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Abstract

In this paper we propose a new methodology for the analysis of metabolic networks. We use

the notion of strongly connected components of a graph, called in this context metabolic

building blocks. Every strongly connected component is contracted to a single node in such

a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a con-

siderably reduced number of nodes. The property of being a directed acyclic graph brings

out a background graph topology that reveals the connectivity of the metabolic network, as

well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for

the discovery of functional metabolic relations. Our methodology has been applied to the gly-

colysis and the purine metabolic pathways for all organisms in the KEGG database, although

it is general enough to work on any database. As expected, using the metabolic DAGs for-

malism, a considerable reduction on the size of the metabolic networks has been obtained,

specially in the case of the purine pathway due to its relative larger size. As a proof of con-

cept, from the information captured by a metabolic DAG and its corresponding metabolic

building blocks, we obtain the core of the glycolysis pathway and the core of the purine

metabolism pathway and detect some essential metabolic building blocks that reveal the key

reactions in both pathways. Finally, the application of our methodology to the glycolysis path-

way and the purine metabolism pathway reproduce the tree of life for the whole set of the

organisms represented in the KEGG database which supports the utility of this research.

Introduction

Metabolism is the chemical system that generates the essential components for life. All living

organisms possess an intricate network of metabolic routes for the biosynthesis of amino

acids, nucleic acids, lipids and carbohydrates and for the catabolism of different compounds

driving cellular processes. Traditionally, metabolism has been divided into metabolic path-

ways: subsystems of metabolism dealing with specific functions. However, it has become

increasingly clear that metabolism operates as a highly integrated network [1].

From this general perspective, co-analysis of phylogeny and metabolic networks can pro-

vide valuable insight in explaining the appearance and development of complex networks of
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interacting proteins and chemical molecules [2, 3], or yielding a valuable information on the

metabolism generated by a set of organisms, as for instance the recent results presented in [4]

for the gut microbiome. As metabolic evolution along time goes, several theories have been

proposed to explain the evolution of these networks (see [5] for a review). Some current

research supports the so-called patchwork evolution model [6], while others support the so-

called panspermia theory [7]. Therefore, it is still unclear whether other biological mechanisms

played a significant role in the emergence of metabolic networks and the question, “does meta-

bolomics meet genomics?” is still open.

Over the last ten years metabolic pathways have been the subject of a great deal of research,

conducted primarily through two kinds of studies, focusing either on the analysis of single

pathways [8–10], or on the comparative analysis of a set of pathways [11]. The studies that ana-

lyze and compare metabolic pathways of different species can provide interesting information

on their evolution and may help to understand metabolic functions, which are important in

studying diseases and identifying pharmacological targets. In the literature many techniques

have been proposed for comparing metabolic pathways of different organisms [12, 13]. Each

approach chooses a representation of metabolic pathways that models the information of

interest, proposes a similarity or a distance measure and possibly supplies a tool for performing

the comparison. The automation of the whole process is enabled by the knowledge stored in

metabolic databases such as KEGG [14], BioModels [15] or MetaCyc [16]. However, dealing

with the entire metabolism of an organism, or a set of organisms, increases too much the size

of the networks to analyze. This fact makes it necessary to redefine the representation of these

huge metabolic networks such that, on one hand it models the information of interest but, on

the other hand, it reduces the size of the network. With this idea in mind, we conceived the

present research.

Since we are interested in a topological analysis of metabolic networks, we focus on a net-

work based approach instead of other approaches like kinetic modeling, hybrid modeling or

constraint based modeling. See [17] for a good review on comparing methods for metabolic

pathway analysis. The three basic methods used in the network based approach under a struc-

tural and stoichiometric modeling are hypergraph based, elementary flux mode analysis and

extreme pathway analysis [18–20]. However, due to the fact that in elementary flux mode anal-

ysis and extreme pathway analysis computing the elementary modes and extreme pathways is

an NP-hard computational problem, we decided to consider a new methodology based on

graph representation instead of a stoichiometric modeling to study the robustness, modularity

and connectivity of a metabolic network in polynomial time. Thus, the reason to model meta-

bolic networks as directed graphs is twofold. Firstly, directed graphs are a very simple and well

studied formalism able to model the topological information of the network. Secondly, we can

consider the well known notion of strongly connected components in directed graphs, which

are computed in polynomial time, to reduce appropriately the metabolic network in order to

study its network topology.

Hence, we propose a methodology for the analysis of metabolic networks that aims at pro-

viding a good balance between the information of interest that must be kept and a considerably

reduction of the size of the network to facilitate its analysis and visualization. In this paper we

introduce a new approach to metabolic networks modeling based on classical notions of graph

theory, which applied to metabolic networks have proved to be successful. Namely, we used

the notion of strongly connected components, which in this context we callmetabolic building
blocks. When every metabolic building block in the initial directed graph is contracted to a sin-

gle vertex, the resulting graph is a directed acyclic graph, called ametabolic DAG, whose num-

ber of nodes is considerably reduced. Moreover, the property of being a directed acyclic graph

brings out a background graph topology that reveals the connectivity of the network as well as

Metabolic building blocks
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bridges, isolated nodes and cut nodes, which become key information for the discovery of

functional metabolic relations. The results of the preliminary tests we have carried on, reported

in this paper, shows that our methodology fulfills the requirements of network size reduction

while preserving information of interest.

Materials and methods

This section describes the methodology proposed for the analysis of metabolic networks. We

represent metabolic pathways and metabolic networks as directed graphs, called reaction

graphs. The analysis of every network derives from the study of topological properties of the

associated reaction graph. We introduce a suitable graph reduction, called metabolic DAG,

which captures the network connectivity and reveals a set of key reactions as well as a modular-

ization of the network. Furthermore, the metabolic networks analysis and comparison is easily

obtained from the reaction graph reduction.

Metabolic networks as reaction graphs

A metabolic network is the complete set of metabolic and physical processes that determine

the physiological and biochemical properties of a cell. As such, these networks comprise the

chemical reactions of metabolism, the metabolic pathways, as well as the regulatory interac-

tions that guide these reactions. More precisely, a chemical reaction is a process that leads to

the transformation of one set of chemical substances or metabolites called substrate, to another

called product. Chemical reactions are catalyzed by enzymes that accelerate their rate. Thus, in

this paper we denote a chemical reaction by Ri = (Ii, Ei, Oi), Ii being its substrate, Ei the enzyme

that catalyzes the reaction and Oi its product.

A directed graph is an ordered pair G = (V, E) where V is a set of nodes and E� V × V is a

set of arcs. There is an arc from a node u 2 V to a node v 2 V if, and only if, (u, v) 2 E. In this

work, we model a metabolic network as a directed graph GR = (R, E) whose set of nodes is the

set R of chemical reactions present in the metabolic network, and its set of arcs E is defined as

follows: there is an arc from Ri = (Ii, Ei, Oi) to Rj = (Ij, Ej, Oj) if, and only if, there exists one

metabolite c such that c 2 Oi \ Ij. That is, there is an arc from Ri to Rj if, and only if, at least one

metabolite in the product of Ri is in the substrate of Rj. Notice that, metabolites are not repre-

sented in our modeling, but we take them into account to define the arcs. Most of the reactions

in metabolic networks are reversible. A reversible reaction can occur in two directions, from

the reactants to the products (forward reaction) or vice versa (backward reaction). The direc-

tion depends on the kind of reaction, on the concentration of the metabolites, and on condi-

tions such as temperature and pressure. In this work, we model reversible reactions by two

different nodes, one for the forward reaction and the other for the backward reaction. The

directed graph GR, modeling a metabolic network, is called a reaction graph.

As we have already explained in the introduction section, reaction graphs may be huge.

Indeed, with only one metabolic pathway we can get more than a hundred of nodes as it is the

case of the purine metabolism pathway inHomo sapiens, available at the KEGG database [21],

whose reaction graph has 141 nodes and 527 arcs. This amount of nodes and arcs in the reac-

tion graph hinders the visualization of the pathway topology. Thus, it is convenient to suitably

reduce the number of nodes in order to visualize clearly the network.

Metabolic DAGs

As stated above, metabolic networks use to involve thousands of reactions. Therefore, the cor-

responding reaction graphs have thousands of nodes which difficult their analysis and study.

Metabolic building blocks
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In order to overcome this problem, we introduce metabolic DAGs, which consist on a conden-

sation of the reaction graph that preserves the relations between reactions.

A directed acyclic graph, a DAG, is a directed graph with no directed cycles. In a directed

graph, G, two nodes u,v are said to be biconnected if there is a path in each direction between

them. A strongly connected component of a directed graph G is a subgraph such that every pair

of nodes in it are biconnected, and it is maximal under inclusion with this property [22]. Since

biconnectivity is an equivalence relation, the collection of strongly connected components

forms a partition of the set of nodes of G. If each strongly connected component is contracted

to a single vertex, the resulting quotient graph is a DAG, the condensation of G. Notice that

there is an arc from a node si to a node sj in the condensation of a directed graph G if, and only

if, there is an arc in G from a node u 2 si to a node v 2 sj.
Thus, for every reaction graph GR, we can consider its collection of strongly connected

components and compute its condensation, which will be a DAG. We callmetabolic building
blocks (MBBs for short) the strongly connected components in the reaction graph GR, and we

call metabolic DAG (m-DAG for short) the condensation of GR, which is a DAG whose nodes

are the MBBs of GR.
Intuitively, if we consider a reaction graph GR and its condensation, all the nodes in a MBB

are the reactions that are biconnected among them in the reaction graph, that is, such that

there is a path back and forward between them. In this sense, MBBs can be thought as robust

subgraphs in the reaction graph. Moreover, the reactions that are not biconnected to any other

reaction, which become a MBB by themselves in the m-DAG, may be necessary for the con-

nectivity of the network. In this sense, the condensation of GR provides a modularity of the

reaction graph that keeps the information of robustness and connectivity of the metabolic

network.

Fig 1 shows the m-DAG corresponding to the condensation of the reaction graph of the

purine metabolism pathway inHomo sapiens (http://www.genome.jp/kegg-bin/show_

pathway?hsa00230 More specifically, the nodes in the m-DAG are the MBBs in the reaction

graph. As we can see in the picture, this m-DAG has only 21 nodes. Only four of them,

denoted by grey nodes, are MBBs with more than one reaction, and the remaining, denoted by

yellow nodes, are MBBs with only one reaction. Now, we clearly see in the m-DAG that the

purine metabolism pathway has a linear path, the chain of yellow nodes in the picture, playing

a key role in the pathway connectivity, since the removal of one of this yellow nodes renders

the pathway disconnected. That is, they are cut nodes in the m-DAG. Furthermore, every

MBB, which is now a smaller directed graph, can be considered as a metabolic network itself

and can be analyzed using other well established approaches like elementary flux modes or

extreme pathways. Therefore, we claim that with our methodology we obtain a modularization

of the reaction graph, where each module is a metabolic building block and the topology of the

m-DAG provides with useful information on the topology of the reaction graph. The advan-

tages of considering m-DAGs are the following

1. It reduces considerably the number of nodes.

2. It shows the reaction graph topology and metabolic linear paths of the network.

3. It shows the cut nodes in the metabolic network.

We call essential reactions those reactions in GR that are cut nodes. Then, in terms of m-

DAGs, the essential reactions are the MBBs with only one reaction such that they are cut

nodes, that is, a node whose removal renders the m-DAG disconnected. Essential reactions

can be easily observed in the m-DAG since the number of nodes in this graph is considerably

Metabolic building blocks
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reduced. Indeed, a simple look at the m-DAG in Fig 1 shows that there are eight essential reac-

tions, six of them form the linear path in the m-DAG, MBB 170 connects the linear path with

MBB 0.0.3.0, while MBB 196 connects MBB 200 (an entrance to the pathway) with MBB

0.0.3.0. All these reactions are needed to keep the connectivity of the pathway. In addition, the

four MBBs with more than one reaction, labelled by 0.0.3.0, 181, 167.2 and 204 have 109, 3, 8

and 4 reactions respectively. Tables in S2 and S6 Tables in the supporting information files

Fig 1. The m-DAG of the purine metabolism pathway in Homo sapiens. The nodes in this graph are the

MBBs in the reaction graph of the purine metabolism pathway in Homo sapiens. Yellow nodes denote MBBs

with only one reaction, while grey nodes denote MBBs with more than one reaction.

https://doi.org/10.1371/journal.pone.0177031.g001
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show for every organism all the information of these MBBs. We can observe that MBB 0.0.3.0

is considerably bigger than the others, and also that it contains those reactions whose product

are either Adenine or Guanine.

In order to better understand the correspondence between a reaction graph and its m-

DAG, we also considered as a running example the glycolysis pathway. We decided to test how

our methodology performs with the glycolysis pathway for several reasons. First of all, it is not

a huge pathway, so it is easy to visualize the relation between the reaction graph and its corre-

sponding m-DAG. Second, this is probably one of the most studied metabolic pathways, so it

is available in almost all organisms in the KEGG database. And finally, it is an ancient and con-

served pathway among almost all species and we believe that it would be interesting to com-

pare the corresponding m-DAG for all species in the KEGG database.

Thus, in Fig 2 we show the reaction graph corresponding to the glycolysis pathway in

Homo sapiens (http://www.genome.jp/kegg-bin/show_pathway?hsa00010) and in Fig 3 the

relation between the reaction graph and its corresponding m-DAG.

In this case, the m-DAG that we obtain has seven MBBs, three of them with only one reac-

tion and four of them with more than one reaction. The biggest one has 23 reactions two of

them catalyzed by more than one enzyme, while the smallest one has only 2 reactions, R00703

and its reverse. As far as the arcs go, if we consider for instance the arc in the reaction graph

from R00200 to R00703, then, there is also an arc in the m-DAG between the MBB 31 consist-

ing only in R00200 and the MBB containing R00703, which is MBB 0.6.0.0.2.0.1.0. In Table 1,

we show the collection of MBBs obtained from the reaction graph in Fig 2. As far as the essen-

tial reactions goes, a simple look at the m-DAG shows that there are two essential reactions,

and among them, the essential reaction R00200 appears to be crucial to preserve the

Fig 2. The reaction graph corresponding to the metabolic pathway of the glycolysis in Homo sapiens. It

shows the reaction graph corresponding to the metabolic pathway depicted on the left side of Fig 4. The nodes in

this graph are the reactions of the pathway, depicted in blue nodes are the reverse of a reversible reaction and in

yellow the reaction itself.

https://doi.org/10.1371/journal.pone.0177031.g002

Metabolic building blocks

PLOS ONE | https://doi.org/10.1371/journal.pone.0177031 May 11, 2017 6 / 25

http://www.genome.jp/kegg-bin/show_pathway?hsa00010
https://doi.org/10.1371/journal.pone.0177031.g002
https://doi.org/10.1371/journal.pone.0177031


connectivity of the network, since it connects MBB 32.0.0.0 with MBB 0.6.0.0.0.0.0 which have

21 and 6 reactions respectively. Actually, the detailed study of the glycolysis pathway from the

KEGG database that we carried on, reported in the next section, shows that the essential reac-

tion R00200 is present in any organism performing the glycolysis pathway, which also entails

that the enzyme catalyzing this reaction is a key enzyme.

Finally, since some readers are probably used to the glycolysis pathway description depicted

in the KEGG database, we also show in Fig 4 the relation between the glycolysis pathway and

the obtained m-DAG inHomo sapiens.

Fig 3. Relation between the reaction graph of the glycolysis in Homo sapiens and its corresponding m-

DAG. It shows the relation between the reaction graph corresponding to the glycolysis pathway in Homo sapiens

and its corresponding m-DAG. The m-DAG has seven nodes which are the corresponding MBBs in the reaction

graph. Notice that three of them are yellow nodes, that is, a MBB with only one reaction, and four of them are grey

nodes which are MBBs with more than one reaction. In Table 1 we list the reactions in every MBB.

https://doi.org/10.1371/journal.pone.0177031.g003

Table 1. Collection of the MBBs in the reaction graph of the glycolysis in Homo sapiens.

Metabolic

Building Blocks

Reactions

MBB 90 R00431/R00726

MBB 32.0.0.0 R00658r, R00959r, R01015r, R01061r, R01070r, R01512r,

R01516r, R01518r, R01600+, R01602r, R01662r, R01786+,

R01788, R02739r, R02740r, R03321r, R04779,

R04780, R09085, R09086r, R09532

MBB 31 R00200

MBB 0.1.0 R00710r, R00711r, R00746r, R00754r

MBB 0.6.0.0.2.0.1.0 R00703r

MBB 0.2.1.0.0.0 R00235

MBB 0.6.0.0.0.0.0 R00014, R02569r, R03270, R07618r

Note: The r means that the corresponding reaction is reversible, and the + means that more than one

enzyme catalyzes the reaction. Notice that in the reaction graph there is one different node for each enzyme

catalyzing the reaction.

https://doi.org/10.1371/journal.pone.0177031.t001
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Algorithm implementation

In order to implement the methodology proposed in this paper, we consider Tarjan’s strongly

connected components algorithm [23], which is based on a depth first traversal of a directed

graph. The idea is to visit all the nodes of the directed graph as follows: starting from any given

one, the algorithm looks for nodes such that there exists an arc starting from the already dis-

covered nodes and ending to an undiscovered one. The discovered nodes are stacked at the

moment they are found, but they are popped out from the stack only when it is sure they

belong to a new strongly connected component, that is, the whole strongly connected nodes

are popped out at the same time.

Therefore, as the Tarjan’s algorithm is a variation of the depth first search algorithm, the

overall complexity of this algorithm is O(|R| + |E|) where |R| is the number of nodes in the

graph, in this case the number of reactions, and |E| is the number of arcs. The input in Tarjan’s

algorithm is a directed graph, the reaction graph, while its output is a set of strongly connected

components, the MBBs.

Once the MBBs have been found, the m-DAG is built by connecting each strongly con-

nected componentMBBi with those other,MBBj, such that there exists at least one node in

MBBi with one or more arcs to nodes belonging toMBBj. The overall algorithm to do this pro-

cess is shown in Algorithm 1.

Fig 4. Relation between the Homo sapiens glycolysis pathway and its corresponding m-DAG. On the

right is depicted the m-DAG corresponding to the Homo sapiens glycolysis pathway. For every MBB we show

their corresponding reactions over the glycolysis pathway depicted on the left, as it is shown in the KEGG

database.

https://doi.org/10.1371/journal.pone.0177031.g004
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Algorithm 1. Algorithm to build the m-DAG from the Strongly Connected

Components.
for all MBBi 2 StronglyConnectedComponents do
neighbours(MBBi) = ;
for all n 2 MBBi do
if 9 m 2 MBBj|n! m ^ MBBj 6¼ MBBi then
neighbours(MBBi) = neighbours(MBBi) [ {MBBj}

end if
end for
for all MBBk 2 neighbours(MBBi) do
add an arc betweenMBBi and MBBk

end for
end for

The result of this algorithm is a m-DAG whose nodes are the MBBs and whose arcs are

their relations. In order to differentiate the MBBs, each one has been labelled with a number.

This number corresponds with the one assigned by Tarjan’s algorithm. Thus, depending on

the way the input graph is introduced to the algorithm, the numbers assigned may change.

Moreover, since many studies involves more than one species, in order to compare their m-

DAGs, it is useful to unify their MBBs labels, because to compare two m-DAGs we have to

compare their MBBs. If those MBBs have an identification describing their characteristics it is

easy to differentiate them and also to see their similarities. In order to obtain those identifiers,

a list of all different strongly connected components is built, each one has its list of reactions

and also its unique identifier. Two MBBs are the same if their reaction lists are equal, and they

are different if one of them contains some reaction the other doesn’t have. It is also possible

that one reaction list is a subset of the other. Thus, the unique identifier of each MBB must

reflect these three cases: if one MBB is a subset of another, its identifier has a prefix corre-

sponding with the largest one, if two MBBs are different they have a completely different iden-

tifier, otherwise they have the same identifier.

To obtain this list of MBBs we start building the m-DAG of a reference pathway which is

constructed, in the same way as in KEGG database, as the union of all reactions in every input

reaction graph. The m-DAG obtained from the reference pathway is called a reference m-

DAG. The set of reactions of every MBB appearing in a m-DAG of an organism is a subset of

the set of reactions of a MBB from the reference m-DAG. The identifiers of the MBBs from the

reference m-DAG will be the base of the identifiers of the MBBs of every m-DAG.

Prior to describe the algorithm we have devised to build the identifiers, we have to intro-

duce some notation:

• react(MBB) represents the set of the reactions belonging to MBB.

• id(MBB) is the identifier of everyMBB. Each MBB have an unique identifier in order to be

able to differentiate it among the others.

• ref-DAG is the m-DAG obtained from the reference pathway. Since it is the most generic m-

DAG, every reaction in an input reaction graph belongs to a MBB in the ref-DAG.

• subsets(MBB) represents the set of theMBBi, such that react(MBBi)�react(MBB).

Thus, the algorithm used to build the list of MBBs,MBB-list, is sown in Algorithm2.

Algoritme 2. Algorithm used to build the list of MBBs.
MBB-list ;
for all MBBj 2 m − DAG do
if 9 MBBi 2 MBB-list| react(MBBj) = react(MBBi) then
id(MBBj) id(MBBi)

else

Metabolic building blocks

PLOS ONE | https://doi.org/10.1371/journal.pone.0177031 May 11, 2017 9 / 25

https://doi.org/10.1371/journal.pone.0177031


if 9 MBBi 2 ref-DAG| react(MBBi) = react(MBBj) then
id(MBBj) next_identifier(subsets(MBBi))
subsets(MBBi) subsets(MBBi) [ {MBBj}

else
if 9 MBBi 2 ref-DAG| react(MBBj)� react(MBBi) then
MBBs! smallestMBB | MBBs 2 subsets(MBBi) ^ MBBj� MBBs
subsets(MBBs) subsets(MBBs) [ {MBBj}
id(MBBj) next_identifier(subsets(MBBs))

else
id(MBBj) new identifier

end if
end if
MBB-list MBB-list[ {MBBj}

end if
end for

Now, we proceed to relabel the nodes in the m-DAG for each species considered. For every

m-DAG we compare its MBBs with those of the list. LetMBBi be a MBB of the considered m-

DAG. If there is a coincidence betweenMBBi and aMBBj in the list, we relabelMBBi with the

identifier of theMBBj. If there exist aMBBj in the list such that react(MBBi)� react(MBBj)
then id(MBBj) is a prefix of the identifier ofMBBi. If there existsMBBj in the list such that

react(MBBj)� react(MBBi) thenMBBj is relabeled using id(MBBi) as a prefix and all the MBBs

in subsets(MBBj) are relabeled accordingly. OtherwiseMBBi gets an new identifier not existing

in the list.

In this way all the m-DAGs and also all the MBBs are comparable. For instance, as can be

seen in Table 1, the MBBs have the identifiers: 90, 32.0.0.0, 31, 0.1.0, 0.6.0.0.2.0.1.0, 0.2.1.0.0.0

and 0.6.0.0.0.0.0. In Fig 5 there is a representation of the reference m-DAG corresponding to

the glycolysis pathway. In this reference m-DAG there are also MBBs with the identifiers 90

and 31, which means that they are exactly the same MBBs that appear in the m-DAG ofHomo

Fig 5. The glycolysis reference m-DAG. This figure shows the glycolysis reference m-DAG associated to

the glycolysis reference pathway in the KEGG database. We again show the relation between the MBBs and

their corresponding reactions over the reference glycolysis pathway depicted on the left.

https://doi.org/10.1371/journal.pone.0177031.g005
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sapiens. The MBB with identifier 32.0.0.0 has a prefix, 32, which indicates that the reactions of

this MBB are all in the MBB with the identifier 32 in the reference m-DAG. The same occurs

with the MBB with identifiers 0.1.0, 0.6.0.0.2.0.1.0, 0.2.1.0.0.0 and 0.6.0.0.0.0.0, whose reactions

belong to MBB 0 in the reference m-DAG. Furthermore, with this MBB labeling, we can easily

see that there is more similarity between MBB 0.6.0.0.2.0.1.0 and MBB 0.6.0.0.0.0.0 than for

instance to MBB 0.1.0.

The presented algorithm is fast enough to be executed in a desktop or laptop computer. For

example, in a 2.6 GHz Intel i7-6700HQ the average time needed to build a m-DAG for the

purine metabolism is 0.63 seconds for each organism in the KEGG database. In the case of the

glycolysis metabolism the average time needed to build a m-DAG is 0.03 seconds for each

organism.

In http://bioinfo.uib.es/metabolomics/supplementary_material/ some supplementary

material can be found as well as a web-based tool to give access to the researchers to our gener-

ated data.

Results and discussion

In order to test the convenience of using m-DAGs to model and analyze metabolic networks,

we considered the information available in the KEGG database corresponding to the glycolysis

and the purine metabolic pathways. We decided to consider the glycolysis pathway since it is

an ancestral set of chemical reactions present in almost every organism. On its turns, the

purine pathway is also present in every organism and it is big enough to test the advantages of

our methodology. Thus, with the information available on April 2016 in the KEGG database

with 4158 different organisms, we ended up with 1653 different glycolysis pathways from 4140

organisms. These 1653 pathways were distributed in the six kingdoms defined in the KEGG

database as suggested also by [24, 25]. The pathways’ distribution was: 33 from Animalia, 10

from Plantae, 27 from Fungi, 31 from Protista, 1420 from Bacteria and 132 from Archaea. Sur-

prisingly, from 1653 different pathways, only 2 were mixed, the first one had 1 Plant and 13

Fungi, therefore we considered it in the Fungi distribution, and the second one had 1 Protists

and 1 Bacterium, which we counted as both. We can not conclude if the mixture is due to a

lack of information in the data or it is a biological metabolic variant. As far as the purine

metabolism pathway goes, again with the information available on April 2016, we ended up

with 2407 different pathways from 4158 organisms. In this case, the pathways distribution was:

76 from Animalia, 34 from Plantae, 81 from Fungi, 42 from Protista, 2019 from Bacteria and

145 from Archaea, so that every pathway was entirely classified in one kingdom.

Metabolic networks analysis using m-DAGs

Glycolysis metabolism pathway test. We computed the 1653 m-DAGs from these 1653

different pathways and we analyzed them. From these 1653 m-DAGs, we obtained 299 MBBs.

Tables in S1 and S5 Tables in the supporting information files show for every organism all the

information of these MBBs. We also computed the m-DAG associated to the reaction graph of

the reference pathway, reference m-DAG for short, which is shown in Fig 5. As we can observe

there, the reference m-DAG has only 10 nodes, that is, 10 MBBs, three of them are essential

reactions and only two of them are MBBs with more than one reaction. Notice that the num-

ber of nodes in the reference m-DAG with respect to the number of nodes in the reference

reaction graph has been considerably reduced, which clarifies the metabolic network composi-

tion and allows us, not only to understand the entire network topology, but also to compare

them easily. Table in S12 shows all the obtained information from the KEGG database for the

glycolysis pathway.
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To study the biological information captured by the MBBs defined in this paper, we took

advantage of the fact that the glycolysis pathway of any organism in the KEGG database is

included in the glycolysis reference pathway. Thus, the corresponding reaction graphs also

preserve this inclusion and, for every organism, its MBBs are also included in one MBB from

the reference m-DAG (see Fig 6). Therefore, the information provided by the MBBs in the ref-

erence m-DAG (in the center of Fig 6) is very valuable. In fact, every essential reaction in the

reference pathway is also an essential reaction in the glycolysis pathway of any organism, pro-

vided that the reaction is present in that organism. This fact renders the essential reactions in

the reference m-DAG as keyMBBs for the glycolysis pathway of any organism, because they

fix the connectivity in every glycolysis pathway.

In the present study we have found two essential processes: (i) the MBB with a direct arc to

reaction R00200, and, (ii) the MBB with a direct arc from reaction R00200. Hence, R00200

appears to be a crucial essential reaction that has been conserved among all organisms with

glycolysis and has been preserved in every evolution step, since there is only one way to pro-

duce pyruvate from phosphoenol-pyruvate, and it is through reaction R00200 catalyzed by the

enzyme 2.7.1.14 corresponding to a pyruvate kinase. As expected, few exceptions have been

found, and only 18 organisms out of 4158 do not follow this rule. These 18 organisms are

Nanoarchaeota, Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria (See

Fig 6. Relation between the reference m-DAG and the m-DAGs of six organisms from each kingdom.

This figure shows the m-DAGs of six organisms, one in each kingdom and their relation with the reference m-

DAG (in the center). The two MBBs in the reference m-DAG with more than one reaction are depicted in green

and blue. With the corresponding color (green or blue) in the background, we show the inclusion of the MBBs

of every organism into the MBBs in the reference m-DAG.

https://doi.org/10.1371/journal.pone.0177031.g006
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Table 2). For instance, as we can found in the Bergey’s manual [26], Betaproteobacteria are

unable to assimilate any of the carbohydrates or polyols and can grow only on amino acids

and organic acids. This indicates that one or more steps of glycolysis are absent in both organ-

isms. Therefore, we claim that we found out that these three MBBs (the MBB with a direct arc

to reaction R00200, the MBB consisting on reaction R00200 and the MBB with a direct arc

from reaction R00200) can be considered as the core of the glycolysis pathway.

In order to reinforce the concept up to now investigated, in Fig 6 we can observe easily the

network and biological information captured by the MBBs. We considered the m-DAGs corre-

sponding to the glycolysis of the following organisms,Homo sapiens, Arabidopsis thaliana, Sac-
charomyces cerevisiae, Plasmodium falciparum, Escherichia coli and Thermoplasma volcanium
belonging to the kingdoms, Animalia, Plantae, Fungi, Protista, Bacteria/Eubacteria, and

Archaea/Archaeabacteria, respectively. We observe there that all the organisms has the essen-

tial reaction R00200, which appears to be crucial in the glycolysis pathway. We can also see

how the MBBs are distributed in the two processes mentioned above. In green we show the

MBBs with a direct arc to reaction R00200 and in blue the MBBs with a direct arc from reac-

tion R00200.

In the same way, we also developed a similar analysis considering again the six kingdoms.

In this case, the purpose was to find out, with the information provided by the m-DAGs, what

we called the kingdom reference m-DAG, which is the reference m-DAG for each kingdom.

(See S3, S4, S5, S6, S7 and S8 Figs in the supporting information files.) To obtain the kingdom

reference m-DAG, we first considered all the MBBs from every m-DAG belonging to the same

kingdom. We decided to remove the glycolysis pathway of Pyrodictium delaneyi, which has a

pathway alternative from glycolysis due to the fact that this organism habits in deep-sea hydro-

thermal vent sulfide chimneys [27].

Recall that, every MBB belongs to one of the following classes: (i) the MBB with a direct arc

to reaction R00200, (ii) the MBB with a direct arc from reaction R00200 and (iii) the MBB that

have only one reaction in the reference m-DAG. So, we considered the maximal MBBs in each

class and thus we obtained the six kingdom reference m-DAGs shown in Fig 7. As we can see

there, the kingdom reference m-DAGs are connected DAGs and they preserve the reference

m-DAG’s topological structure. The MBB in the first class in the reference m-DAG (pointed

out in green) is divided in seven MBBs in Plantae, in two MBBs in Protista and in four MBBs

in Fungi. The MBB in the second class in the reference m-DAG (pointed out in blue) is divided

in four MBBs in Animalia, in two MBBs in Plantae, in two MBBs in Protista and in two MBBs

in Fungi. We can also observe that all the kingdom reference m-DAGs have the MBB consist-

ing only in reaction R00200. As far as the other MBBs in the third class goes, the Animalia

have only two MBBs in the third class, as well as the Plantae and the Fungi. The Bacteria have

the same MBBs in the third class as in the reference m-DAG and the Protista have three MBBs

in the third class. Notice that from the results obtained in this test, we can discriminate

whether a specific reaction in the glycolysis pathway belongs to a kingdom. For instance, if

Table 2. Classification of the eighteen species without reaction R00200.

Category # species

Unclassified Archaea 1

Nanoarchaeota 1

Alphaproteobacteria 4

Betaproteobacteria 5

Gammaproteobacteria—Others 7

https://doi.org/10.1371/journal.pone.0177031.t002
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enzyme 3.2.1.86 is present, we can guarantee that it belongs to an organism in the Bacteria

kingdom. While instead, if enzyme 4.1.1.49 is present, we can guarantee that it does not belong

to Animalia nor Archaea. In Table 3 we provide a list of the enzymes and the reactions they

catalyze that discriminate the kingdoms. As can be seen, the same enzyme catalyzes two reac-

tions that belong only to Animalia; another one catalyzes two reactions belonging only to

Archaea. Six enzymes catalyzes eight reactions belonging only to Bacteria. Interestingly, no

specific reactions have been found to belong only to Fungi, Plantae or Protista.

Purine metabolism pathway test. We computed the m-DAG from each different path-

way in the KEGG database and we analyzed them. Recall that with the information available

on April 2016, we ended up with 2407 different pathways from 4158 organisms. From these

2407 m-DAGs we obtained 1386 MBBs. Again, to study the biological information captured

by the MBBs defined in this paper, we took advantage of the fact that the purine metabolism

pathway of any organism in the KEGG database is included in the purine metabolism refer-

ence pathway. Thus, the corresponding reaction graphs also preserve this inclusion and, for

every organism, its MBBs are also included in one MBB from the reference m-DAG. There-

fore, the information provided by the MBBs in the reference m-DAG is very valuable. Indeed,

we computed the reference m-DAG, which is shown in Fig 8, and we obtain 38 nodes, that is,

38 MBBs in the purine metabolism reference pathway. Among them, 5 MBBs have more than

one reaction and 33 have only one reaction, of which only eight are essential reactions. If we

Fig 7. The glycolysis kingdom reference m-DAGs. This figure shows the kingdom reference m-DAGs

obtained for the six kingdoms as well as their relation with the reference m-DAG in the center of the figure.

https://doi.org/10.1371/journal.pone.0177031.g007
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try to compare now the m-DAG obtained inHomo sapiens and the reference m-DAG, we can

easily see that there is a sequence of six essential reactions present in both DAGs. This

sequence of essential reactions produces the 5-Aminoimidazole-4-carboxamide ribonucleotide

(AICAR) from the Ribose 5-phosphate. The fact that this sequence is present in the reference

m-DAG entails that every organism with the purine metabolism pathway has exactly the same

sequence. As we can also observe in the reference m-DAG, there are two MBBs with only one

reaction, MBB 170 and MBB 179 connecting the sequence of essential reactions with MBB 0, a

MBB with 139 reactions conducting to the Purines.

Therefore, in this study we have found the following essential processes: (i) the sequence of

essential MBBs that produces the (AICAR) from the Ribose 5-phosphate and, (ii)MBB 0 with

all reactions conducting to the Purines, that is, either Adenine or Guanine. These two pro-

cesses could be considered the core of the purine metabolism pathway for all the organisms in

KEGG.

Analogous to the glycolysis pathway, we also developed a similar analysis considering again

the six kingdoms. We computed the reference m-DAG for each one called again the kingdom

reference m-DAG (shown in S9, S10, S11, S12, S13 and S14 Figs) and we looked for those

MBBs that discriminate among them. As expected, we obtain that every kingdom contains the

two essential processes defined as the core of the purine metabolism pathway, and also, each

kingdom has a set of different MBBs connected to these processes. In Table 4 we show the

MBBs that discriminate the kingdoms; that is, the MBBs that are not present in all kingdoms.

In Table 5 we show the enzymes and reactions corresponding to the MBBs in Table 4.

Notice the importance of MBB 170, corresponding to R04560. It is a crucial essential reac-

tion in Animalia, Plantae, Protista and Fungi that connects the two processes described as the

core of the purine metabolism pathway. On the other hand, MBB 179, corresponding to

R06975 is only present in one member of the Bacteriae (genus Peribacter) and in more than

hundred members of the Archaea. Thus, we can conclude that in Procaryotes two different

ways to connect the two essential processes have been found, in contrast to the only one way

found in Eukaryotes. Interestingly, MBB 201, MBB 197, MBB 198, and MBB 203 are only pres-

ent in Procaryotes.

Table 3. Enzymes and reactions that discriminate the kingdoms in the glycolysis pathway.

Enzyme

code

Enzyme name Reactions Kingdom

3.1.3.13 bisphosphoglycerate mutase R01516 Animalia

5.4.2.4 bisphosphoglycerate mutase R01662 Animalia

1.2.1.90 glyceraldehyde-3-phosphate

dehydrogenase [NAD(P)+]

R01058/R10860 Archaea

1.2.1.- aldehyde dehydrogenase R00711r Bacteria

1.1.2.7 methanol dehydrogenase

(cytochrome c) subunit 1

R09127r Bacteria

2.7.1.41 glucose-1-phosphate phosphodismutase R00960 Bacteria

2.7.1.63 polyphosphate glucokinase R20187, R20189 Bacteria

3.1.3.10 glucose-1-phosphatase R00947 Bacteria

3.2.1.86 6-phospho-beta-glucosidase R05133, R05134 Bacteria

No reaction appears only in this kingdom. Fungi

No reaction appears only in this kingdom. Plantae

No reaction appears only in this kingdom. Protista

Note: The r means that the corresponding reaction is reversible.

https://doi.org/10.1371/journal.pone.0177031.t003
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Glycolysis evolution

The second test performed to study the convenience of using m-DAGs to model metabolic

networks, was to extend the MBBs information to obtain an overall clustering of all organisms

with glycolysis and provide some contribution to answer the question, does metabolomics meet
genomics?

Fig 8. The purine metabolism reference m-DAG. This figure shows the purine metabolism reference m-

DAG associated to the purine metabolism reference pathway in the KEGG database.

https://doi.org/10.1371/journal.pone.0177031.g008
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To obtain a clustering of all organisms with glycolysis, we first defined a similarity measure

between two m-DAGs based on the similarity of their MBBs. To define a similarity score of

two MBBs, we first defined a reactions similarity score as it was done in [12]. Let Ri = (Ii, Ei, Oi)
and Rj = (Ij, Ej, Oj) be two reactions, their similarity score SimReact(Ri, Rj) is given by the fol-

lowing formula [13]:

SimReactðRi;RjÞ ¼ SimEnzðEi; EjÞ � we þ SimCompðIi; IjÞ � wi þ SimCompðOi;OjÞ � wo ð1Þ

where SimEnz(Ei, Ej) is the enzyme similarity between Ei and Ej, SimComp(Ii, Ij) is the com-

pound similarity between the substrates Ii, Ij and SimComp(Oi, Oj) is the compound similarity

between the products Oi, Oj. The parameters we, wi and wo are fixed to we = 0.4 and wi = wo =

0.3 since, as stated in [13], they provide a good balance between enzymes and compounds

(chemical substances).

For the enzyme and compound similarities in Eq (1) we made the following choices.

• For enzymes, we used the EC hierarchical similarity measure that is based on the comparison

of the unique EC number (Enzyme Commission number) associated to each enzyme, which

represents its catalytic activity. The EC number is a 4-level hierarchical scheme, d1.d2.d3.d4,

developed by the International Union of Biochemistry and Molecular Biology (IUBMB)

[28]. Enzymes with similar EC classifications are functional homologues but do not

Table 4. MBBs that discriminate the kingdoms in the purine metabolism pathway.

Animalia Plantae Protista Fungi Bacteriae Archaea

MBB 179 ✓ ✓

MBB 184 ✓

MBB 185 ✓ ✓ ✓ ✓ ✓

MBB 186 ✓ ✓ ✓ ✓

MBB 187 ✓ ✓

MBB 180 ✓ ✓ ✓ ✓ ✓

MBB 196 ✓ ✓ ✓ ✓ ✓

MBB 201 ✓ ✓

MBB 197 ✓ ✓

MBB 198 ✓ ✓

MBB 203 ✓

https://doi.org/10.1371/journal.pone.0177031.t004

Table 5. Enzymes and reactions that discriminate the kingdoms in the purine metabolism pathway.

Reaction Enzyme Enzyme

MBB 179 R06975 6.3.4.23 formate—phosphoribosylaminoimidazolecarboxamide ligase

MBB 184 R00720 3.6.1.8 ATP diphosphatase

MBB 185 R00720 3.6.1.19 nucleoside-triphosphate diphosphatase

MBB 186 R00961 3.6.1.6 nucleoside diphosphate phosphatase

MBB 187 R00961 3.6.1.64 inosine diphosphate phosphatase

MBB 180 R00961 3.6.1.5 apyrase

MBB 196 R02720 3.6.1.19 nucleoside-triphosphate diphosphatase

MBB 201 R02720 3.6.1.66 XTP/dITP diphosphatase

MBB 197 R01562 3.1.3.6 nucleoside diphosphate phosphatase

MBB 198 R02148 3.1.3.6 nucleoside diphosphate phosphatase

MBB 203 R00087 3.6.1.8 ATP diphosphatase

https://doi.org/10.1371/journal.pone.0177031.t005
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necessarily have similar amino acid sequences.

Given two enzymes e = d1.d2.d3.d4 and e0 ¼ d01:d02:d03:d04, their similarity S(e, e0) depends on

the length of the common prefix of their EC numbers:

Sðe; e0Þ ¼ maxfi ¼ 1; 2; 3; 4 : dj ¼ dj0 ; j ¼ 1; . . . ; ig=4

For instance, the similarity between arginase (e = 3.5.3.1) and creatinase (e0 = 3.5.3.3) is 0.75.

• For compounds, we used a similarity based on the similarity measure computed by the SIM-

COMP (SIMilar COMPound) [29] tool. Given two compounds, the tool represents their

chemical structure as graphs and outputs a measure of their maximal common substructure.

Since a reaction may have more than one input (output) compound, we needed a way to

combine the similarity between pairs of compounds computed by SIMCOMP. Given two

sets X and Y of compounds, the score SimComp(X, Y) was computed by:

– defining a complete bipartite graph in which the compounds in X and Y are nodes and

the weight of each arc (x, y) 2 X × Y is the similarity value of x and y computed by

SIMCOMP;

– applying the maximum weighted bipartite matching algorithm to the resulting graph to

obtain the best match between X and Y;

– summing the scores of the best match and dividing it by max{|X|, |Y|}.

Next, given two MBBs,MBB1 andMBB2 its similarity score, Smbb(MBB1,MBB2), was com-

puted by:

• defining a complete bipartite graph in which the reactions inMBB1 andMBB2 are nodes and

the weight of each arc (Ri, Rj) 2MBB1 ×MBB2 is SimReact(Ri, Rj);

• applying the maximum weighted bipartite matching algorithm to the resulting graph to

obtain the best match betweenMBB1 andMBB2;

• summing the scores of the best match and dividing it by max{|MBB1|, |MBB2|}.

Finally, the similarity measure between two m-DAG, Sim(mD1,mD2) was computed by:

• defining a complete bipartite graph in which the MBBs inmD1 andmD2 are nodes and the

weight of each arc (MBBi,MBBj) 2mD1 ×mD2 is Smbb(MBB1,MBB2);

• applying the maximum weighted bipartite matching algorithm to the resulting graph to

obtain the best match betweenmD1 andmD2;

• summing the scores of the best match and dividing it by max{|mD1|, |mD2|}.

In this test, since we had already analyzed the glycolysis pathways from the KEGG database,

we considered the information captured by the reference m-DAG and we again split the MBBs

in three classes: (i) the MBB with a direct arc to reaction R00200, (ii) the MBB with a direct arc

from reaction R00200 and (iii) the MBB with only one reaction in the reference m-DAG.

Then, to obtain the complete bipartite graph in the previous computation, we only considered

the similarity measure of two MBBs in the same class and the weight of an arc between two

MBBs in different classes was set to zero.

Once the similarity measure between every pair of glycolysis m-DAG was computed, we

converted the similarity score into the following distance measure:

dðH1;H2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðScoreðH1;H2ÞÞ
2

q
ð2Þ
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Then, we performed the hierarchical clustering based on the distance measure above. To

obtain the hierarchical clustering of the 1653 different m-DAGs we used the UPGMA method.

In Fig 9 we show the results of this hierarchical clustering. Notice that there are 4140 different

organisms represented in this dendrogram so the details are very small. However, we provide

the vectorial format of this image in S15 Fig in the supporting information files for a better

visualization, in such a way that the reader can magnify an area of the image to see the smallest

details. If we try to understand those results as a glycolysis tree evolution, we can observe that,

despite Bacteria, the other kingdoms are clustered together. Notice that, the amount of bacteria

is considerably bigger than other kingdoms. Therefore, it is not surprising that they appear

everywhere in the dendrogram. The differences detected inside a kingdom are a consequence

of the adaptation of the organisms to the different habitats or to a divergence in the evolution-

ary processes.

Purine metabolism evolution

Again, the second test applied to the purine metabolism pathway to study the convenience of

using metabolic DAGs to model metabolic networks, was to extend the MBBs information to

obtain an overall clustering of all organisms, as it was done in the glycolysis test (See Fig 10).

In this test, we obtain a similar results, that is, despite Bacteria, the other kingdoms are clus-

tered together. And again, the differences detected inside a kingdom are a consequence of the

Fig 9. Glycolysis evolution. This figure shows the dendrogram obtained with the hierarchical clustering of

the glycolysis pathway. Red, green, brown, grey, dark blue and light blue labels are m-DAGs in Animalia,

Plantae, Fungi, Protista, Bacteria and Archaea, respectively. In S15 Fig we provide the vectorial format of this

image for a better visualization.

https://doi.org/10.1371/journal.pone.0177031.g009
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adaptation of the organisms to the different habitats or to a divergence in the evolutionary

processes.

Conclusion

In this paper we introduce a new approach of metabolic networks modeling based on classical

notions of graph theory, which applied to metabolic networks has been successful. Namely, we

recover the notion of strongly connected components, that we call MBBs, to obtain a modular-

ization of the network, called a m-DAG. One of the advantages of our methodology is to be

general enough to perform for any database, although we run our tests using the data informa-

tion in the KEGG database. We applied this methodology to two metabolic pathways to rein-

force its utility. We considered the glycolysis (an energetic pathway) and the purine

metabolism (essential for DNA) present in the living beings. The glycolysis is a simple pathway

which allows us to visualize the relation between the pathway and the m-DAGs, while the

purine metabolism is big enough to test the convenience of the reduction defined in this work.

Using the m-DAG formalism, not only a considerable reduction on the size of the metabolic

network has been obtained, which facilitates the network comprehension, but also a new con-

cept, the MBBs has been introduced. From the information captured by the m-DAG and its

corresponding MBBs, we find the core of the glycolysis pathway and detect some essential

MBBs that reveal the key reactions in the pathway as well as the core of the purine metabolism

Fig 10. Purine metabolism evolution. This figure shows the dendrogram obtained with the hierarchical

clustering of the purine metabolism pathway. Red, green, brown, grey, dark blue and light blue labels are m-

DAG in Animalia, Plantae, Fungi, Protista, Bacteria and Archaea, respectively. In S16 Fig we provide the

vectorial format of this image for a better visualization.

https://doi.org/10.1371/journal.pone.0177031.g010
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pathway. Finally, the application of this methodology to both pathways reproduces the tree of

life, supporting the utility of this research.
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S1 Table. MBBs for the glycolysis pathway. A file containing the reactions and the amount of

species in each kingdom that each MBB has in the glycolysis pathway.

(CSV)

S2 Table. MBBs for the purine metabolism pathway. Same data as in the S1 Table but for the

purine metabolism.

(CSV)

S3 Table. MBB distances for the glycolysis. A file with the distances between every pair of

MBBs in the glycolysis pathway based on the following distance measure:

dðMBB1;MBB2Þ ¼
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(ZIP)

S5 Table. Glycolysis m-DAG summary. A file with the following information: for every gly-

colysis m-DAG, the reactions it has and its MBBs.

(CSV)

S6 Table. Purine m-DAG summary. A file with the following information: for every purine

metabolism m-DAG, the reactions it has and its MBBs.

(ZIP)

S7 Table. m-DAG distances for the glycolysis. A file with the distances between every pair of

m-DAGs, based on the similarity measure described in this paper.

(ZIP)

S8 Table. m-DAG distances for the purine. A file with the distances between every pair of m-

DAGs, based on the similarity measure described in this paper.

(ZIP)

S9 Table. Glycolysis species per m-DAG. A file with the following information: for every m-

DAG its amount of species in each kingdom.

(CSV)

S10 Table. Purines species per m-DAG. A file with the following information: for every m-

DAG its amount of species in each kingdom.

(CSV)

S11 Table. m-DAG worksheet for glycolysis. A worksheet combining the m-DAG related

files for an easy and human readable access.

(ZIP)

S12 Table. MBB worksheet for glycolysis. A worksheet combining the MBB related files for

an easy and human readable access.

(ZIP)

Metabolic building blocks

PLOS ONE | https://doi.org/10.1371/journal.pone.0177031 May 11, 2017 21 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0177031.s012
https://doi.org/10.1371/journal.pone.0177031


S13 Table. m-DAG worksheet for purine metabolism. A worksheet combining the m-DAG

related files for an easy and human readable access.

(XLSX)

S14 Table. MBB worksheet for purine metabolism. A worksheet combining the MBB related

files for an easy and human readable access.

(XLSX)

S1 Fig. Glycolysis MBB dendrogram. A dendrogram obtained with the hierarchical clustering

of the MBBs using the distances in S3 Table.

(PDF)

S2 Fig. Purine MBB dendrogram. A dendrogram obtained with the hierarchical clustering of

the MBBs using the distances in S4 Table.

(PDF)

S3 Fig. Animalia reference m-DAG for glycolysis. A file with the Animalia kingdom refer-

ence m-DAG for the glycolysis pathway.

(PDF)

S4 Fig. Plantae reference m-DAG for glycolysis. A file with the Plantae kingdom reference

m-DAG for the glycolysis pathway.

(PDF)

S5 Fig. Fungi reference m-DAG for glycolysis. A file with the Fungi kingdom reference m-

DAG for the glycolysis pathway.

(PDF)

S6 Fig. Protista reference m-DAG for glycolysis. A file with the Protista kingdom reference

m-DAG for the glycolysis pathway.

(PDF)

S7 Fig. Bacteria reference m-DAG for glycolysis. A file with the Bacteria kingdom reference

m-DAG for the glycolysis pathway.

(PDF)

S8 Fig. Archaea reference m-DAG for glycolysis. A file with the Archaea kingdom reference

m-DAG for the glycolysis pathway.

(PDF)

S9 Fig. Animalia reference m-DAG for purine metabolism. A file with the Animalia king-

dom reference m-DAG for the purine metabolism pathway.

(PDF)

S10 Fig. Plantae reference m-DAG for purine metabolism. A file with the Plantae kingdom

reference m-DAG for the purine metabolism pathway.

(PDF)

S11 Fig. Fungi reference m-DAG for purine metabolism. A file with the Fungi kingdom ref-

erence m-DAG for the purine metabolism pathway.

(PDF)

S12 Fig. Protista reference m-DAG for purine metabolism. A file with the Protista kingdom

reference m-DAG for the purine metabolism pathway.

(PDF)
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reference m-DAG for the purine metabolism pathway.
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S15 Fig. Glycolysis m-DAG dendrogram. A dendrogram obtained with the hierarchical clus-

tering of the m-DAGs for the glycolysis pathway using the distance defined in this paper.
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