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Abstract

This study presents new models on the origin, speed and mode of the wave-of-advance

leading to the definitive occupation of Europe’s outskirts by Anatomically Modern Humans,

during the Gravettian, between c. 37 and 30 ka ago. These models provide the estimation

for possible demic dispersal routes for AMH at a stable spread rate of c. 0.7 km/year, with

the likely origin in Central Europe at the site of Geissenklosterle in Germany and reaching all

areas of the European landscape. The results imply that: 1. The arrival of the Gravettian

populations into the far eastern European plains and to southern Iberia found regions with

very low human occupation or even devoid of hominins; 2. Human demography was likely

lower than previous estimates for the Upper Paleolithic; 3. The likely early AMH paths

across Europe followed the European central plains and the Mediterranean coast to reach

to the ends of the Italian and Iberian peninsulas.

Introduction

The occupation of Europe by Anatomically Modern Humans (AMH) started sometime before

40 thousand years ago [1, 2], replacing the previous Neanderthal populations [3, 4]. The

human occupation of the full ice-free European territory was, however, accomplished only

with the Gravettian techno-complex replacing the previous Aurignacian tradition, and in cer-

tain marginal regions replacing either Neanderthal populations [5] or populating new unin-

habited territories [3, 6].

A quarter of century ago, Otte and Keeley published a paper on Current Anthropology [7]

advocating the impact of regional studies on the perception of the expansion of Upper Paleo-

lithic techno-complexes through the European continent. This paper, based on the earliest

non-calibrated radiocarbon dates and general location of Upper Paleolithic sites, provided a

first insight on the time and direction of AMH expansion in Europe. Those authors concluded

that the origin of the Gravettian, in particular, was in central Europe, probably Austria or Ger-

many, some 27 ka radiocarbon years ago, expanding at different rates and arriving at the east-

ern and eastern European limits at about 20 ka radiocarbon years ago.
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Since then, various wave-of-advance models for Pleistocene humans, generally based on

Reaction-Dispersal Models [8], were built, dealing with the AMH “Out of Africa” [9, 10], the

replacement of Neanderthals by AMH [11], the human replacement in Europe after the Last

Glacial Maximum [12] or the Clovis rapid colonization of North America [13].

In this study, we focus on four main aspects related to the spread of early AMH in Europe

and focused only on the Gravettian techno-complex because it was the first technological phase

present all over the European territory: the contact and replacement of pre-AMH by AMH in

the marginal areas or Europe; the time and speed of dispersal of the Gravettian techno-complex;

if this advance was predominantly the result of demographic expansion or cultural diffusion;

and, finally, the possible routes that AMH with Gravettian technology followed across Europe.

We analyzed the spatial distribution of early Gravettian calibrated AMS dates across

Europe, from a total of 33 sites spreading from Russia to Southern Portugal (S1 Table). To

measure the advance speed rate (see S1 Table) we followed the statistical procedures outlined

by Fort and colleagues in their recent studies of other human prehistoric expansions [8, 14–

16]. We did not, however, use neither of the two calculation methods for distance used by

those authors: the great circle approach [14], based on the models developed by Fort [12, 16–

18] and the variant of the shortest path approach [14]. We used, instead, a new method based

on the GIS-based Least-Cost Path assessment that includes topographic and landscape data to

estimate the best route between two points.

Materials and methods

Radiocarbon data

S1 Table includes all the earliest AMS dates for Gravettian horizons across Europe present in

the Leuven Radiocarbon Palaeolithic Europe Database, Version 20 [19]. We did not include

conventional radiocarbon results because, as has been frequently published, those results are

not nearly as reliable as those from the AMS methods; we also did not use any dates with stan-

dard errors larger than 500 years. Still, we are aware that even these have various problems that

are related to both the type of sample (i.e., charcoal, bone and shell) and the type of pretreat-

ment that each laboratory performs (e.g.,[20, 21–25]).

We used only the oldest Gravettian single date from each site. We also rejected contexts

whose cultural or chronological attributions were equivocal (e.g., a Gravettian horizon dated

to 45 ka or a date coming from a layer attributed to “Aurignacian/Gravettian” or to “Gravet-

tian?”). Finally, we limited the chronology to dates older than 27 ka radiocarbon years.

We were able to filter a total of 33 sites dated to between 37.5 and 30 ka cal BP. Calibration

of the AMS dates was carried out using the OxCal software online (https://c14.arch.ox.ac.uk)

and the IntCal13 calibration curve for the northern hemisphere [26].

To define and confirm the oldest Gravettian site we used the Order command and the Dif-

ference function in the OxCal software. The Order command provides information on the

probability distribution for the difference between two dates. With these two functions, we

were able to compare all sites and define the oldest sites, as well as to check for the probability

of chronological overlap between those earlier sites (S2 Table). Thus, we were able to check

that there are three potential locations as the oldest Gravettian sites, in order of antiquity:

Buran Kaya III, Geissenklosterle and Krems-Hundssteig. The Difference function indicates

that there is a probability of a couple of hundred years of overlap between the first two (-2194/

271), and of about a millennium between the latter two sites (-2200/1087). There is no overlap

between Buran Kaya III and Krems-Hundssteig (-2826/-116). The Order command confirms

that Buran Kaya III is the oldest site, followed by Geissenklosterle that has an 80% probability

of being older that Krems-Hundssteig.
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GIS methods

All spatial calculations were done using ArcGIS 10.4.1 by ESRI. Cost-distance modeling was

accomplished using the elevation dataset from the Shuttle Radar Topography Mission (SRTM)

with a resolution of 1 arc-second (i.e., 30m square-grid) available at https://earthexplorer.usgs.

gov.

The software first creates an Accumulated Cost Surface where each cell in the new raster

has a value that accumulates the cost of moving outward from the origin until reaching the

destination, while storing the backlink raster that represent the path of least cost. The cost sur-

face was acquired using the slope raster, generated with the Slope tool in the Spatial Analyst

toolbox using degrees as the output measurement, and a vertical factor table that is used by the

Path Distance tool to convert slope in time. This was developed with the Tobler´s hiking func-

tion [27] to find the most time-efficient paths between each of the oldest sites and all the

remaining sites. Tobler´s function assigns a temporal cost per slope degree and is used in

many archaeological Least-Cost Path studies (e.g., [28, 29–31]). Least-Cost Paths presented in

Fig 1 were generated from the Accumulated Cost Surfaces and backlink raster by using the

Cost Path tool, and Accumulated Cost Surface converted to vector lines using the Raster to

Polyline tool. In this type of analysis, the eight neighbors of a raster cell are evaluated and the

generated path moves to the cells with the smallest accumulated or cost value. This process is

repeated multiple times until the source and destination are connected. The completed path is

the smallest sum of raster cell values between the two points and it has the lowest cost.

Measuring the wave-of-advance

Since we were not able to define a single oldest site, due to the probability of chronological

overlap among the three sites, we considered each of those locations individually as the possi-

ble epicenter for the origin and expansion of the Gravettian techno-complex. Based on each

possible origin, and following the distance of 150 km radius used by Fort, Pujol and Cavalli-

Sforza [12] for Paleolithic waves-of-advance, we computed 150 km isopleths starting in Buran

Kaya III, Geissenklosterle and Krems-Hundssteig, using a single approach for calculation: the

Distance-cost method.

After the distance models were calculated (Fig 1), we plotted site locations and selected, for

the estimation of spread velocity, only one site within each two isopleths, the one with the old-

est date.

We then calculated the distance between the origin site and all other sites using the Least-

Cost Path method (Table 1). These models compute the minimal straight-line distance

between two sites, incorporating earth curvature into the calculation. The Least-Cost Path data

also took into account the Digital Elevation Model and Slope values (see GIS methods below)

to estimate the least-cost route between the three possible origin sites and each one of the

remaining sites.

Finally, we also computed the time interval between the mean calibrated date of each of the

three earliest sites, and the mean calibrated date of each one of the remaining sites.

Following the arguments of Fort [15], Hamilton and Buchanan [13], and Jerardino et al.

[14] (i.e., there is likely much more error in the measurement of time than in the measure-

ment of distance), to estimate the spread rate of the Gravettian techno-complex, time inter-

vals (y axis) were plotted by distance (x axis), and a linear regression was fitted for each

distance calculation model. Since the number of sites is fairly low, each linear regression was

computed with an 80% confidence-level interval. Using the slope value from each regression,

the speed and error of propagation were calculated following Jerardino et al. (equations 2

through 4).
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Fig 1. Map with the 150 km isopleths for the Cost-distance models for A) Buran Kaya III; B) Geissenklosterle;

C) Krems-Hundssteig.

https://doi.org/10.1371/journal.pone.0178506.g001
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Results

Differences among the three distance models are very clear, both in terms of the calculated dis-

tances between each site and the origin point but also, and consequently, in the set of sites

selected to be included in each regression (Table 1). This is mostly due to the fact that because

a Cost-distance estimation is used, sites located beyond an important mountain range such as

the Alps or the Pyrenees show an increase of over 60% in distance over the Geodesic distance:

a good example is the case of Fumane cave where that distance drastically increases from

slightly less than 350 kms to close to 800 kms. In all other cases, however, distances tend to

increase less than 50%.

The linear regression calculated for the three models (Fig 2) show relatively high correlation

values only for two sites: Geissenklosterle and Krems-Hundssteig, respectively with r = 0.66

(p< .05) and r = 0.57 (p< .05). The regression of Buran Kaya III as the origin point resulted

in a very low correlation value (r = 0.36, p> .05). These results suggest that:

1. The Buran Kaya III date is likely erroneous and does not represent the beginning of the

Gravettian in the region; this is suggested not only by the low correlation value and lack of

statistical significance, but also because there is a huge geographical gap between Buran

Kaya III and the next site, Krems-Hundssteig;

Table 1. Least-Cost Path distances from the three earliest sites to the sites included in each regression.

Site Code Mean calibrated

age (BP)

Least-Cost Path from

Buran Kaya (Km)

Least-Cost Path from

Geissenklosterle (Km)

Least-Cost Path from Krems-

Hundssteig (Km)

Buran Kaya BK 38528 - -

Geissenklosterle GEISSE 37569 3701 - -

Krems-Hundssteig KRE-H 37124 3062 614 -

Ranis 4 Ilsenhohle RANIS 35655 3327 - 506

Dolni Vestonice IIa DVI 35550 2946 751 130

Fumane FUMAN 35479 3200 790 1111

Henrykow 15 HENRY 35477 2833 784 437

Trencianske Bohuslavice-

Pod Tureckom

TRENC 34058 - 880 -

EL Castillo CASTI 33887 5613 1994 2530

Le Sire SIRE 33465 4533 876 -

Maisieres Canal, champ de

fouille

MAISI 33261 4122 - -

Lapa do Picareiro LP 33230 6543 2927 3459

Komarowa Cave KC 32526 2705 - -

Vale Boi VB 32372 6537 2922 3450

Les Garennes GAREN 32324 4793 1136 1668

Solutre-J-10 SOLUT 32319 4357 700 1231

Tarte TARTE 32308 5013 1397 1930

Arbreda ARBRE 32227 - 1345 1878

Paglicci PAGLI 32157 - 1472 -

Palomar PALOM 31983 5744 2129 2662

Antonilako Koba AK 31348 5457 1839 2374

Mira MIRA 31315 736 2888 2559

Grotta Arene Candide ARENE 31263 3554 - -

Piana Ciresului POIAN 31236 1577 1774 1169

Sirgenstein SIRG 31184 617

https://doi.org/10.1371/journal.pone.0178506.t001
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Fig 2. Linear regression fits to determine the speed of advance of the Gravettian for: A. Buran Kaya III model;

B. Geissenklosterle model; C. Krems-Hundssteig model. Time, distances and site codes are listed in Table 1.

https://doi.org/10.1371/journal.pone.0178506.g002
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2. The origin of the Gravettian technology is more probable to have occurred in central

Europe, as suggested by Otte and Keeley [7], likely in Germany in Geissenklosterle–this site

has the earliest date in the region, the regression result is the highest we obtained with sta-

tistical significance, and the results from the Order (S2 Table) and Difference functions (Fig

3) also seem to indicate it as the earliest site;

3. The Geissenklosterle regression seems to indicate two fairly linear correlations between dis-

tance and age, parallel to each other, representing two slightly different speed of advances:

one small group including mostly sites from SW France and Northern Spain representing a

slower speed of advance; and a second, larger and faster group with the other sites;

4. Finally, the results seem to indicate that the propagation of the Gravettian techno-complex

occurred in a fairly constant and slow spreading rate in most directions over the European

landscape. This can be observed by the position of the sites in Fig 3, where the most distant

sites appear at the same time distance from the probable origin. This is the case of Lapa do

Fig 3. Results of the difference function for the three early sites with potential chronological overlap.

https://doi.org/10.1371/journal.pone.0178506.g003
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Picareiro and Vale Boi in Western Iberia and Mira in Eastern Europe, or Antolinako Koba

in Northern Spain and Poiana Ciresului in Central-Eastern Europe.

The slope regression lines in the models from both sites, Geissenklosterle and Krems-

Hundssteig, indicate a small difference in the speed ranges, respectively 0.66±0.18 km/yr and

1.02±0.38 km/yr (Table 2). When compared with other simulations [8] this low speed values

likely represent the spread of the Gravettian cultural patterns through human demic

dispersals.

Additionally, the high correlation demonstrated in the Cost-distance regression validates

the high significance of the calculated Least-Cost Paths between sites as possible dispersion

routes for Gravettian people. Fig 4B presents the modelling of all probable demic least-cost

paths originating at Geissenklosterle and ending at each one of the remaining sites. The model

is based on the idea that humans would have choose the best path (in this case the one requir-

ing less physical effort avoiding as much as possible rugged paths) to reach an unknown desti-

nation [32].

The model helps to perceive that, regardless a similar rate of spread, while the plains were

easily used as the main avenue for the dispersal in Central Europe, the entry into Iberia was

likely through the edges of the Pyrenees (both on the North and Southern extremes), right

against the Atlantic and Mediterranean shores avoiding, thus, the high ridged and rugged

mountainous peaks, where the speed of advance was slower. It is likely thus that two different

Iberian territories were occupied differently using different routes: the northern region with

the Cantabrian Cordillera and its coastal lowlands, with a relatively difficult path; and the open

access Eastern and Southern coastal landscapes of both Spain and Portugal. The model for

Buran Kaya III, for example, represents a very different pattern (Fig 4A), where there are dif-

ferent parallel lines of optimal paths running to different parts of the European territory, as if

there were various simultaneous waves-of-advance across the landscape.

Discussion

Wave-of-advance studies for prehistoric phases, such as the Neolithization (e.g., [14, 15, 16]),

the recolonization after major changing climatic events [12], or the new colonization of

human-free regions (e.g., [13]), has changed through time, using approaches such as the

Euclidean and Shortest-Path methods [14]. We used GIS to obtain faster and diverse data, that

provided a very different view on the distances between sites and, more importantly, enables

the development of hypothetical models for the possible rate of human dispersal across large

surfaces such as the European territory. The same data facilitate the making of a map for each

model (Fig 4) with possible early human migration and re-colonization routes, and paths

which the Gravettian communities, corresponding to the first Upper Paleolithic techno-com-

plex reaching all four corners of the European late Pleistocene wilderness, may have followed.

Except for the work of Otte and Keeley [7], where general directions were proposed for all

main Upper Paleolithic techno-complexes, no other study has presented possible paths for the

main migratory or colonization routes during the Upper Paleolithic. In face of the results here

presented, with a very slow demic expansion of the Gravettian communities, Fig 4B represents

Table 2. Correlation results for the Cost-distance models and respective speed of advance (in Kms).

Model r Slope Standard Error Slope Speed Standard Error Speed Speed of advance (in Km)

Geissenklosterle 0.657 1.5068 0.4191 0.6637 0.1816 0.48–0.85

Krems-Hundssteig 0.568 0.9834 0.3683 1.0168 0.3808 0.64–1.40

https://doi.org/10.1371/journal.pone.0178506.t002
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Fig 4. Map with site locations and optimal-path routes for the dispersal of the Gravettian techno-

complex. A) Buran Kaya III Model; B) Geissenklosterle Model; C) Krems-Hundssteig Model.

https://doi.org/10.1371/journal.pone.0178506.g004
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a further step to the modeling process, showing that in the Iberia and Italian peninsulas, the

penetration routes were likely coastal, avoiding the rugged mountain regions as well as occu-

pying the areas with higher resource availability and diversity, and suffering less from climatic

impacts. In the rest of the area, on the contrary, the tendency was likely that of cross-country

the flat landscape of the central European plains, circumventing the main mountain systems.

The construction of the Cost-distance predictive models, grounded on optimal path theory,

are justified by the assumptions described by Whitley and Burns for the early peopling of the

Americas [33] where possible initial migration and dispersal paths are dependent on the basic

resources for those hunter-gatherers: the herbivore prey species, in many cases migratory. The

paths for South Carolina Paleoindian developed by Whitley and Burns [33], for example, are

based on identical technological, economic and social circumstances than those of the Gravet-

tian dispersals across Europe: the prehistoric hunter-gatherers likely used the paths following

migratory and other herbivore herds, since human migration routes, and their settlement and

subsistence patterns, developed initially depended on the access to and availability of hunting

resources [32, 33]. According to Whitley and Burns, proximity is the key element to travel (in

fact, to all spatially limited activities) while spatial knowledge is built on the frequency of local

activities. In practical terms, travelling route decisions are based on landscape data acquisition

by the hunter-gatherer direct visual contact of the immediate surroundings as well as on the

visible landscape observed during both daily economic and scouting activities. Elements such

as slope inclination and length, vegetation cover or physical barriers such as waterways, moun-

tains or gorges, were important elements to consider for the dispersal paths of those hunter-

gatherers [32, 33]. The direct result is an estimation of between 0.7 and 1 km annual speed rate

across Europe, depending on the site origin, likely representing demic dispersal (for a detailed

discussion see [8]). More importantly, the fact that the speed of advance to the Southwest is

the same of the Northeast suggests that human settlement prior to the Gravettian expansion

was identical on both directions, with likely similar conditions in prior human occupations,

representing in any case either unpopulated or sparsely human populated regions. Thus, there

was likely little or no competition for natural resources in those far regions for the geographi-

cal progression of AMH with Gravettian technology. One should note, however, that there are

both geographical and chronological data gaps. These may be the result of lack of research or

international publications as much as the reflex of true patterns. Different data may change

radically the models presented here.

Nevertheless, the very slow rate of advance seen in our two models for the sites of Geissenk-

losterle and Krems-Hundssteig are on the lower limit of the predictions of the wave-of-

advance model presented by Fort et al. [12] for prehistoric hunter-gatherers. The most plausi-

ble explanation for this is the presence of a very low demographic human density in Europe

between 37 and 30 thousand years ago, perhaps lower than previous estimations for the Upper

Paleolithic in Europe [34]. The differences in the correlation between the furthest away sites,

both in the Northeast and Southwest, and the sites in central Europe and France, indicate that

the rate of spread was faster in the distant regions. This scenario may confirm scenario #1 for-

mulated by Wood et al. [6] in which Southern Iberia was depopulated at the time of AMH

arrival there.

The use of GIS-based Cost-distance models increases the quality, diversity and accuracy

of spatial limited activities, including the modelling of waves and rates of speed of advance,

colonization and dispersal routes. Based on a combination of traditional wave-of-advance cal-

culation methods with Least-Cost Path modelling, we presented here a further step in the

application of spatial and demographic analyses to Upper Paleolithic data. The result was the

construction of a pioneer wave-of-advance model for the first AMH group that reached all

areas of the European ice-free territory, between 37 ka and 30ka years ago. The speed was likely
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around 0.7–1.0 km/yr and the slightly faster rate in both the extreme east and western regions,

seem to suggest a colonization of landscapes with very low demography or even devoid of

hominin competitors, AMH, Neanderthals or Denisovans in those regions. Hopefully, new

sites and more absolute dates will confirm (or deny) this demographic model for the Gravet-

tian and early AMH in Europe.
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