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Abstract

Yersinia pestis (Y. pestis) has caused an alarming number of deaths throughout recorded

human history, and novel prophylactics and therapeutics are necessary given its potential

as a bioweapon. Only one monoclonal antibody has been identified to date that provides

complete protection against Y. pestis. Here, we describe a second novel murine monoclonal

antibody (F2H5) that provided complete protection against Y. pestis 141 infection when

administered prophylactically to Balb/c mice (100 μg intravenously). We humanized F2H5,

characterized its ability to bind to the Y. pestis F1 protein and further characterized the neu-

tralizing epitope using computational and experimental approaches. While Western blot

results suggested a linear epitope, peptide mapping using ELISA failed to identify an epi-

tope, suggesting a conformational epitope instead. We adopted a computational approach

based on Residue Contact Frequency to predict the site of antigen-antibody interaction and

defined the F2H5/F1 binding site computationally. Based on computational approach, we

determined that residues G104E105N106 in F1 were critical to F2H5 binding and that CDRH2

and CDRH3 of F2H5 interacted with F1. Our results show that combining computational

approach and experimental approach can effectively identify epitopes.

Introduction

Yersinia pestis (Y. pestis) is the causative agent of the plague, which has killed an estimated 160

million people throughout recorded history [1]. Y. pestis is difficult to eradicate because animal

reservoirs exist worldwide. According to a World Health Organization (WHO) report, between

January 2010 and December 2015, there were 3,248 cases of Y. pestis infection worldwide with a

mortality rate of 17.98% [2]. Y. pestis also has the potential for using as an aerosolized bioweapon

and is recognized as a category A agent on the National Institute of Allergy and Infectious Dis-

eases (NIAID) list of biodefense-related pathogens [3].

The first line antibiotics for treatment of Y. pestis are streptomycin, tetracycline, and chlor-

amphenicol, while the first line prophylactics are sulfonamide, trimethoprim-
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sulfamethoxazole, or tetracycline. A strain of Y. pestis with resistance to all of the antimicrobial

agents recommended for treatment and prophylaxis was isolated in 1995 in Madagascar from

a 16-year-old male presenting with symptoms of bubonic plague. The isolate’s drug resistance

was mediated by a self-transferable plasmid, raising the potential for wider dissemination and

a possible threat to global public health [4]. The former Soviet Union developed a live attenu-

ated vaccine against Y. pestis that prevented infection, but did not have therapeutic efficacy [5].

Monoclonal antibodies (mAbs), such as PAmAb and ETIi204 targeting Bacillus anthracis,
might be an alternative therapeutic when common therapies are not available or appropriate

[6,7].

Vaccine development for Y. pestis has focused on the Fraction 1 Capsular Antigen (F1) [8–

10]. The low-calcium-response V antigen (LcrV) and other antigens have been investigated as

vaccine targets [11–13], but the results were not promising. In murine models, three mAbs

against F1, F1-04-A-G1, F1-08-D-G1 and YPF1-6H3-1-1, have protected 60%-100% of mice

challenged subcutaneously with Y. pestis [14]. In addition, a human F1 specific mAb (M252)

has been isolated that results in approximately 33% survival in an in vivo Y. pestis challenge

model [15]. To date only, F1-04-A-G1 has shown to provide complete protection. These results

suggest that there is at least one critical neutralizing epitope in the F1 protein. However, the

number of protective epitopes in the F1 protein is not yet known and the epitope recognized

by F1-04-A-G1 has not been reported. M252 has been reported to bind weakly to the immuno-

dominant peptide in F1 (amino acids 142–165), but unfortunately, this epitope is not neutral-

izing [15].

Here, we describe a mAb (F2H5) from a mouse hybridoma that provides complete protec-

tion in a mouse Y. pestis infection model. We also characterized the binding epitope using

computational algorithms for predicting complex structures and binding sites when experi-

mental approaches failed. By this method, we identify the epitope successfully.

Materials and methods

Ethics statement

All the animal experiments in this study were approved by the Laboratory Animal Care and

Use Committee of Beijing Institute of Biotechnology. All surgery was performed under sodium

pentobarbital anesthesia and mice were sacrificed at indicated time by CO2 inhalation. All

efforts were made to minimize the suffering.

Cultivation of virulent Y. pestis

A virulent strain of Y. pestis (141) was isolated from Marmota himalayana on the Qinghai-

Tibet plateau by Qinghai Institute for Endemic Disease Prevention and Control [16]. Y. pestis
141 (Sample ID: 11001) has a median lethal dose (MLD) of 17 colony-forming unit (CFU)

when subcutaneously administered to BALB/c mice [17]. Y. pestis was cultured in Luria-Ber-

tani (LB) broth at 28˚C for 18 h then quantified by Maxwell turbidimetry and diluted in sterile

phosphate-buffered saline (PBS). The number of Y. pestis in the dilution was verified by col-

ony-forming units (CFU) on Y. pestis selective agar medium.

Expression of wild type and mutant F1 proteins

Expression and purification of recombinant F1 (rF1) has been described previously [17].

Briefly, the F1 gene was cloned into the expression vector pET-32a (+) to construct the final

vector pET-F1, which was transformed into BL21(DE3) cells to obtain BL21(DE3)/pET-F1.

The BL21 (DE3)/pET-F1 cells were grown in LB broth until the OD600 reached 0.6. Protein
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expression was induced using isopropyl-beta-D- thiogalactopyranoside (IPTG) at a final con-

centration of 1 mM for 5 h. The pellets were collected by centrifugation and then homogenized

by ultrasonication. Following centrifugation, the soluble extract was decanted from the insolu-

ble pellet fraction. The rF1-containing pellet was extracted in 25 mL of extraction buffer (8 M

urea, 20mM PB, pH 6.0) with vigorous mixing for 15 min at room temperature. The extraction

procedure was repeated four times. A total of 100 mL of rF1-containing urea extract was

obtained per liter of cultured BL21 (DE3)/pET-f1. The urea was dialyzed out of the extraction

buffer in a stepwise fashion (urea concentrations:4M, 2M, 1M, 0.5M, 0M) until rF1 was resus-

pended in PBS without urea. The same procedure was followed for the rF1 mutants.

Monoclonal antibody generation and in vivo efficacy testing

Balb/c mice were immunized with rF1 to prepare monoclonal antibodies using conventional

hybridoma methods [18]. Four monoclonal antibody lines named F2H5, F5C10, F6E5, F12H4

were obtained via ELISA screening.

To test the protective efficacy of the resulting monoclonal antibodies in vivo, groups of

6–10 weeks old BALB/c mice (n = 5/group) were subcutaneous (s.c.) challenged with 600 CFU

(1 MLD = 17 CFU) of Y. pestis 141. Each mouse received 100 μg of monoclonal antibody puri-

fied from murine ascites via tail vein injection 24 h before the Y. pestis challenge. Control mice

(n = 5/group) received PBS. The mice were observed for 24 days after challenge. Plague was

confirmed as the cause of death by plating blood samples and sections of liver, lung, spleen,

and lymph node onto Congo red agar and incubating at 28℃ for 48 h to observe bacterial

growth. Surviving mice were euthanized and tissues were collected to determine whether bac-

teria were present as above.

In the survival study, although mice died as a direct result of the experimental intervention,

we used humane endpoints and euthanized mice displaying severe illness prior to the end of

our experiments to minimize the pain and distress. Following challenges, the condition of

mice was monitored every day. Any mice displaying severe illness as determined by weight

loss of greater than 20%, a hunched posture, loss of ability to ambulate, labored breathing and

ruffled fur were euthanized by CO2 inhalation. All the animal experiments completed, survi-

vors were euthanized by CO2 exposure in accordance with IACUC policy. Death was verified

by monitoring cardiac cessation and respiratory arrest. There was no unexpected death in this

study. All of the survival experiments were conducted at Biosafety Laboratories of Qinghai

Institute for Endemic Disease Prevention and Control.

Humanization and expression of F2H5

The variable regions of F2H5 heavy and light chains were linked to the constant regions of

human IgG1 heavy chain and kappa light chain by overlap PCR, respectively [19]. Then the

heavy and light chains of the humanized antibody were cloned into pCDNA3.4 vector. Plas-

mids expressing the heavy and light chains were cotransfected into HEK293FT cells by lipofec-

tin transfection. The antibodies were purified from the supernatant 48 h later by Protein G

affinity chromatography. The F2H5 mutants were expressed in HEK293T cells using the Tur-

boFect transfection reagent (Thermo Scientific) or in HEK293FT cells as above. Antibody titer

in the HEK293T cells culturing supernatant was quantified by sandwich enzyme-linked immu-

nosorbent assay (ELISA). Briefly, nunc plates (Thermo Scientific) were coated with 2 μg/mL of

goat anti-human IgG overnight then blocked and washed. Supernatants were diluted in PBS

and incubated on the coated plates for 1 h at 37˚C. Bound antibodies were detected using an

HRP-conjugated anti-human IgG antibody and 3,3’,5,5’-ltetramethylbenzidine (TMB). The
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reaction was stopped using 2M H2SO4 and the optical density (OD) was determined at 450

nm.

Measuring F2H5 binding to rF1 by ELISA

Plates were coated overnight with 2 μg/mL of rF1 or F1 mutants at 4˚C. The plates were

blocked with 0.1% Tween 20, 5% BSA in PBS for 1 h at 37˚C and then washed with 0.1%

Tween 20 in PBS(PBST) at room temperature. Then serial dilutions of purified antibodies or

HEK293T supernatants containing antibodies, were added to each well and incubated for 1 h

at 37˚C. The plates were washed and an HRP-conjugated anti-human IgG antibody was added

to each well. Incubating for 1 h at 37˚C, the plates were washed again and TMB was added to

each well. The reaction was stopped using 2M H2SO4 and the optical density (OD) was deter-

mined at 450 nm. The half maximal effective concentration (EC50) was calculated by nonlinear

regression (one site specific binding) in GraphPad.

Measuring specific binding of F2H5 to rF1 by Western Blot

SDS-PAGE was performed using 120 g/L resolution gel on the Mini-PROTEIN 3 system

(BIO-RAD). Briefly, a 5 μL sample was loaded into the gel and electrophoresis was performed

at 80 V for 15 min followed by 180 V for 45 min. The proteins were transferred to nitrocellu-

lose membrane using a Bio-Rad apparatus at 300 mA for 1 h. The membranes were blocked

with TBST (150 mM NaCl, 0.1% Tween20, 10 mM Tris-HCl, pH8.0) containing 50 g/L nonfat

milk powder for 1 h at room temperature and then washed three times with TBST. The blots

were incubated with F2H5 (10 μg/mL) for 1 h at room temperature with constant agitation.

The blots were washed three times with TBST and then incubated with an HRP-conjugated

mouse anti-human antibody (1:10000, Sigma). The blots were washed four times with TBST

and the bound peroxidase was visualized using chemiluminescence (Pierce SuperSignal Kit).

Peptide-based ELISA

A 27-peptide array that covering the F1 antigen were 17 to 19 mers with 12 amino acid over-

laps. The synthesized peptides were dissolved in dimethyl sulphoxide (DMSO) at 10 μg/mL.

Plates were coated with peptide overnight and then blocked with 5% nonfat milk powder

diluted in PBST at room temperature for 1 h. The plates were washed with PBST and purified

F2H5 was added to each well and incubated for 1 h at 37˚C. The plates were washed and an

HRP-conjugated anti-human IgG antibody was added to each well. After incubating for 1 h at

37˚C, the plates were washed again and TMB was added to each well. The reaction was stopped

using 2M H2SO4 and the optical density (OD) was determined at 450 nm.

Computational modeling

The atomic structures of F1 were downloaded from the PDB database. Discovery Studio 4.5

was used to model the atomic structure of F2H5. The F1/F2H5 complex was modeled using

ZDOCK [20]. ZRank was a scoring function to evaluate the poses output by ZDOCK in Dis-

covery Studio.

The residue contact frequency (RCF) score was calculated using the algorithm published by

Howook et al [21]. Given that the antibody framework did not react with the antigen, only

atoms in the CDR loops were used to predict the interface of the antigen-antibody complex.

We also used Precision-recall curve and the associated Area Under the Curve (AUC) to
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evaluate the results of the RCF prediction [21]. Precision and Recall were defined as:

Precision ¼
TP

TPþ FP

Recall ¼
TP

TPþ FN

Where true positives (TP) denotes the number of correctly predicted interface residues,

false positives (FP) denotes the number of residues incorrectly predicted to be in the interface,

and false negatives (FN) denotes the number of residues incorrectly predicted not to be in the

interface. We changed the amino acid number of predicted positive as different window sizes

to get the different true positive rate and false negative rate, got a prediction-recall curve, and

calculated the area under the curve.

The Mutation Energy of the F2H5 mutants and the F1 mutants was calculated using Dis-

covery Studio 4.5.

Amino acid interface fitness (AIF) was an algorithm which captured affinity-enhancing

mutants and was calculated here using parameters published by Kannan et al [22].

The calculations described above were performed using the Perl module in the Discovery

Studio software.

Structural analysis of purified mutated F1

The circular dichroism (CD) of F1 samples was analyzed with a JASCO-810 spectropolari-

meter (JASCO UK, Ltd., Essex, United Kingdom). For far-UV CD, samples were diluted to 0.5

mg/mL in 50 mM phosphate buffer (pH 7.4), and a cuvette with a 0.1 mm path-length was

used. For far-UV CD thermal analysis, protein samples were diluted to 0.1 mg/mL and ana-

lyzed in a 1-mm capped cuvette at 210 nm over a gradient of increasing temperatures (1˚C/

min). The CD spectra changed very little between 5 and 30˚C; thus, 30˚C was used in the nor-

malization procedure as fully folded, and 95˚C was normalized as fully unfolded. All solutions

were gently degassed prior to use. The data were corrected for the buffer baseline (buffer scans

performed under identical conditions) and analyzed using the standard MicroCal ORIGIN

V.7 software.

Results

In vivo screening identified three mAbs that protected against Y. pestis

infection

We screened 4 mAb lines by ELISA for reactivity to rF1. Balb/c mice were given 100 μg of anti-

body and 24 h later challenged with 600 CFU of Y. pestis. Three of the antibodies (F5C10

[60%]; F6E5 [60%], and F2H5 [100%]) provided some level of protection (Fig 1A).

F2H5 recognized full length F1 but not linear peptide epitopes

To characterize the mAbs that protected against Y. pestis infection, the variable regions of

F5C10, F6E5 and F2H5 genes were amplified and sequenced. Sequence alignment indicated

that all three mAbs had the same heavy chain but different light chains. Given that F2H5 pro-

vided the best protection, we humanized and purified only F2H5 for further characterization

in subsequent experiments [19]. Specificity of humanized F2H5 to full length F1 was demon-

strated by both Western Blot and ELISA, suggesting the epitope of F2H5 may be linear. Pep-

tide-based ELISA has been used to map linear antibody epitopes in previous studies [23,24];
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therefore, 27 peptides covering the full-length of F1 were synthesized (Table 1) and detected.

Unexpectedly, none of the peptides bound to F2H5 (Fig 1B).

Predicting the epitope using a bioinformatics approach

Molecular docking algorithms, such as ZDOCK and HADDOCK, that predicted macromole-

cule complex have been used to understand antigen-antibody interactions [20,25]. These algo-

rithms operate by generating thousands of conformations and then scoring each conformation.

Discovery Studio (Version 4.5) was used to predict atomic structure of F1/F2H5 complex using

F1 structures downloaded from the PDB database and a model of F2H5 structure constructed

by Discovery Studio. Five F1 structures were used to dock respectively. Three of them, 1P5U

(Fig 2A), 1Z9S and 3DPB were monomers and the other two, 3DOS and 3DSN, were dimers.

Schematic model of F2H5 structure is shown in Fig 2B and 2C. All five atomic structures of F1

were used to predict atomic structures of possible F1/F2H5 complexes using ZDOCK. Each

ZDOCK output 2000 conformations with the highest ZRANK score. But it is a problem to dis-

tinguish which conformations is reliable.

Fig 1. In vivo activity of monoclonal antibodies against Y. pestis and epitope analysis of F2H5 by

peptide ELISA. (A) We monitored the survival of Balb/c mice (n = 5/group) who were prophylactically treated

with different mAbs (100μg) intravenously 24 h prior to the challenge with Y. pestis (strain 141; 600 CFU).

Survival is shown by a survival curve. (B) Peptide mapping was performed to identify a linear epitope of F2H5

using ELISA. Twenty-seven peptides covering the full-length of F1 antigen were synthesized and detected.

The OD value is shown.

https://doi.org/10.1371/journal.pone.0177012.g001

Identification and characterization of a neutralizing monoclonal antibody against Yersinia pestis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177012 May 9, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0177012.g001
https://doi.org/10.1371/journal.pone.0177012


Howook et al developed a method called Residue Contact Frequency (RCF) to predict the

interface residues by combining protein-protein ZDOCK results [21]. RCF reflects how often

a residue is present in the binding interface in a set of predicted protein-protein complex struc-

tures. Given that CDR regions of the antibody determine most interactions with antigens, we

limited our RCF analysis to these regions. We choose 22 antigen-antibody pairs from Docking

Benchmark 5 Database to verify our RCF analyses [26]. We also compared the effects of using

different numbers of conformations to calculate RCF (Fig 3). Just like our anticipation, the

accuracy of RCF prediction increased when the CDR limitation was considered. Top 101

poses, 500 poses and 2000 poses with the highest ZRANK score were used to calculate RCF,

and the results were not significantly different.

Therefore, we used the top 101 conformations with the highest ZRANK score to calculate

RCF of F1 and F2H5 based on the CDR limitation to reduce the computations. The RCF calcu-

lated by five different structures of F1 is shown in a heat map in Fig 4. The top 15 residues with

the highest RCF score of F1 are shown in Table 2. RCF predicted that E105 was a critical resi-

due for F1 and F2H5 binding in all of the three monomer structures. In the dimer structures,

F96 was predicted to be important for F2H5 binding.

Verifying the epitope predicted by RCF

To corroborate the RCF results, the binding site of F2H5 was mapped by alanine-scanning

mutagenesis. F1 mutants that altered the amino acids around E105 and F96 were constructed.

Residues 95–111 was mutated to alanine respectively. In both Western Blot (Fig 5A) and

ELISA (Fig 5B and 5C), three mutants (F1-G104A, F1-E105A, F1-N106A) did not bind to

F2H5, and two mutants (F1-K101A and F1-N103A) bound to F2H5 weakly. These results con-

firmed that G104, E105, and N106 were critical to F1/F2H5 binding.

Characterizing the effects of mutation on the secondary structure of F1

While testing the ability of F1 mutants to bind to F2H5, we found that two mutants F1-ΔADL

and F1-ΔSNQ that lacked the first three amino acids at the N terminus (F1-ΔADL) or the C

terminus (F1-ΔSNQ) partially lost affinity (Fig 5D). This was unexpected as the N terminus,

Table 1. Amino acid sequences of the peptides used in mapping epitope.

NO. AA sequence NO. AA sequence

P1 ADLTASTTATATLVEPA P15 YLTFTSQDGNNHQFTTK

P2 STTATATLVEPARITLT P16 SQDGNNHQFTTKVIGKD

P3 ATLVEPARITLTYKEGA P17 NHQFTTKVIGKDSRDFD

P4 PARITLTYKEGAPITIM P18 TKVIGKDSRDFDISPKV

P5 LTYKEGAPITIMDNGNI P19 KDSRDFDISPKVNGENL

P6 GAPITIMDNGNIDTELL P20 FDISPKVNGENLVGDDV

P7 IMDNGNIDTELLVGTLT P21 KVNGENLVGDDVVLATG

P8 NIDTELLVGTLTLGGYK P22 NLVGDDVVLATGSQDFF

P9 LLVGTLTLGGYKTGTTS P23 DVVLATGSQDFFVRSIG

P10 LTLGGYKTGTTSTSVNF P24 TGSQDFFVRSIGSKGGK

P11 YKTGTTSTSVNFTDAAG P25 FFVRSIGSKGGKLAAGK

P12 TSTSVNFTDAAGDPMYL P26 IGSKGGKLAAGKYTDAV

P13 NFTDAAGDPMYLTFTSQ P27 GKLAAGKYTDAVTVTVSNQ

P14 AGDPMYLTFTSQDGNNH

https://doi.org/10.1371/journal.pone.0177012.t001
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Fig 2. Structures of F1 (1P5U), F2H5 and F1-F2H5 complex. (A) The structure of F1 (1P5U) downloaded

from the PDB database. (B) and (C) The structure of F2H5 (brown = L chain; cyan = H chain) modeled by

Discovery Studio 4.5. (D) The structure of F1 (purple) and F2H5 (brown = L chain; cyan = H chain) complex

filtered by the critical amino acids G104E105N106 and optimized by Discovery Studio 4.5. In this conformation,

the L chain of F2H5 does not interact with F1, but the 3 CDR loops in the H chain do bind to F1. Within F1,

residue 99–103 is colored green and residue 104–106 is colored yellow, respectively. Yellow region contains

the epitope G104E105N106 of F2H5. The critical residues Y170 in CDRH2 and Y214 in CDRH3 of F2H5 are

labeled red.

https://doi.org/10.1371/journal.pone.0177012.g002
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the C terminus and G104E105N106 regions are spatially distinct and F2H5 could not interact

with all the three regions simultaneously. Based on the structure of the F1 dimers and the

Fig 3. Area under the curve of RCF predictions. Base on both the whole antibody and CDR loops, the RCF

scores of 22 antigen-antibody pairs were calculated using the top 101, 500, and 2000 conformations

respectively. Then the areas under the PR curves were calculated and shown. AUC of random predictions

were used to assess whether RCF results are better than random. Each point indicates a different antibody/

antigen pairing.

https://doi.org/10.1371/journal.pone.0177012.g003

Fig 4. The RCF scores of F1 and F2H5. The RCF scores of F1 (A) and F2H5 (B) were calculated and shown in heat maps.

https://doi.org/10.1371/journal.pone.0177012.g004
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propensity of F1 to aggregate, the N and C termini appeared to be important to aggregation.

Therefore, we assumed that the absence of the first three amino acids at either terminus led to

structural modifications that decreased the affinity.

The secondary structures of the mutants were determined by CD. F1-ΔADL and F1-ΔSNQ

were noticeably different from the native F1 on the secondary structure. However, the second-

ary structure of F1-E105A was comparable to native F1. (Fig 5E). This confirmed that the

structure of F1-E105A mutant was analogous to native F1. But, that alterations to N or C ter-

minus led to major structural rearrangements.

Characterizing F2H5/F1 complex

To better understand how F2H5 was binding to F1, we filtered the predicted conformations by

the epitope identified above. Then the conformation of F2H5/F1 with the highest ZRANK

score among the remaining conformations was selected as the atom structure of F2H5/F1

complex. The conformation selected is shown in Fig 2D. In this conformation, we also found

that residues 104–106 (Fig 2D indicated in yellow) were located in the center of the interface.

Residues 99–103 (Fig 2D indicated in green) were behind residues 104–106 and hidden inside

of the F1 protein. Combining with the experimental results of F1 mutants (Fig 5), it indicted

that residues 104–106 was the critical amino acids, but residues 101 and 103 influenced the

interaction indirectly.

Base on this conformation, we calculated the mutation energy of mutating residues 95–111

to alanine (Table 3). With the exceptions of D110 and D111, the mutation energy of the other

residues coincided with the mutation experiment, that G104A, E105A and N106A had high

mutation energy.

In this conformation, the H chain of F2H5 was the only part recognizing F1 of the antibody.

This was consistent with the variable region sequence alignment., whose results were that all

the three protective mAbs have the same heavy chain.

Table 2. Fifteen residues of F1 with highest RCF score.

1P5U 1Z9S 3DPB 3DOS 3DSN

Residue RCF Residue RCF Residue RCF Residue RCF Residue RCF

GLN77 5.205 GLU105 4.418 GLU105 4.077 PHE96 6.530 PHE96 6.414

THR8 4.505 ARG94 3.547 ASN103 2.031 ASP95 5.251 ASP95 4.763

ALA65 3.499 ASN81 2.598 GLY104 1.755 ARG94 4.860 GLN77 3.936

ARG9 3.256 LYS129 2.241 PRO69 1.735 ASN81 4.685 ASP97 3.855

GLU105 2.634 ASP111 2.141 THR58 1.307 ASP97 4.004 ASN80 3.783

PRO28 2.458 THR116 2.048 THR63 1.255 GLU105 3.28 ALA65 3.261

THR139 2.452 ASP110 1.952 ASP111 1.239 HIS82 3.068 ASN81 3.237

GLU25 2.426 LYS101 1.945 GLY67 1.123 PRO69 2.656 THR139 3.108

ASN81 2.277 PRO69 1.942 THR8 1.097 ASN80 2.638 ARG94 3.080

PHE96 2.002 ASN106 1.942 LYS101 1.051 GLU40 2.602 GLY79 2.731

THR75 1.923 GLN77 1.878 ASN106 1.014 LYS132 2.595 ASP140 2.719

SER6 1.872 GLY104 1.826 SER6 0.925 LYS91 2.545 LYS91 2.671

THR10 1.862 ALA65 1.678 ASN61 0.903 GLN83 2.505 ALA141 2.566

ALA66 1.802 ASN103 1.521 MET70 0.894 ALA65 2.491 ASP78 2.502

ASP78 1.514 ALA141 1.505 ALA65 0.790 ALA66 2.208 ARG124 2.502

Results reflect the top 10% of the RCF hits; total returned was 149.

https://doi.org/10.1371/journal.pone.0177012.t002
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Predicting paratope and capturing affinity-enhance mutants of F2H5

The RCF value of each residue in the F2H5 CDR was calculated with the five F1 structures and

shown in a heat map (Fig 3B). The 6 residues with the highest RCF value are shown in Table 4.

Based on these results, residue 170 of CDR H2 and residue 214 of CDR H3 were predicted to

interact with F1.

Amino acid interface fitness (AIF) was then used to analysis the conformation of F1-F2H5

complex [22]. AIF score reflects the fitness of an amino acid at the binding site. In the confor-

mation we selected, amino acids from the CDRH1 (SER144), CDRH2 (LEU169 and TYR170),

and CDRH3 (TYR214 GLY216 and ASP218) loops interacted directly with F1. TYR214 (7.4)

and TYR170 (4.3) had high AIF values. However, none of the other amino acids had a higher

Fig 5. F1 mutants binding to F2H5 and analyzing the structure of F1 mutants. F1 mutants binding were determined by Western Blot (A) and

ELISA (B, C and D). (E) Circular dichroism of F1 and its mutants.

https://doi.org/10.1371/journal.pone.0177012.g005
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AIF score than tyrosine did at these two sites (Table 5). This demonstrated that these two sites

were important to F1 binding and that tyrosine was the fittest amino acid for these positions.

We also calculated the mutation energy of CDRH2 and CDRH3 site-saturation mutations

base on this conformation. We hypothesized that the affinities of F2H5 and its mutants would

be indistinguishable when the absolute value of Mutation Energy was less than 1 KJ/mol.

Almost every mutation at TYR214 and TYR170 had positive mutation energy or resulted in

negative mutation energy near 0, except for Y170R (S1 Table).

To confirm the results of our computational approach, we selected 20 mutants with a high

absolute Mutation Energy (Table 6). The affinities of 11 mutants were predicted to weaken

and those of the others were expected to enhance. The mutants were expressed in 6-well plates

and the supernatant was harvested to evaluate the affinity of each mutant by ELISA. As

expected, the 11 mutants with positive mutations energy no longer bound to F1 determined by

ELISA. Of the remaining nine mutants which had negative mutation energy, five bound to F1,

three did not bind to F1 and one mutant was not expressed (Table 6, S2 Table and S1 Fig).

Compared to F2H5, two mutants, F2H5-D218R and F2H5-D218Y, bound to F1 equally well

and the three remaining mutants F2H5-L169W, F2H5-L169D and F2H5-Y170R had a weaker

affinity (Fig 6A). These two mutants were purified for further quantitative analysis.

F2H5-D218R (EC50 was 22 ng/mL) and F2H5-D218Y (EC50 was 23 ng/mL) mutants had a

lower EC50 than F2H5 did (EC50 was 59 ng/mL) (Fig 6B).

Discussion

We describe a novel murine antibody isolated from hybridomas, F2H5, that provides complete

protection against Y. pestis infection in Balb/c mice when administered prophylactically. To

alleviate immunogenicity concerns, F2H5 was humanized for developments as a novel thera-

peutic for humans. Western blot analysis suggested F2H5 recognized a linear epitope in the Y.

pestis F1 protein. However, peptide mapping did not identify a linear epitope, suggesting a

conformational one. Therefore, we used a computational approach to model the interaction

between F2H5 and F1 to identify the binding site complimented by experimental approaches

Table 3. The mutation energy of F1 mutations predicted in silico.

Mutations Mutation energy /KJ/mol

ASP95>ALA 0.19

PHE96>ALA 0.19

ASP97>ALA 0.27

ILE98>ALA 0.05

SER99>ALA 0.03

PRO100>ALA 0.04

LYS101>ALA 0.15

VAL102>ALA 0.02

ASN103>ALA 0.05

GLY104>ALA 0.93

GLU105>ALA 1.19

ASN106>ALA 0.63

LEU107>ALA 0.57

VAL108>ALA 0.2

GLY109>ALA 0.12

ASP110>ALA 0.68

ASP111>ALA 1.29

https://doi.org/10.1371/journal.pone.0177012.t003
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using targeted mutations. Given that the current computational methods cannot predict the

antigen-antibody binding mode or the epitope with a high degree of accuracy, we used com-

puter modeling to indict which residues were chosen to be mutated and the results of experi-

mental work to verify the computer simulation to improve accuracy. Our computational and

experimental approaches were generally convergent, and in this way we found that residues

G104E105N106 in F1 reacted with CDRH2 and CDRH3 in F2H5. This particular amino acid

sequence (G104E105N106) is contained within the predicted immunodominant F1 epitope, resi-

dues 104–117 (NGENLVGDDVVLAT) [27].

In the process of mapping the F2H5/F1 binding site, we identified that mutations to resi-

dues 101 and 103 in F1 weakened the affinity binding to F2H5, which determined by Western

blot and ELISA. Our modeling results indicated that in the F1 native conformation these resi-

dues are hidden behind G104E105N106, which may be the reason of the weaken affinity. And the

results of F1-ΔADL and F1-ΔSNQ binding experiments indicted that the N terminal and C ter-

minal were important to maintain the high structure of F1. It also indicated that the lack of

correct spatial structure of the peptide leads to the failure of epitope identification by peptide

ELISA.

In addition to F2H5, we also identified F5C10 and F6E5, two monoclonal antibodies that

provided partial protection against Y. pestis. All three antibodies had an identical heavy chain.

The conformation we identified computationally indicated that the heavy chain of the anti-

body plays a major role in binding to F1. There was no contact between the antibody light

chain and F1, which suggested it may only stabilize the structure of the compound. Based on

these results, it appears that the heavy chain is the major determinant of protection. Both RCF

and AIF suggested that Y170 in CDRH2 and Y214 in CDRH3 were critical to the binding.

Based on the computational conformation, we designed 20 mutations by Mutation Energy

predicted by Discovery Studio. The affinities of 11 mutants were predicted to weaken, which

Table 4. The six residues of the F2H5 CDR with the highest RCF score.

1P5U 1Z9S 3DPB 3DOS 3DSN

Residue RCF Residue RCF Residue RCF Residue RCF Residue RCF

TYR170 5.637 LEU169 5.361 TYR214 6.160 TYR214 6.264 ASP218 5.728

TYR100 5.087 TYR170 4.368 ASP218 4.499 TYR170 6.123 TYR214 5.688

LEU169 4.331 TYR214 3.828 LEU169 4.037 LEU169 5.119 TYR170 5.486

ASP218 3.647 SER144 2.769 TYR170 3.856 ASP218 3.645 LEU169 4.185

TYR214 3.542 SER143 2.524 SER144 3.811 PHE215 3.409 GLN35 3.899

GLN35 2.701 GLY167 2.441 GLY216 2.992 GLY216 3.052 PHE215 3.064

Results reflect the top 10% of the RCF hits; total returned was 57.

https://doi.org/10.1371/journal.pone.0177012.t004

Table 5. Mutations predicted to enhance the binding affinity of F2H5 using AIF.

Chain &

CDR

Position AIF Mutations

CDRH-1 SER144 1.64 LYS, TYR, ARG

CDRH-2 LEU169 0.65 ASP, PRO, LYS, ILE, TRP, CYS, GLY, PHE, GLN, SER, ASN, VAL, TYR,

GLU, ARG, THR, ALA, HIS

CDRH-2 TYR170 4.34 -

CDRH-3 TYR214 7.40 -

CDRH-3 GLY216 1.61 TRP, CYS, PHE, ASN, TYR

CDRH-3 ASP218 1.89 TRP, TYR

https://doi.org/10.1371/journal.pone.0177012.t005

Identification and characterization of a neutralizing monoclonal antibody against Yersinia pestis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177012 May 9, 2017 13 / 17

https://doi.org/10.1371/journal.pone.0177012.t004
https://doi.org/10.1371/journal.pone.0177012.t005
https://doi.org/10.1371/journal.pone.0177012


was consistent with the experimental result. Of the remaining nine mutants, whose affinities

were expected to enhance, five mutations bound to F1, and two of them actually had a lower

EC50 than native F2H5. All these results suggest that the paratope of F2H5 we identified is cor-

rectly and that the conformation we selected is reliable. In the conformation we selected, resi-

dues Y170 and Y214 of F2H5 were located at the core of the interface, K169, G216 and D218

were located at the periphery of the binding interface. Mutations to D218 were found to

enhance the binding affinity. In contrast, AIF and mutation energy analysis showed that

Table 6. Predicted mutation energy and binding results of F2H5 mutants.

Mutants Mutation Energy/ KJ/mol binding to F1

G166W 7.79 -

G166E 5.77 -

G167R 18.48 -

G167E 12.88 -

G168K -1.61 -

G168R -1.14 unexpressed

L169E 1.5 -

L169D 1.46 -

L169W -1.51 +

L169F -1.14 +

Y170D 1.2 -

Y170E 1.03 -

Y170R -1.57 +

Y214P 3.93 -

Y214E 3.11 -

F215P 1.17 -

G216W -2.51 -

G216F -2.3 -

D218R -1.73 +

D218Y -1.72 +

https://doi.org/10.1371/journal.pone.0177012.t006

Fig 6. Specific binding between F2H5 mutants and F1 determined by ELISA. (A) Native and mutant F2H5 antibodies were

expressed in 293T cells and detected to get their binding ability by ELISA. (B) Using purified antibodies, the EC50 of native F2H5,

F2H5-D218R and F2H5-D218Y mutants were determined accurately. Statistics analysis was performed using one-way ANOVA with

bonferroni post-test (*: p<0.05).

https://doi.org/10.1371/journal.pone.0177012.g006
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tyrosine was the fittest amino acid at sites Y170 and Y214. Consistent with this, mutations at

these sites failed to enhance the affinity. The finding that mutations to enhance the antibody

affinity occur at the periphery of the binding site is consistent with other studies [22].

A challenge of this study was to distinguish the best one out of the thousands conformations

predicted by ZDOCK. Here, we improved the RCF algorithm by considering the CDR limita-

tion. In antibodies, only the CDR loops generally react with antigen; therefore, we used only

those loops to calculate the RCF values. Based on the improved RCF values, we predicted criti-

cal residues and validated these results experimentally using mutant proteins. The findings of

our study supported that the combination of computational and experimental approaches pro-

vided novel insights into understanding antibody/antigen interactions.
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S1 Table. Mutation energy of site-saturation mutations at TYR214 and TYR170.

(DOCX)

S2 Table. Concentration of 20 F2H5 mutants.

(DOCX)

S1 Fig. Binding of 20 F2H5 mutants to F1. The supernatant was harvested to evaluate the

affinity of each mutant by ELISA. Purified F2H5 (2μg/mL) and the supernatant containing

F2H5 were used as positive control. The supernatant containing 5F10, an antibody of Chikun-

gunya virus, was used as negative control. Red represent the mutants predicted with enhancing

affinity. Green represent the mutants predicted with weaken affinity.
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