data of the next generation [40]. Models built using TPS from

a field experiment had similar accuracies in predicting results of a different field experiment.

The same happened when models were fitted using one greenhouse experiment as the TPS and

another as the VPS (Table 1). However, when models fitted using field data as the TPS were

used to predict greenhouse performance, the predictive ability was low, and vice versa.

Genomic prediction to screen genebank for crop improvement
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Field and greenhouse experiments differed for inoculation and phenotypic evaluation.

Field2014 and Field2015 experiments were inoculated when plots that had reached crop growth

stage R1, while GH2014 and GH2015 were inoculated when the third trifoliate was fully ex-

panded, approximately four and six weeks after transplanting respectively. Moreover Field2014

and Field2015 was rated when plants reached the growth stage R5, about 30 days after inocula-

tion (DAI), while GH2014 and GH2015 were rated 14 DAI. Additionally, genetic mechanism of

WM resistance is likely not common between the field and greenhouse screening tests. These

differences may explain why prediction ability in field was twice than greenhouse.

The models derived from field data had prediction accuracies twice that of those derived

from greenhouse data (Table 1 and S4 Fig). This may be explained by the different number of

plants per genotype used in each experiment. In the greenhouse experiment, one or two plants

per replication were phenotyped in 2015 and 2014, respectively, while the number of plants

phenotyped in the field was higher. The lower number of plants in the greenhouse experiments

perhaps increase the experiment error, which resulted in the lower predictive ability of predic-

tive models using greenhouse data.

Good predictive ability was observed when the same type of environment was used. The

phenotypic correlation between environments ranged from 0.15 (GH2014 and GH2015) to

0.46 (Field2014 and Field2015) (Table 1). Lopez-Cruz et al. (2015) compared models with and

without the G x E interaction to estimate prediction accuracy for yield in wheat [48]. They

concluded that the across-environment model (the same method used in this study) was the

worst method to predict between different environments when the correlation between two

environments was less than 0.4. Their findings supports our observation and highlights the

importance of considering G x E when analyzing multi-environmental data and involving G x

E interactions in the model for increasing the predictive ability [48].

Testing GP model

Twenty-nine previously reported resistant PI lines were compared with our results. Those

resistant PI lines were: PI391589B, PI507352, PI561345, PI196157, PI398637, PI358318A,

PI189919, PI189861, PI437527, PI549066, PI567157A, PI416776, PI561331, PI437764,

PI507353, PI548312, PI504502, PI437072, PI194634, PI281850, PI423941, PI423949, PI424242,

PI458520, PI503336, PI593972, PI593973, PI603148 and PI243547 [49]. However, we observed

that just four PI lines (PI424242, PI398637, PI281850 and PI549066) previously reported were

in the 5% most resistant accessions from the entire USDA soybean germplasm collection, while

23 PI lines were in the 10% most resistant accessions. Several factors can influence these results

since PI lines previously identified as resistant were reported on phenotypic values, and may be

influenced by environment conditions, pathogen infection, inoculation procedure, or evalua-

tion methods. Therefore, based on GWS outcomes, there are several genotypes in the USDA

soybean germplasm collection that are predicted to be more resistant than the previously identi-

fied and reported WM resistant PI accessions, and these PI lines need to tested for obtain valida-

tion. GP model based on the training population and marker density analyses (RR-BLUP using

5k SNPs– 250 SNPs per chromosome and 352 genotypes in the TPS) in the study accurately pre-

dicted WM resistance in PI lines in the USDA soybean germplasm collection that had already

been previously reported to be resistant (Fig 4). This suggests that GP analysis using diverse

accessions from the germplasm–genebank collection for different crop species and traits needs

to be explored to identify useful accessions as parental sources in breeding programs.

Most resistant accessions from the USDA soybean germplasm collection have different

countries of origin (S5 Fig) and belonged to different maturities (S6 Fig). Although, our GP

model was developed using Maturity groups I, II and III [50], soybean accessions were
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PLOS ONE | https://doi.org/10.1371/journal.pone.0179191 June 9, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0179191


accurately predicted and validated to be resistant in different maturity groups. These results

suggest that the prediction ability is not dependent on maturity group, and this approach

needs to be tested in other crop species and biotic stresses, and also would be a useful strategy

for gene bank collections to identify selective accessions for further phenotypic validation for

use as parents in genetic enhancement programs.

Therefore, we concluded that for WM GP, results from the different GP models did not

vary significantly, and minimal response was observed for changes in TPS and marker num-

bers. GP approaches were shown to be useful to the breeder to assist in selecting among the

USDA soybean germplasm collection. The results from this research will assist the establish-

ment of GP approaches for germplasm enhancement using plant introductions and gene back

accessions to help maximize the useful genetic diversity for disease resistance breeding.

Material and methods

Genetic materials

This study included 465 PIs from the USDA soybean germplasm collection and consisted of

144, 168, and 153 accessions of maturity groups (MG) I, II, and III, respectively. This panel

was a subgroup of a large Glycine max core collection of 1,685 soybean genotypes that repre-

sented the genetic diversity of the entire USDA soybean germplasm collection as determined

through pedigree and marker allele analysis [51]. Accessions originated from twenty-seven dif-

ferent countries/regions: China, Japan, Russia, South Korea, North Korea, France, Taiwan,

Georgia, Belgium, Algeria, Austria, Eastern Europe, Germany, Hungary, Indonesia, Iran, Mol-

dova, Morocco, Poland, Portugal, Romania, Turkey, United States, Ukraine, Uzbekistan, Viet-

nam, and Yugoslavia. Twenty-eight accessions were of unknown origin.

Phenotyping for white mold resistance

Field. Each soybean accession was planted in a one-row plot, 1.50 m long arranged in a

randomized complete block design with two replications with 15 seeds/m and 24 seeds/m in

2014 and 2015 respectively. Planting was done with a customized ALMACO Cone Plot Planter

on 23 May 2014 (experiment referred as Field2014) and 01 June 2015 (experiment referred as

Field2015). WM inoculum preparation, inoculation, and rating were modified from the cotton

pad method described by Bastien et al. (2014). S. sclerotiorum cultures were started from sur-

face-sterilized sclerotia obtained from a field in Northeast Iowa in 2013 [52]. Inoculation was

done in each row at the R1 growth stage [53] by placing a mycelium-soaked cotton ball on the

lowest flower-bearing petiole of each plant. Fields were irrigated by overhead sprinklers until

the ratings were completed in order to create an epiphytotic disease nursery. When plants had

reached the R5 growth stage [29–33 days after inoculation (DAI)], WM disease ratings were

taken according to the methodology described in a previous study [54]. The disease severity

scale for each plant was: 0 = no symptoms, 1 = lateral branches showing lesions, 2 = lesions on

the main stem, and 3 = lesions on the main stem resulting in poor podfill or plant death. The

disease severity was used to calculate the disease severity index (DSI) of each plot. The DSI ran-

ged from 0, no disease, to 100, all plants rated were dead or had poor pod-fill due to disease.

DSI ¼
P
ðrating of each plantÞ

3 � ðnumber of plants ratedÞ
� 100 ð1Þ

No specific permissions were required for field locations/activities, as experiment sites are

managed by the Iowa State University and university researchers are permitted to perform experi-

ments as described in this study. Field studies did not involve endangered or protected species.
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Greenhouse. In 2014, the greenhouse experiment was planted using a randomized com-

plete block design with two replications (GH2014). An experimental unit consisted of one

plant. Plants were inoculated at the V3 growth stage using a cut-petiole method, which is pre-

ferred for indoor screening [55]. In 2015 (GH2015), inoculation was done at the V5 growth

stage, and the experiment consisted of one replication with two plants per experimental unit.

WM infested plants in both years were rated for 3 days after inoculation (DAI). Disease sever-

ity was based on the scale previously described. In 2015, the second replication was lost due to

greenhouse malfunction. Since greenhouse is a controlled environment, fewer replications are

sufficient and therefore we retained 2015 data. Greenhouse experiments were conducted to

complement field studies, as the greenhouse protocol allows for earlier assessment of disease

and is less time and resource intensive.

Genotypic data

All 465 plant accessions had been previously genotyped on an Illumina Infinium SoySNP50K

BeadChip [56], and the data is publically accessible at SoyBase (http://soybase.org). SNPs with

a missing rate greater than 10% were excluded from further analyses and the remaining miss-

ing data were imputed using BEAGLE version 3.3.1 with default parameter settings [57,58].

The remaining missing data were imputed, and SNPs with a minor allele frequency (MAF)

lower than 0.05 were ruled out, and these quality control steps left 36,105 SNPs.

Statistics analysis

A completely random genotype x environment model were used to calculate variance compo-

nents of individual factors (s2
G, s2

GE, and s2
e ) is described below:

yij ¼ mþ Gi þ Ej þ GEij þ �ijk ð2Þ

In which yij is the phenotypic value for the ith genotype in the jth environment; μ is the overall

mean; Gi is the random effect of the ith genotype; Ej is the random effect of the jth environment;

GEij is the GenotypexEnvironment effect assigned as random; and �ijk is the residual error.

Variance components were calculated using the lmer function in R package lme4 [59].

Broad-sense heritability (H) was calculated across environments for DSI in field environments.

The equation used was:

H ¼
s2
G

s2
G þ

s2
GE
e þ

s2
e
re

ð3Þ

Where G is genotype and E is environment, e is the number of environments and r is the num-

ber of replicates.

All experiments and years were analyzed separately. When an experiment was replicated

and the disease response was ordinal, a logistic mixed model analysis was used to obtain BLUP

for each accession. A mixed model approach was chosen to accommodate the unbalanced

sample size among cultivars due to emergence rates. The analysis was performed using the

clmm function (part of the ordinal package; [59]) executed in the R statistical analysis software

[60]. The model for both field experiments (Field2014 and Field2015) was

Yjklm � Multinomialð1; pijklmÞ ð4Þ

logitðpijklmÞ ¼ yi þ Rj þ Ak þ RAjk þ Dl þ Sm þ DSlm ð5Þ

where θi is the intercept for the ith response category (i = 0,1,2), Rj is the effect of the jth
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replication, Ak is the effect of the kth accession, RAjk is replication × accession interaction, Dl is
the effect of the lth inoculation date (inoculation was done per plot at the R1 growth stage

therefore inoculations were made on multiple dates in the entire nursery), Sm is the effect of

themth row, and DSlm is inoculation date × row interaction. The term Yjklm represents a vector

of ratings and πijklm is the probability that Yjklm will be rated at or below the ith response cate-

gory. Replication was assumed to be a fixed effect, and all other terms were assumed to be ran-

dom effects.

Similarly, the model for GH2014 and GH2015 was

Yjk � Multinomialð1; pijkÞ ð6Þ

logitðpijkÞ ¼ yi þ Rj þ Ak ð7Þ

Due to lack of replication in GH2015 experiments, phenotypic data for each accession con-

sisted of the average response of the two plants.

Principal components analysis (PCA) was performed to estimate the diversity among soy-

bean accessions. PCA was calculated based on all SNPs. MANOVA was used to estimate corre-

lations between experiments and years based on GEBV estimated by GP models. PCA and

MANOVA were performed using the stats package in R software.

Genomic prediction models

Six GP methods were used to analyze greenhouse and field experiments: ridge regression

best linear unbiased prediction (RR-BLUP), Bayes A, Bayes B, Bayes Cπ, Bayesian LASSO

(BLASSO), and Reproducing Kernel Hilbert Spaces (RKHS) regression. The genetic value esti-

mated by the logistic regression was used as input in all GP models.

RR-BLUP, Bayes A, and Bayes B were described by in a previous study [11]. RR-BLUP

assumes that each marker has an equal variance, VG/M, where VG is the genetic variance, and

M is the number of markers. In Bayes A, each marker effect is drawn from a normal distribu-

tion with its own variance: N (0, s2
gi). The variance parameters are in turn sampled from a

scaled inverse chi-squared distribution. In the Bayes B approach, the prior for the proportion

of markers associated with zero phenotypic variance, π, is assumed unknown. Other prior

hyperparameters for marker variance components in Bayes A and Bayes B were as given in

Meuwissen et al. (2001)[11].

Bayes Cπ assumes common marker variances and allows for some markers to have no effect

[61]. Additionally, Bayes Cπ jointly estimates π from the training data to avoid an incorrect π
that can negatively affect prediction accuracy [62].

In BLASSO [63], marker effects are assigned independent Gaussian priors with marker-spe-

cific variances (s2
et

2
j ). At the next level of the hierarchical model, the t2

j s are assigned exponen-

tial priors EXP½t2
j jl

2
�: At a deeper level of the hierarchy, λ2 is assigned a gamma prior with rate

(δ) and shape (r) which, in this study, was the default in the Bayesian Generalized Linear

Regression (BGLR) package in R software. Finally, inverse chi-square priors were assigned to

the variance parameters, and the scale and degree of freedom parameters were set to Su = Se =

1 and d:f:e = d:f:u = 4, respectively.

In RKHS regression, genetic values are viewed as a Gaussian process. When markers and a

pedigree are available, genetic values are modeled as the sum of two components: gi = ui + fi,
where ui is the mean, and fi is a Gaussian process with a (co)variance function proportional

to the evaluations of a reproducing kernel, K(xi, xj), evaluated in marker genotypes. Here, xi
and xj are vectors of marker genotype codes for the ith and jth individuals, respectively. All
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hyperparameters were assumed following [64]. The genomic relationship matrix was estimated

using the function A.mat (rrBLUP package) in R software.

Cross validation

The ten-fold cross-validation (CV) was performed to avoid an inflated estimate of the predic-

tive ability of GP. In ten-fold CV, the genotypes set was divided into ten equally-sized sub-

groups. Of these, nine subgroups were used as the training population to fit each prediction

model while the remaining subgroup was used as the validation population to assess the corre-

lation between the observed and predicted trait values. This process was repeated ten times,

with each subgroup being the validation population exactly once. This process was repeated

fifty times by randomizing the genotypes and re-forming the folds. The mean of the 50 correla-

tion coefficients was reported.

Predictive ability was assessed using the Pearson correlation of the predicted GEBV and the

genetic value estimated by the logistic regression in the validation population [65].

Marker density and training population size

The effect of marker numbers on GP predictive ability was determined through ten-fold cross-

validation by including random samples of 100, 200, 500, 1k, 5k, 10k, 15k, 20k, 25k, and 30k

SNPs from the full marker set. These samples were compared with the model which used

36,105 markers. For this analysis, the marker file was divided in 20 sets, where each set was

composed with all SNPs in each chromosome. Then the same number of SNPs was picked in

each set, i.e., each chromosome. The SNPs were picked randomly within each set. All codes

were run in R software.

The impact of TPS on predictive ability was evaluated using training sets of variable sizes

(220 genotypes [50% of the population], 264[60% of the population], 308[70% of the popula-

tion], 352[80% of the population], and 396[90% of the population] genotypes). All marker sub-

sets described above were used to evaluate these training population sizes. The predictive

ability was estimated for each combination of marker number and TPS.

Genomic prediction capacity in different experiment

To verify the prediction capacity of the GP model to predict WM in unrelated experiments,

each experiment (two field and GH experiments each) was used as the training population to

validate the other three experiments. The RR-BLUP method was fitted using all markers, and

352 (80% of total population) genotypes were used in the training population.

In order to test the ability of the GP model to identify WM resistant genotypes from the

USDA soybean germplasm collection, twenty-nine plant-introduction (PI) soybean acces-

sions, previously reported to have WM resistance [49], were chosen. Marker data were avail-

able on these twenty-nine soybean PI accessions from the same SNPs run on the 465 PI

accessions used in the model. Using the GP model and available marker information, the

GEBV was obtained on these twenty-nine accessions. Boxplot was used to compare twenty-

nine plant-introduction (PI) soybean accessions with the 5% (23 accessions) and 10% (46

accessions) most resistant PI lines and the 5% (23 accessions) and 10% (46 accessions) most

susceptible PI lines found in our results. The 5% and 10% more resistant PI lines was assigned

being the accessions with the lowest GEBV, meanwhile the 5% and 10% more susceptible PI

lines was assigned being the accessions with the highest GEBV based on the GP model.

SNPs effect estimated in the training population by RR-BLUP using the average between

Field2014 and Field2015 was used to predict the entire USDA soybean germplasm collection

(19,652 accessions). The average between Field2014 and Field2015 was chosen to perform this
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analysis because the field experiment provided the greatest precision based on the estimated

broad-sense heritability and GWS accuracy. The 5% (982 accessions) most resistant accessions

were selected and compared with the 5% and 10% most resistant accessions selected in our

study.

Software and computer information

All analyses were executed in R software [60]. RR-BLUP was performed using the rrBLUP

package [66]. BayesA, BayesB, BayesCπ, and RKHS were performed using the BGLR package

[67]. BLASSO was performed using the BLR (Bayesian Linear Regression) package [68].

A total of 20,000 burn-ins (number of iterations before the Bayesian analysis convergence)

and 40,000 saved iterations, obtained from the Markov chain Monte Carlo (MCMC) method,

was used in all Bayesian methods. The convergence of Bayesian models was checked by

inspecting trace plots of variance parameters.

Supporting information

S1 Fig. White mold (caused by Sclerotinia sclerotiorum (Lib.) de Bary) phenotypic data dis-

tribution of 465 soybean accessions tested in field and greenhouse specialized tests.

(TIF)

S2 Fig. Genotypic correlation based on the genomic estimated breeding value (GEBV)

between all experiments from 465 soybean accessions evaluated for reaction to white mold

(caused by Sclerotinia sclerotiorum (Lib.) de Bary) in field and greenhouse (2014 and 2015)

nurseries.

(TIF)

S3 Fig. Principal component analysis showing of the first two components based on 36,105

SNPs run on the 465 accessions in the soybean mini-core panel.

(TIF)

S4 Fig. Predictive ability of the GP methods for 465 soybean diverse accessions phenotyped

for white mold (caused by Sclerotinia sclerotiorum (Lib.) de Bary) and genotyped using

36,105 SNP markers and a training set composed of 352 genotypes. The range in predictive

ability is among the 50 replicates of the cross validation experiment

BA–Bayes A; BB–Bayes B; BC–Bayes Cπ; BL–Bayesian LASSO; GB–Genomic Best Linear

Unbiased Prediction; RK–Reproducing Kernel Hilbert Space Regression; BR–Best Linear

Unbiased Prediction.

(TIF)

S5 Fig. Country of origin of the 5% most resistant accessions for white mold (caused by

Sclerotinia sclerotiorum (Lib.) de Bary) from the entire USDA soybean germplasm collec-

tion.

(TIF)

S6 Fig. Maturity group of the 5% most resistant accessions for white mold (caused by Scler-
otinia sclerotiorum (Lib.) de Bary) from the entire USDA soybean germplasm collection.

(TIF)

S1 Table. 5% most resistant soybean accessions for the entire USDA soybean germplasm

collection and their GEBVs.
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