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Abstract

Out of nearly 70,000 bills introduced in the U.S. Congress from 2001 to 2015, only 2,513

were enacted. We developed a machine learning approach to forecasting the probability

that any bill will become law. Starting in 2001 with the 107th Congress, we trained models

on data from previous Congresses, predicted all bills in the current Congress, and repeated

until the 113th Congress served as the test. For prediction we scored each sentence of a bill

with a language model that embeds legislative vocabulary into a high-dimensional,

semantic-laden vector space. This language representation enables our investigation into

which words increase the probability of enactment for any topic. To test the relative impor-

tance of text and context, we compared the text model to a context-only model that uses var-

iables such as whether the bill’s sponsor is in the majority party. To test the effect of

changes to bills after their introduction on our ability to predict their final outcome, we com-

pared using the bill text and meta-data available at the time of introduction with using the

most recent data. At the time of introduction context-only predictions outperform text-only,

and with the newest data text-only outperforms context-only. Combining text and context

always performs best. We conducted a global sensitivity analysis on the combined model to

determine important variables predicting enactment.

1 Introduction

The U.S. legislative branch creates laws that impact the lives of hundreds of millions of citizens.

For example, the Patient Protection and Affordable Care Act (ACA) significantly affected the

health care industry and individuals’ health insurance coverage. Bills often consist of hundreds

of pages of dense legal language. In fact, the ACA is more than 900 pages long. There are thou-

sands of bills under consideration at any given time and only about 4% will become law. Fur-

thermore, the number of bills introduced is trending upward (see S1 Appendix), exacerbating

the problem of determining what text is relevant. Given the complexity, length, and vast quan-

tity of bills, a machine learning approach that leverages bill text is well-suited to forecast bill

success and identify the important predictive variables. Despite rapid advancement of machine

learning methods, it’s difficult to outperform naive forecasts of rare events because of inherent
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variability in complex social processes [1] and because relationships learned from historical

data can change without warning and invalidate models applied to future circumstances.

Due to the complexity of law-making and the aleatory uncertainty in the underlying social

systems, we predict enactment probabilistically. It’s important to make probabilistic predic-

tions for high consequence events because even small changes in probabilities for events with

extreme implications can have large expected values. For instance, the 2009 stimulus bill

cost $831 billion so even a 0.1 change in the predicted probability of this bill corresponds to a

$83.1 billion dollar change in the expected value (the probability of an event multiplied by its

consequences). Probabilities provide much more information than a simple “enact” or “not

enact” prediction. Model performance metrics that don’t use probabilities, such as accuracy,

are not suitable measures of rare event predictive ability. For instance, a blunt “never enact”

model has a seemingly impressive 96% accuracy rate on this data but incorrectly classifies all

the enacted bills with incalculable effects on society.

Forecasting model performance should be estimated using multiple metrics on large

amounts of test data measured after the data that was used to train the model. We trained

models on Congresses prior to the Congress predicted, which simulated real-time deployment

across 14 years and 68,863 bills. Starting with the 107th Congress (2001–2003), models were

sequentially trained on data from previous Congresses and tested on all bills in the current
Congress. This was repeated seven times until the most recently completed Congress—the

113th (2013–2015)—served as the test. To estimate performance, we compared a baseline

model to our models across three performance measures that leverage predicted probabilities.

Although previous research found that bill text was useful for predicting whether bills will

survive committee [2] and for predicting roll call votes [3, 4], these authors tested their models

on much less data than we do and predicted more frequently observed events: getting out of

committee is more common than being enacted and bills up for vote are a small subset of all

bills introduced. It’s not clear whether utilizing text models trained on previous Congresses

will improve predictions of enactment of bills introduced in future Congresses beyond the pre-

dictive power of sponsorship, committee and other non-textual data. Text is noisy and

completely different topics can be found within the same bill [5]. However, we hypothesized

that there are unique semantic and syntactic signatures that consistently differentiate success-

ful bills. Our second hypothesis was concerned with the changes to bills over their lives. Some

bills, e.g. the ACA, are only a few pages when introduced but are hundreds of pages when

enacted. However, 87% of bill texts don’t change after being introduced because they don’t

progress further in the law-making process. We hypothesized that using the most recently

available version of bill text and metadata would lead to stronger predictive performance for

text and context models. To test these hypotheses, we designed an experiment across two pri-

mary dimensions: data type (text-only, text and context, or context-only) and time (using old-

est or newest bill data).

Analyzing a model that makes successful ex ante predictions can be more informative than

ex-post interpretations of socio-political events (outside experiment-like settings) due to the

over-fitting that plagues most modeling of observational data [6]. However, because highly

predictive models are often designed with only predictive power in mind, they rarely provide

clear insights into relationships between predictor variables and the predicted outcome. When

estimates of these relationships are provided for non-linear models, they are almost always

measures of only magnitudes of the effects of predictor variables and not also the directions of

the effects. Our work is not limited to raw predictive power. We estimate the direction and
magnitude of the effect of each predictor variable in the model on the predicted probability of

enactment. Furthermore, the text model reveals which words are more associated with enact-

ment success.
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2 Methods and data

2.1 Model training

2.1.1 Word vectors and inversion of language models. Continuous-space vector repre-

sentations of words can capture subtle semantics across the dimensions of the vector [7]. To

learn these representations, a neural network model predicts a target word with the mean of

the representations of the surrounding words (e.g. vectors for the two words on either side of

the target word in Fig 1A). The prediction errors are then back-propagated through the net-

work to update the representations in the direction of higher probability of observing the tar-

get word [8, 9]. After randomly initializing representations and iterating this process over

many word pairings, words with similar meanings are eventually located in similar locations

in vector space as a by-product of the prediction task, which is called word2vec [8].

The only pre-processing we applied to text was removal of HTML, carriage returns, and

whitespace, and conversion to lower-case. Then inversion of distributed language models was

used for classification as described in [11]. Distributed language models—mappings from

words to Rd obtained by leveraging word co-occurrences—were separately fit to the sub-cor-

pora of successful and failed bills by applying word2vec. Each sentence of a testing bill was

scored with each trained language model and Bayes’ rule was applied to these scores and prior

probabilities for bill enactment to obtain posterior probabilities. The proportions of bills

enacted in the same chamber as the predicted bill in all previous Congresses were used as the

priors. The probabilities of enactment were then averaged across all sentences in a bill to assign

an overall probability.

2.1.2 Tree-based models. Trees are decision rules that divide predictor variable space into

regions by choosing variables and their threshold values on which to make binary splits [12]. A

tree model can learn interactions between predictors, unlike linear models where interactions

must be manually specified, and is generally robust to the inclusion of variables unrelated to

the outcome. A gradient boosted machine (GBM) improves an ensemble of weaker base mod-

els, often trees, by sequentially adjusting the training data based on the residuals of the preced-

ing models [13]. A random forest randomly samples observations from training data and

Fig 1. A. The neural network-based training algorithm used to obtain word vectors [10]. Parameters are updated with stochastic gradient descent

and we use a binary Huffman tree to implement efficient softmax prediction of words. See S1 Appendix for description of hyper-parameters. B.

Model training and testing. This process is completed and then we advance one Congress.

https://doi.org/10.1371/journal.pone.0176999.g001
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grows a tree on each sample, forcing each tree to consider randomly selected sets of predictor

variables at each split to reduce correlation between trees [14]. GBMs and random forests can

both learn non-linear functions but have different strengths: in general, random forests are

more robust to outliers while GBMs can more effectively learn complex functions. A regular-

ized logistic regression (elastic-net) with hyper-parameters (α = 0.5 and λ = 1e-05) is also esti-

mated to gain a complementary linear perspective [15].

Using the predictions from the inversion of the word vector language model (as described

in Section 2.1.1.) as features allows the training process to learn interactions between contex-

tual variables and textual probabilities. Additionally, the sensitivity analysis can then

estimate the impact of text predictions on enactment probabilities along with the contextual

predictors, controlling for the effect of the probability of the bill text when estimating non-

textual effects.

2.1.3 Ensemble stacking. Random forests and GBMs combine weak learners to create a

strong learner. Stacking combines strong learners to create a stronger learner. A cross-

validation stacking process on the training data is used to learn a combination of the three

base models to form a meta-predictor [16, 17]. Out-of-fold cross-validation predictions are

made on the training data with the three base learners described above in Section 2.1.2 (the

gradient boosted machine model, the random forest model, and the regularized logistic regres-

sion model). These predictions and the outcome vector are used to train the meta-learner, a

regularized logistic regression with non-negative weights. Weights are forced to be non-nega-

tive because we assume all predictors should positively contribute. This entire learning process

is conducted on data from prior Congresses. The model is applied to test data by making pre-

dictions with base learners and feeding those into the meta-learner (Fig 1B).

2.2 Model performance

We use the two most frequently applied binary classification probability scoring functions: the

log score and the brier score (see S1 Appendix). For both, if a model assigns high probability

to a failed bill it’s penalized more than if it was less confident and if a model assigns high prob-

ability to an enacted bill it is rewarded more than if it wasn’t confident. A receiver operating

characteristic curve (ROC) is built from points that correspond to the true positive rate at vary-

ing false positive rate thresholds with the model’s predictions sorted by the probability of the

positive class (enacted bill) [18]. Starting at the origin of the space of true positive rate against

false positive rate, the prediction’s impact on the rates results in a curve tracing vertically for a

correct prediction and horizontally for an incorrect prediction. A perfect area under the ROC

curve (AUC) is 1.0 and the worst is 0.5. AUC rewards models for being discriminative

throughout the range of probabilities and is more appropriate than accuracy for imbalanced

datasets.

2.3 Analysis

2.3.1 Text model similarity analysis. We train language models with word2vec for

enacted House bills, failed House bills, enacted Senate bills, and failed Senate bills and then

investigate the most similar words within each of these four models to word vector combina-

tions representing topics of interest. That is, for each of the four models, return a list of most

similar words: arg max v�2V1:N
cos v�; 1

W

PW
i¼1

wi � si
� �

, where wi is one of W word vectors of

interest, V1:N are the N most frequent words in the vocabulary of M words (rare words are

retained to train the model, but N is set to less than M to exclude rare words during model

analysis) excluding words corresponding to the W query vectors, si is 1 or -1 for whether we
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are positively or negatively weighting wi, and cosða; bÞ ¼
Pd

i¼1
ai�biffiffiffiffiffiffiffiffiffiffiffiffiffi

Pd

i¼1
a2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd

i¼1
b2
i

q . For ease of com-

parison across enacted and failed categories we also remove words the two have in common.

2.3.2 Full model sensitivity analysis. We conduct a sensitivity analysis on our model of

the legislative system by varying inputs to the model and measuring the effect on the output. If

input values are varied one at a time, while keeping the others at “default values,” sensitivities

are conditional on the chosen default values [19]. There are no sensible default values for the

predictor variables. Instead of using default values of variables, we use empirically observed

predictor variables and we predict the enactment of all the bills from Congresses 104–112.

These predictions are a vector of predicted probabilities. The empirical predictors variable

data and these associated predicted probabilities create a sufficiently large yet realistic set of

observations for a global sensitivity analysis to determine the modeled effects of the predictors

variables on the probability of enactment.

Next, we expand the factor variables out so each level is represented in the design matrix as

a binary indicator variable. This allows us to estimate the effect of each level of a factor, e.g. the

39 subject categories. We add interaction terms between the Chamber and bill characteristics,

e.g. whether the bill originated in the Senate and the number of characters, to estimate these

interaction effects potentially automatically learned by the tree models. Finally, we estimate

the relationship between the resulting matrix of input values and the vector of predicted proba-

bility outputs with a partial rank correlation coefficient (PRCC) analysis, which estimates the

correlation between an input variable and the predicted probability of bill enactment, dis-

counting the effects of the other inputs and allowing for potentially non-linear relationships by

rank-transforming the data before model estimation [20, 21]. Partial correlation controls for

the other predictor variables, Z, by computing the correlation between the residuals of regress-

ing the predictor of interest, x, on Z and the residuals of regressing the outcome (predicted

probability of enactment) on Z. The PRCC analysis is bootstrapped 1,000 times to obtain 95%

confidence intervals.

2.4 Data

We include all House and Senate bills and exclude simple, joint, and concurrent resolutions

because simple and concurrent resolutions do not have the force of law and joint resolutions

are very rare. We downloaded all bill data (from the 103rd Congress through the 113th Con-

gress) other than committee membership from govtrack.us/developers/data, which is created

by scraping THOMAS.gov. We downloaded committee membership data from web.mit.edu/

17.251/www/data_page.html [22, 23].

There is often more than one version of the full text for each bill. In order to create a fore-

casting problem that predicts enactment as soon as possible, the earliest dated full text is used,

which is, for more than 99% of the bills in the testing data, the text as it was introduced. To

understand how much predictive power newer versions add, we collect the most recent version

of each bill, which is, for 87% of the bills in the testing data, the version as introduced. Bills can

change dramatically between the time of their introduction and the time of the last action

taken on them. H.R. 3590 in the 111th Congress, was a short bill on housing tax changes for

service members when it was introduced, and shortly before it was enacted it was the 906-page

Affordable Care Act. H.R. 34 in the 114th Congress was originally introduced as the Tsunami

Warning, Education, and Research Act and was about 30 pages long. Shortly before it was

enacted, H.R. 34 was the 312-page 21st Century Cures Act.

The full text of all introduced bills is only available starting with the 103rd Congress (1993–

1995) and therefore this is the first Congress used to train language models. The 104th

Predicting and understanding law-making with word vectors and an ensemble model
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Congress is the first used to train the base models of the ensemble because they require the lan-

guage model predictions and the language models need the 103rd for training. The 107th Con-

gress (2001–2003) is the first to serve as a testing Congress because the full model needs

multiple Congresses worth of data for training. We used the list of predictor variables from [2]

as a starting point for designing our feature set.

The following variables capture characteristics of a bill’s sponsor and committee(s):

• region: region corresponding to state the sponsor represents (5 levels).

• sponsorPartyProp: proportion of chamber in sponsor’s party (min: 0, median: 0.51, max:

0.59).

• sponsorTerms: number of terms sponsor has served in Congress (only up to Congress being

predicted to ensure model is only using data that would have been available at that time,

min: 1, median: 6, max: 30).

• committeeSeniority: mean length of time sponsor has been on the committees the bill is

assigned to (min: 0, median: 0, max: 51). If not on committee, assigned 0.

• committeePosition: out of any leadership position of sponsor on any committee bill is

assigned to, lowest number on the “leadership codes” list in S1 Appendix (11 levels, e.g.

Chairman).

• NotMajOnCom: binary for whether sponsor is (i) not in majority party and (ii) on first listed

committee bill is assigned to.

• MajOnCom: binary for whether sponsor is (i) in majority party and (ii) on first listed com-

mittee bill is assigned to.

• numCosponsors: number of co-sponsors (for oldest—min: 0, median: 2, max: 378; for

newest—min: 1, median: 6, max: 432).

The following variables capture political and temporal context of bills:

• session: Session (first or second) of Congress that corresponds to full text date, almost always

the date bill was introduced for oldest data (for oldest—proportion in first session: 0.64; for

newest—proportion in first session: 0.6).

• house: binary for whether it’s a House bill.

• month: month bill is introduced.

The following variables capture aspects of bill content and characteristics:

• subjectsTopTerm: official top subject term (36 levels).

• textLength: number of characters in full text (for oldest—min: 119, median: 5,340, max:

2,668,424; for newest—min: 113, median: 5,454, max: 3,375,468).

3 Results

3.1 Prediction experiments

Five models are compared across the two time conditions. w2v is the scoring of full bill text

with an inversion of word2vec-learned language representations [11]. We take this approach

to textual prediction because it provides the capacity to conduct a semantic similarity text anal-

ysis across enacted and failed categories and can predict which sentences of a bill contribute

Predicting and understanding law-making with word vectors and an ensemble model
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most to enactment. w2vTitle is title-only scoring with the same method. GLM is a regularized

non-negative generalized linear model (GLM) meta-learner over an ensemble of a regularized

GLM, a gradient boosted machine and a random forest, which each use only the contextual

variables (see Data section). w2vGLM is the same as GLM except the w2v and w2vTitle predic-

tions are added as two more predictor variables for the three base learners. These are com-

pared to a baseline, null, that uses the proportion of bills enacted in the same chamber as the

predicted bill across all previous Congresses as the predicted probability. For instance, the pro-

portion of bills enacted in the Senate from the 103rd to the 110th Congress was 0.04 and so

this is the null predicted probability of enactment of a Senate bill in the 111th Congress. It’s

important to use Chamber-specific rates to improve null performance because bills originating

in the House have a higher enactment rate.

Using only text outperforms using only context on two of three performance measures

(AUC and Brier) for the newest data, while using only context outperforms only text on three

measures for the oldest data (Fig 2). Using text and context together, w2vGLM, outperforms all

competitors on all measures for newest and oldest data (Table 1). When predicting enactment

with the newest bill text and the updated number of cosponsors, text length and session, both

models improved but w2vGLM and w2v improved dramatically. w2vGLM has the highest

AUC, w2v has the second highest for predictions with new data and GLM has the second high-

est for predictions with old data.

Predicted probabilities of w2vGLM range from 0.01 to 0.99. In fact, the majority of the pre-

dicted probabilities are near 0 and 1 (S1 Appendix). This is impressive given that it still main-

tains overall high performance on log and brier scoring, which significantly penalize models

for high probability predictions on the wrong side of 0.5. The central tendencies of the pre-

dicted probabilities (mean = 0.05, and median = 0.01) are close to the observed frequency of

bill enactment, 0.04. The median of the predicted probabilities where the true outcome was

not enact (0.01) is much lower than the median of the predicted probabilities where the true

Fig 2. Percent improvement of each model over null (n = 68,863). Dashed lines separate newest and

oldest data within each measure. Because w2vTitle has infinite log loss it’s not included in the figure.

https://doi.org/10.1371/journal.pone.0176999.g002
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outcome was enact (0.71) (Fig 3A). The w2v predicted probabilities (Fig 3B) demonstrate that

with just the text of the bills, the model can make probabilistic predictions that discriminate

between enacted and failed bills, providing credibility to our textual semantic similarity analy-

sis. In contrast, the title-only (Fig 3C) and context-only (Fig 3D) models poorly discriminate.

We conduct an error analysis (see S1 Appendix) and find that, across all bill subjects,

w2vGLM and w2v both have the highest log loss on two categories of low economic impor-

tance: Commemorations; and Arts, Culture, Religion. As a final investigation of model perfor-

mance, we explore the w2vGLM predictions for the two most significant bills in the past

century: the ACA and the American Recovery and Reinvestment Act of 2009 (ARRA). The

density of the predicted probabilities for all bills is peaked around 0.01 (S1 Appendix) and the

predicted probabilities for the ACA and ARRA were> 0.5 (Table 2). None of the 296 other

bills with “Patient Protection and Affordable Care Act” in the title were enacted. These bills

(all official titles listed in S1 Appendix) attempted to amend or repeal the ACA, which could

have had significant economic effects. In 2012, the Congressional Budget Office estimated that

Table 1. Model performance comparison (n = 68,863). Lower mean brier score (MeanBrier) and mean log loss (MeanLogLoss) is better and higher AUC is

better. w2vTitle has infinite log loss due to making predictions with 0 and 1 probabilities. Two-sample t-tests with alternative hypotheses that w2vGLM outper-

forms its closest competitors are significant with p-values of 3.02e-53 (log loss newest data), 3.65e-26 (brier loss newest data), 9.73e-04 (log loss oldest data)

and 5.36e-03 (brier loss oldest data).

Model AUC MeanBrier MeanLogLoss

w2vGLM 0.96 0.021 0.083

w2v 0.93 0.027 0.127

GLM 0.87 0.028 0.118

w2vTitle 0.81 0.049 Inf

Null 0.58 0.035 0.157

w2vGLMOld 0.85 0.029 0.122

w2vOld 0.76 0.035 0.154

GLMOld 0.83 0.031 0.131

w2vTitleOld 0.8 0.047 Inf

https://doi.org/10.1371/journal.pone.0176999.t001

Fig 3. Boxplots (n = 68,863) of predicted probabilities of enacted and failed bills for w2vGLM (A.), w2v (B.), w2vTitle (C.), GLM (D.). The boxes are

the inter-quartile ranges (IQRs) of the predicted probabilities, the bold line is the median, the whiskers extend from ends of IQR to +/− 1.5 * IQR.

https://doi.org/10.1371/journal.pone.0176999.g003
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H.R. 6079, the Repeal of Obamacare Act, would cause a $109 billion net increase in federal def-

icits [24]. w2vGLM’s predicted probabilities for these failed attempts are much more useful

than null’s (Table 2). 96% of the (unsuccessful) bills to repeal and amend the ACA have lower
predicted probabilities of enactment from w2vGLM than from null.

3.2 Analysis

Now that we have a model validated on thousands of predictions, we analyze it to better under-

stand law-making. With our language models, we create “synthetic summaries” of hypothetical

bills by providing a set of words that capture any topic of interest. Comparing these synthetic

summaries across chamber and across Enacted and Failed categories uncovers textual patterns

of how bill content is associated with enactment. The title summaries are derived from investi-

gating similarities within w2vTitle and the body summaries are derived from similarities

within w2v. Distributed representations of the words in the bills capture their meaning in a

way that allows semantically similar words to be discovered. Although bills may not have

been devoted to the topic of interest within any of the four training data sub-corpora, these

synthetic summaries can still yield useful results because the queried words have been embed-

ded within the semantically structured vector space along with all vocabulary in the training

bills. This is important for a topic, such as climate change, with little or no relevant enacted

legislation.

To demonstrate the power of our approach, we investigated the words that best summarize

“climate change emissions”, “health insurance poverty”, and “technology patent” topics for

Enacted and Failed bills in both the House and Senate (Fig 4). “Impacts,” “impact,” and

“effects” are in House Enacted while “warming,” “global,” and “temperature” are in House

Failed, suggesting that, for the House climate change topic, highlighting potential future

impacts is associated with enactment while emphasizing increasing global temperatures is

associated with failure. In both chambers, “efficiencies” is in Enacted and “variability” is in

Failed. In the Senate, “anthropogenic” (human-induced) and “sequestration” (removing

greenhouse gases) are in Failed. For the health insurance poverty topic, “medicaid” and “rein-

surance” are in both House and Senate Failed. The Senate has words related to more specific

health topics, e.g. “immunization” for Failed and “psychiatric” for Enacted. For the patent

topic, both chambers have a word related to water (“fish” and “marine”) in the Failed Titles

and “geospatial” in the Failed Bodies. Given recent legal developments regarding patenting

software, it’s notable that “software” and “computational” are in Failed for the House and Sen-

ate, respectively.

Our language model provides sentence-level predictions for an overall bill and thus predicts

what sections of a bill may be the most important for increasing or decreasing the probability

of enactment. Fig 5 compares patterns of predicted sentence probabilities as they evolve from

the beginning to the end of bills across four categories: enacted and failed and newest and old-

est texts. In the newest texts of enacted bills, there is much more variation in predicted proba-

bilities within bills.

Table 2. Predicted probabilities of enactment for key bills. Probabilities increased between old and new forecasts for the two enacted bills, and the mean

of the probabilities for the failed bills decreased.

ShortTitle ForecastNew ForecastOld BaselineForecast

ACA 0.6 0.23 0.05

Failed Amend Repeal 0.02 0.03 0.05

ARRA 0.55 0.52 0.05

https://doi.org/10.1371/journal.pone.0176999.t002
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We conducted a partial rank correlation coefficient sensitivity analysis to estimate the effect

of each predictor variable on the predicted probability of enactment. These are not bivariate

correlations between variables and the predicted probabilities, rather, they are estimates of cor-

relation after controlling for the effect of all other predictor variables, e.g. the effect of a bill

Fig 4. Synthetic summary bills for three topics across enacted and failed and house and Senate categories.

https://doi.org/10.1371/journal.pone.0176999.g004

Fig 5. Sentence probabilities across bills for oldest data (A.), newest data (B.). For each bill, we convert

the variable length vectors of predicted sentence probabilities to n-length vectors by sampling n evenly-

spaced points from each bill. We set n = 10 because almost every bill is at least 10 sentences long. Then we

loess-smooth the resulting points across all bills to summarize the difference between enacted and failed and

newest and oldest texts.

https://doi.org/10.1371/journal.pone.0176999.g005
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being introduced in the House is negative after controlling for the other effects in the model

(Fig 6B) but bills introduced in the House are enacted at a 0.043 rate while Senate bills are

enacted at a 0.025 rate. If we stopped with the simple descriptive statistic we could have incor-

rectly concluded that introducing a bill in the House will increase its odds, all else equal.

The two subjects with the largest negative effects are Foreign Trade and International

Finance, and Taxation (Fig 6A). Some bills fail because their content is integrated into other

bills and this is especially true for tax-related bills [2]. With the oldest data model, increasing

bill length decreases enactment probability but with the newest data the opposite relationship

holds (Fig 6B). We repeated the sensitivity analysis on the model where no text predictions are

included (GLM, see S1 Appendix), and found that, under both time conditions, when we don’t

control for the probability of the text by including our language model predictions (GLM),

Fig 6. Partial rank correlation coefficient estimates between all w2vGLM predictor variables and

predicted probabilities (n = 55,695, the subset of the observations used to predict the 113th Congress

that had no missing values). Bars represent 95% confidence intervals. A. Effects of top subjects. Social

Sciences and History is used as the reference subject so no effect is estimated for that factor level. B. Effects

of all other variables other than subject. January and North Central are the reference levels for the month and

region factors. This means they are the base level that is not included as a predictor variable itself—the

standard practice when estimating linear models with factor variables. See S1 Appendix for same analysis of

GLM.

https://doi.org/10.1371/journal.pone.0176999.g006
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longer texts are more negative than when we control for the text (w2vGLM), and that this dif-

ference is much larger for the newest data. This suggests that the better we capture the proba-

bility of the text and control for its effects, the better we isolate estimates of non-textual effects.

If the bill sponsor’s party is the majority party of their chamber, the probability of the bill is

much higher, especially with the oldest data where the model relies on this as a key signal of

success. Increasing the number of terms the sponsor has served in Congress also has a positive

effect. The predictive model learned interactions as well: the number of co-sponsors has a

stronger positive effect in the Senate for the newest data and in the House for the oldest data. If

the bill text scored by the language model is in the second session of the Congress, for the new-

est data model, this can serve as a signal that a bill is being updated and thus it has a higher

chance of enactment. For the oldest data, this means the bill was introduced in the second ses-

sion, which is not particularly indicative of success or failure.

4 Discussion

We compared five models across three performance measures and two data conditions over

14 years. A model using only bill text outperforms a model using only bill context for newest

data, while context-only outperforms text-only for oldest data. In all conditions text consis-

tently adds predictive power.

In addition to accurate predictions, we are able to improve our understanding of bill con-

tent by using a text model designed to explore differences across chamber and enactment sta-

tus for important topics. Our textual analysis serves as an exploratory tool for investigating

subtle distinctions across categories that were previously impossible to investigate at this scale.

The same analysis can be applied to any words in the large legislative vocabulary. The global

sensitivity analysis of the full model provides insights into the variables affecting predicted

probabilities of enactment. For instance, when predicting bills as they are first introduced, the

text of the bill and the proportion of the chamber in the bill sponsor’s party have similarly

strong positive effects. The full text of the bill is by far the most important predictor when

using the most up-to-date data. The oldest data model relies more on title predictions than the

newest data model, which is understandable given that titles rarely change after bill introduc-

tion. Comparing effects across time conditions and across models not including text suggests

that controlling for accurate estimates of the text probability is important for estimating the

effects of non-textual variables.

Although the effect estimates are not causal and estimates on predictors correlated with

each other may be biased, they represent our best estimates of predictive relationships within a

model with the strongest predictive performance and are thus useful for understanding the

process of law-making. This methodology can be applied to analyze any predictive model by

treating it as a “black-box” data-generating process, therefore predictive power of a model can

be optimized and subsequent analysis can uncover interpretable global relationships between

predictors and output. Our work provides guidance on effectively combining text and context

for prediction and analysis of complex systems with highly imbalanced outcomes that are

related to textual data. Our system for determining the probability of enactment across the

thousands of bills under consideration focuses effort on legislation that is likely to matter,

allowing users to identify policy signal amid political and procedural noise.
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