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Abstract

The alternative oxidase (AOX) protein is present in plants, fungi, protozoa and some inverte-

brates. It is involved in the mitochondrial respiratory chain, providing an alternative route for

the transport of electrons, leading to the reduction of oxygen to form water. The present

study aimed to characterize the family of AOX genes in mandarin (Citrus clementina) and

sweet orange (Citrus sinensis) at nucleotide and protein levels, including promoter analysis,

phylogenetic analysis and C. sinensis gene expression. This study also aimed to do the

homology modeling of one AOX isoform (CcAOXd). Moreover, the molecular docking of the

CcAOXd protein with the ubiquinone (UQ) was performed. Four AOX genes were identified

in each citrus species. These genes have an open reading frame (ORF) ranging from 852

bp to 1150 bp and a number of exons ranging from 4 to 9. The 1500 bp-upstream region of

each AOX gene contained regulatory cis-elements related to internal and external response

factors. CsAOX genes showed a differential expression in citrus tissues. All AOX proteins

were predicted to be located in mitochondria. They contained the conserved motifs LET,

NERMHL, LEEEA and RADE-H as well as several putative post-translational modification

sites. The CcAOXd protein was modeled by homology to the AOX of Trypanosona brucei

(45% of identity). The 3-D structure of CcAOXd showed the presence of two hydrophobic

helices that could be involved in the anchoring of the protein in the inner mitochondrial mem-

brane. The active site of the protein is located in a hydrophobic environment deep inside the

AOX structure and contains a diiron center. The molecular docking of CcAOXd with UQ

showed that the binding site is a recessed pocket formed by the helices and submerged in

the membrane. These data are important for future functional studies of citrus AOX genes

and/or proteins, as well as for biotechnological approaches leading to AOX inhibition using

UQ homologs.
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Citation: Araújo Castro J, Gomes Ferreira MD,

Santana Silva RJ, Andrade BS, Micheli F (2017)

Alternative oxidase (AOX) constitutes a small

family of proteins in Citrus clementina and Citrus

sinensis L. Osb. PLoS ONE 12(5): e0176878.

https://doi.org/10.1371/journal.pone.0176878

Editor: Zonghua Wang, Fujian Agriculture and

Forestry University, CHINA

Received: January 18, 2017

Accepted: April 18, 2017

Published: May 1, 2017
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Introduction

The term oxidase refers to any enzyme that catalyzes the oxidation–reduction reaction involv-

ing molecular oxygen as an electron acceptor. In these reactions, the oxygen is reduced to

water or to hydrogen peroxide. The alternative oxidase (AOX) protein is present in plants,

fungi, protozoa and some invertebrates, but it has not been found in mammals. It is located on

the matrix side of the inner mitochondrial membrane and is involved in the mitochondrial

respiratory chain, providing an alternative route for the passage of electrons. The main elec-

tron transport route in eukaryotes passes through the complex IV (known as cyanide-sensitive

cytochrome oxidase) of the respiratory chain, but in some organisms the electron transport

route goes through the AOX protein (known as cyanide-insensitive and hydroxamic acid-sen-

sitive terminal oxidase). Both routes lead to the transportation of electrons and the reduction

of oxygen to form water [1, 2]. However, the transportation through the AOX protein occurs

without the pumping of protons into the intermembrane space and consequently is not cou-

pled with ATP synthesis and energy conservation [3]. The AOX catalyzes the four-electron

oxidation of ubiquinol (reduced form of ubiquinone [UQ]) by oxygen, and the energy of ubi-

quinol oxidation by oxygen is released as heat [3–5].

The AOX proteins (32–36 kDa) are encoded by a family of nuclear genes [6], and several

studies report that, in plants, variations of environmental factors such as abiotic stresses, path-

ogen infection and oxidative stress may influence the expression of AOX genes [3, 7–10].

Moreover, AOX has been proposed to play a role in homeostasis and plant growth [11] and in

maintaining metabolic flexibility for rapid adaptation to stress [12]. In citrus plants, the only

studies of AOX proteins have been related to abiotic stresses (e.g., drought, boron tolerance)

[13–15], and no genome-wide characterization of the AOX family has yet been performed for

this genus. The availability of the data from the recent sequencing of the genome of some citrus

species (https://www.citrusgenomedb.org/) allowed for the genome-wide analysis of gene fam-

ilies as a pre-requisite for functional and/or pre-breeding studies. The present study aimed to

characterize the family of AOX genes in mandarin (C. clementina) and sweet orange (C. sinen-
sis) at nucleotide and protein levels, including promoter analysis. The study also aimed to con-

struct the homology modeling of one AOX isoform (CcAOXd). Moreover, the molecular

docking of the CcAOXd protein with the UQ was performed.

Material and methods

In silico analysis of AOX citrus genes and proteins

The identification and structural analysis of the AOX genes (introns/exons) were performed

using the Citrus Genome Database (https://www.citrusgenomedb.org/). Open reading frame

(ORF) analysis was performed using the ORFinder software (http://www.ncbi.nlm.nih.gov/

orffinder/). The prediction of the theoretical isoelectric point (pI) and the molecular weight

(MW) was obtained using the pI/Mw tool (www.expasy.org). Conserved domain and family

protein were analyzed using the Pfam (http://pfam.sanger.ac.uk/search/sequence) and Inter-

ProScan software [16]. The predictions of the subcellular location of the protein and of the

location of the cleavage site were performed by the MitoProt II software (https://ihg.gsf.de/

ihg/mitoprot.html). Transmembrane helices were predicted using the TMPred software [17],

whereas hydropathicity levels were identified using the ProtScale program (http://web.expasy.

org/protscale/). The NetPhos 3.1 Server [18] and the NetNGlyc 1.0 Server (http://www.cbs.

dtu.dk/services/NetNGlyc/) were used to identify putative phosphorylation sites (Ser/Thr/Tyr)

and putative N-glycosylation sites (Asn-X-Ser/Thr type), respectively. The protein motif analy-

sis was conducted using the program MEME/MAST [19]. The maximum number of motifs
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was set to 20, the maximum motif length was set to 80 amino acids, the optimum motif width

was constrained to between 6 and 300 residues, and the other parameters were used as default.

Analysis of the promoter regions and chromosomal locations of AOX

genes

To identify the presence of the cis-regulatory elements in the promoter regions of the AOX
genes, the 1500 bp upstream region from the translation start site of the genes was analyzed

using the plantCARE (sphinx.rug.ac.be:8080/PlantCARE/cgi/index.html) software [20]. The

chromosomal locations of the AOX genes were obtained by screening the GFF3 file of each

genome (C. clementina and C. sinensis deposited in the Citrus Genome Database) using the

AOX sequence ID.

Phylogeny

Phylogenetic analysis was performed based on the alignment of the amino acid sequence of

the AOX proteins from C. sinensis and C. clementina with alternative oxidase proteins from

Arabidopsis thaliana. The sequences were aligned with ClustalW2 (http://www.ebi.ac.uk/

Tools/msa/clustalw2/) [21]. The MEGA 5.1 program [22] was used to construct a phylogenetic

tree by using the neighbor-joining statistical method [23] reliably established by 1000 boot-

strap samples.

Molecular modeling

To select the best 3-D template for AOX molecular modeling from resolved 3-D structures, the

AOX proteins from C. clementina and C. sinensis were aligned with the Protein Data Bank

(Pdb) using the PSIBLAST program [24]. Target 3-D structures were modeled using templates

that presented the highest identity and coverage, starting from a minimum of 25% of identical

amino acids in the alignment. Additionally, the minimum template resolution considered was

2.0 Å. The predicted 3-D protein model was obtained using the SWISS-MODEL server

(https://swissmodel.expasy.org) and the Swiss-Pdb Viewer program v.3.7 [25]. The α-carbon

chain RMSD between targets and their respective templates was calculated using PyMOL V3.0

[26]. The stereochemical quality of both AOX models was calculated by Procheck 3.4 [27] and

the Atomic Non-Local Environment Assessment (ANOLEA) program [28]. The validation of

the secondary structure was performed using the Protein Structure Prediction Server-

PSIPRED program [29].

Molecular docking of CcAOXd with ubiquinone

Before preforming the docking between the ligand and the target protein, the ubiquinone

(UQ) structure (C59H90O4) was downloaded from pubchem database (https://pubchem.ncbi.

nlm.nih.gov/) in SMILES format. The UQ structure was converted into 3-D format using Mar-

vinSketch 15.7.13.0 (https://www.chemaxon.com/products/marvin/marvinsketch/) and saved

in mol2 format. Furthermore, AutoDockTools V1.5.6 [30] was used to prepare the protein and

UQ structure for docking calculations. First, polar hydrogens were added to the UQ structure

and all torsions were checked; the ligand structure was then saved in PDBQT format. Based on

the alignment between CcAOXd and AOX structures, the amino acids of the active were

marked in order to get the grid box coordinates for the docking process. Afterward, the

CcAOXd structure was saved in PDBQT format. Calculations for the docking between

CcAOXd and UQ were performed using AutoDock Vina software [30] considering 9 different

docking poses and based on UQ bond torsions. All docking results were evaluated using
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PyMOL V1.7.4 [26] in order to check which UQ poses appeared in the CcAOXd active site

and to identify which pose presents the best docking affinity energy. Additionally, Discovery

Studio 4.5 was used to generate the 2-D map of the interaction between CcAOXd and UQ.

In silico C. sinensis AOX gene expression

CsAOXa, CsAOXb, CsAOXc and CsAOXd gene sequences were blasted on the Citrus sinensis
Annotation Project database (CAP; http://citrus.hzau.edu.cn/orange/ [31]) to obtain the CAP

accession number of each gene. Using the CAP accession number, the complete data of each

gene, including the RNA-seq gene expression values in four tissues (callus, leaf, flower and

fruit) was obtained [31].

Results and discussion

AOX gene family in the sweet orange and tangerine genomes

Existing annotation in the Citrus Genome Database allowed for the identification of a total of

8 AOX genes, with 4 belonging to C. clementina (named CcAOXa, CcAOXb, CcAOXc and

CcAOXd) and 4 to C. sinensis (named CsAOXa, CsAOXb, CsAOXc and CsAOXd; Table 1). The

CcAOX genes were distributed in chromosomes 2, 5 and 8 (Table 1). The gene ORFs ranged

from 927 to 1150 bp, and the number of exons ranged from 4 to 9 (Table 1; Fig 1; S1 Fig). The

CsAOX genes were located in chromosomes 2, 3 and 8 (Table 1). The gene ORFs ranged from

852 to 1050 bp, and the number of exons ranged from 4 to 9 (Table 1; Fig 1; S1 Fig). For most

of the genes, the 5’ end of the introns presented the GT sequence as a splicing donation site,

whereas the 3’ end presented the AG sequence as a splicing acceptor site (S1 Fig). The number

of AOX genes found in C. clementina and C. sinensis is small, which is similar to what has been

observed in other species such as Arabidopsis thaliana, whose AOX family is represented by

five genes [7]; Glycine max [32], Oryza sativa [33] and Zea mays [34], each represented by

three genes; and Nicotiana tabacum [2], Triticum aestivum [35] andHypericum perforatum
[36], each represented by two genes. Most of the AOX genes in this study have structures with

4 exons and 3 introns, which has also been observed in other species such as A. thaliana, G.

max, Theobroma cacao, Citrus sinensis, Gossypium hirsutum, O. sativa, T. aestivum, Vigna
unguiculata, Vitis vinifera and Z.mays [36, 37]. In contrast to the 4-exon structure reported for

most of the organisms, the CcAOXa and CsAOXa genes presented 9 exons and 8 introns.

Genes that are readily adjustable–for example, those that respond to stress–generally exhibit a

smaller number of introns, which results in a slower response time for the production of the

protein and gives to these genes them a selective advantage [38]. The presence of introns may

Table 1. Characteristics of the AOX genes present in the Citrus clementina and Citrus sinensis genomes. ORF: open reading frame. (*) indicated the

gene ID of the alternative transcript of the CsAOXa gene.

Species Gene name Gene ID Location ORF size (bp) Quantity of introns Quantity of exons

C. clementina CcAOXa clementine0.9_012574m Chromosome 2 1150 8 9

CcAOXb clementine0.9_034013m Chromosome 5 927 3 4

CcAOXc clementine0.9_015158m Chromosome 5 1011 3 4

CcAOXd clementine0.9_015716m Chromosome 8 978 3 4

C. sinensis CsAOXa

CsAOXa*
orange1.1g018864m

orange1.1g022654m*
Chromosome 2 1050 8

7

9

8

CsAOXb orange1.1g037339m Chromosome 3 852 3 4

CsAOXc orange1.1g019765m Chromosome 3 1008 3 4

CsAOXd orange1.1g020532m Chromosome 8 960 3 4

https://doi.org/10.1371/journal.pone.0176878.t001
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result in production delays due to the steps required for splicing and transcription, as well as

an additional energy costs caused by the additional length of the nascent transcript [38]. Col-

linearity analysis was performed for the AOX genes in the C. clementina and C. sinensis
genomes using the MCScanX toolkit, and the analysis showed that the citrus AOX genes did

not come from duplication events (data not shown).

Promoter sequence analysis of the citrus AOX genes

A fragment belonging to the upstream region of each AOX gene was analyzed to find plant-

specific cis-elements using the PlantCARE database. Except for the CsAOXd gene, for which

the only fragment available in the Citrus Genome Database was 353 bp in length, the promoter

fragment size used was 1500 bp (S2 Fig). The TATA and CAAT-box elements were found in

all citrus AOX promoter regions (S3 Fig); the other cis-elements varied between sequence pro-

moters (Fig 2, S3 Fig). Most of the cis-elements (quantity of 4 to 21, according to the promoter)

were involved in the response to light (Fig 2). In smaller proportions, cis-elements were found

that were responsive to i) hormones or inducers such as methyl jasmonate (MeJA), gibberellin,

ethylene, auxin, abscisic acid and salicylic acid; and ii) biotic, abiotic or mechanical stresses

such as drought, wounds, heat, low temperature, fungal elicitors and anaerobiosis. Others cis-
elements related to plant development such as zein metabolism, endosperm expression, differ-

entiation of palisade mesophyll cells, meristem expression, circadian control and leaf morphol-

ogy were also present in the promoters of the citrus AOX genes (Fig 2). This analysis revealed a

large number of motifs responding to different external or endogen inductions, suggesting a

complex regulation of AOX gene expression. Under stress conditions, it is common to observe

the accumulation of reactive oxygen species and/or of molecules or ion such as salicylic acid,

jasmonate, calcium and ethylene in the organism [39]. All these signaling molecules have the

ability to induce AOX gene expression [40–42]. Indeed, the overexpression of AOX genes has

already been reported in response to a number of biotic and abiotic stresses [5, 43, 44]. In Ara-
bidopsis thaliana, the mutants AOX1a-deficient and AOX1b-deficient were more severely

photodamaged by high light intensity when compared with wild-type plants [45]. These results

indicated that in high light intensity conditions, AOX1a and AOX1b genes may favor plant

adaptation. According to Feng et al. [8], light may induce AOX gene expression by increasing

ROS production.

Fig 1. Structure of AOX genes from C. clementina and C. sinensis. Blue squares represent the exons and black lines represent the introns. (*)

indicated the gene ID of the alternative transcript of the CsAOXa gene.

https://doi.org/10.1371/journal.pone.0176878.g001
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Analysis of the citrus AOX proteins

The number of amino acid residues of the citrus AOX proteins ranged from 284 (CsAOXb) to

349 (CsAOXa) (Table 2). All proteins were predicted to be located in mitochondria (73.00% to

Fig 2. Cis-elements present in the promoter region of citrus AOX genes. The cis-elements were analyzed in the upstream promoter region of the

translation start site using the plantCARE database.

https://doi.org/10.1371/journal.pone.0176878.g002

Table 2. Characteristics of the AOX proteins present in the citrus genomes. GRAVY: grand average of hydropathicity; Mw: molecular weight; pI: isoele-

tric point; SP: signal peptide. *Protein resulting from the alternative transcript of the CsAOXa gene.

Protein Protein size (aa) pI with/without SP Mw with/without SP (kDa) Export probability to mitochondria (%) SP size (aa) GRAVY

CcAOXa 349 6.09 / 5.26 39.9 / 34.5 99.55 49 -0.210

CcAOXb 309 8.27 / 6.36 35.2 / 30.1 99.47 45 -0.329

CcAOXc 336 8.81 / 6.68 38.1 / 32.8 99.36 49 -0.384

CcAOXd 325 8.29 / 6.68 37.1 / 33.9 73.00 30 -0.183

CsAOXa 349 5.64 / 5.07 40.2 / 34.7 99.65 49 -0.246

CsAOXa* 294 7.06 / 5.56 34.2 / 28.7 99.69 49 -0.145

CsAOXb 284 6.60 / 6.07 32.2 / 28.8 93.36 31 -0.310

CsAOXc 335 8.60 / 6.49 37.9 / 32.7 98.98 48 -0.381

CsAOXd 319 8.29 / 6.49 36.4 / 33.7 81.90 24 -0.191

https://doi.org/10.1371/journal.pone.0176878.t002
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99.69% probability; Table 2) because they had mitochondrial protein targeting region (S3 Fig).

According to MitoProt II, these regions were located in the N-terminal portion of the protein,

with the amount of amino acid residue ranging from 30 to 49 (Table 2; S4 Fig). The hydro-

pathicity of the proteins ranged from -0.384 to -0.145 (Table 2). The mitochondrial targeting

of the citrus AOX proteins was predicted with a high probability, which suggested that organ-

elle isolations will be required to analyze AOX proteins in vitro. Although all AOX proteins

showed mitochondrial targeting regions, the alignment of these regions did not allow for any

clear prediction or conserved sequence identification. Moreover, a high variability in the

nucleotidic N-terminal region was observed across the citrus AOX genes (both within and

between species; data not shown). It is still not known how this variability can affect the regula-

tion of gene expression and/or the protein transport or activity.

All proteins showed phosphorylation sites: CcAOXb has 40 phosphorylation sites (9Thre/

26Ser/5Tyr); CcAOXa has 36 phosphorylation sites (11Thre/21Ser/4Tyr); CsAOXa, CsAOXa�

and CsAOXb have 34 phosphorylation sites (10Thre/21Ser/3Tyr, 9Thre/19Ser/3Tyr and

7Thre/24Ser/3Tyr, respectively); CcAOXd has 31 phosphorylation sites (11Thre/18Ser/2Tyr);

and CcAOXc, CsAOXc and CsAOXd have 30 phosphorylation sites (14Thre/14Ser/2Tyr,

14Threo/14Ser/2Tyr and 11Thre/17Ser/2Tyr, respectively; Table 3; S3 Fig). Only CcAOXb,

CcAOXc, CsAOXb and CsAOXc proteins showed N-glycosylation sites (1, 2, 1 and 2 sites,

respectively; Table 3; S4 Fig). The pfam01786 functional domain was found in all citrus AOX

proteins (S4 Fig). As previously suggested [46], AOX regulation might also occur via phos-

phorylation of the N-terminal extension through charge-induced conformational changes

and/or an interaction with other mitochondrial proteins. The protein sequence identity varied

from 28% to 78% between CcAOX proteins and from 26% to 97% between CsAOX proteins

(S5 Fig). The greatest degree of identity was observed between CcAOXd and CsAOXd (99%),

CcAOXc and CsAOXc (99%), CcAOXb and CsAOXb (94%) and CcAOXa and CsAOXa

(98%) (S5 Fig), and for this reason these gene pairs could be considered orthologues. The per-

centage of identity between the two proteins resulting from the alternative transcripts of the

gene CsAOXa was 97% (S5 Fig).

Table 3. Post-translational modifications of citrus AOX proteins. * Protein resulting from the alternative transcript of the CsAOXa gene.

Protein Phosphorylation sites N-glycosylation

sites

CcAOXa T4, T8, T27, T30, T81, T127, T198, T223, T261, T292, T343, S6, S10, S13, S21, S37, S38, S41, S43, S66, S85, S97, S162, S205, S213,

S218, S267, S304, S307, S309, S319, S342, Y119, Y154, Y202, Y276

-

CcAOXb T3, T7, T29, T88, T119, T144, T188, T241, T272, S2, S13, S25, S27, S30, S36, S47, S48, S50, S51, S52, S53, S54, S55, S56, S57,

S58, S59, S60, S61, S161, S168, S221, S239, S251, S271, Y4, Y117, Y240, Y264, Y293

N22

CcAOXc T12, T14, T20, T31, T37, T52, T131, T132, T141, T166, T210, T263, T284, T294, S11, S19, S36, S47, S51, S88, S134, S144, S183,

S190, S243, S261, S293, S329, Y116, Y286

N49, N292

CcAOXd T26, T104, T120, T121, T130, T138, T155, T199, T252, T283, T289, S8, S20, S52, S53, S55, S56, S57, S58, S60, S77, S92, S110, S172,

S179, S232, S250, S260, S262, Y54, Y128

-

CsAOXa T4,T8, T27, T30, T81, T127, T198, T223, T261, T292, T343, S6, S10, S13, S21, S37, S38, S41, S43, S67, S85, S97, S162, S205, S213,

S218, S267, S304, S307, S309, S319, S342, Y119, Y154, Y202

-

CsAOXa* T4,T8, T27, T30, T81, T127, T198, T223, T261, S6, S10, S13, S21, S37, S38, S41, S43, S67, S85, S97, S162, S205, S213, S218, S267,

S288, S289, S290, Y119, Y154, Y202

-

CsAOXb T15, T74, T105, T130, T174, T227, T258, S11, S13, S16, S22, S33, S34, S36, S37, S38, S39, S40, S41, S42, S43, S44, S45, S46, S47,

S147, S154, S207, S225, S237, S257, Y103, Y226, Y250

N8

CsAOXc T11, T13, T19, T30, T36, T51, T130, T131, T140, T165, T209, T262, T283, T292, S10, S18, S35, S46, S50, S87, S133, S143, S182,

S189, S242, S260, S291, S328, Y285, Y314

N48, N291

CsAOXd T20, T98, T114, T115, T124, T132, T149, T193, T246, T277, T283, S14, S46, S47, S49, S50, S51, S52, S54, S71, S86, S104, S166,

S173, S226, S244, S254, S256, Y48, Y122

-

https://doi.org/10.1371/journal.pone.0176878.t003
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The motif analysis of the predicted citrus AOX proteins by the MEME program showed

that the mandarin and orange AOX proteins contained the typical LET, NERMHL, LEEEA

and RADE-H conserved motifs (Fig 3; S4 Fig). These motifs were found in AOX proteins from

other plant species [47]. The hydropathicity analysis revealed a profile with two hydrophobic

regions for all the citrus AOX proteins (data not shown).

Phylogeny analysis

Phylogenetic analysis of the AOX citrus and A. thaliana sequences showed that the CcAOXb

and CsAOXb were closed to the AtAOX1D sequence while CcAOXd and CsAOXd were

closed to AtAOX2 (Fig 4). The CcAOXc and CsAOXc sequences were grouped with three A.

thaliana sequences AtAOX1A, AtAOX1C e AtAOX1B (Fig 4). The CcAOXa, CsAOXa,

CsAOXa� constituted a separated group in the phylogenetic tree, without proximity with the

A. thaliana sequences. The comparative analysis of the citrus and A. thaliana sequences did

not allowed a clear classification of the citrus AOX sequences in relation to A. thaliana ones,

mainly in the case of AOXa, AOXa� and AOXc.

Fig 3. Conserved motifs in citrus AOX proteins obtained by the MEME program.

https://doi.org/10.1371/journal.pone.0176878.g003
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Molecular modeling of CcAOXd protein and docking with the ubiquinone

The best alignment of the citrus AOX proteins with the Pdb was obtained between the

CsAOXd and CcAOXd protein orthologues and the AOX protein from Trypanosoma brucei
(TbAOX, PDB ID: 3VV9, MMDB ID: 108244). The protein CcAOXd was chosen for the

molecular modeling and the subsequent docking. The alignment of the amino acid sequences

of CcAOXd and TbAOX presented 68% coverage, 45% identity (E-value 7e-55) and an RMSD

of 2.85 Å (Fig 5A); these values (identity >25%) indicate that the TbAOX protein is a good

model to be used as a template [48]. The validation analysis (Ramachandran plot) of the

CcAOXd model showed that 92.9% of residues was in most favored regions and 5.7% was in

additional allowed regions, indicating that 98.6% of the amino acid residue was located in

favored regions (S6 Fig). In addition, ANOLEA showed good energy values as well (S6 Fig).

The 3-D model of CcAOXd showed a total of six helices, two of them anchored in the inner

membrane of the mitochondria, and the other fourth helices–rich in histidine and glutamate–

were in contact with the mitochondrial matrix (Fig 5B). The first transmembrane helix has 21

Fig 4. Phylogenetic tree obtained with the AOX proteins of A. thaliana, C. sinensis and C. clementina.

https://doi.org/10.1371/journal.pone.0176878.g004
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Fig 5. Tridimensional structure of CcAOXd obtained by homology modeling with the T. brucei AOX

(Pdb code 3VV9) as a template. A. Alignment of TbAOX and CcAOXd proteins. Gaps introduced to get the

best alignment are indicated by (-). Highly conserved domains related to protein structure and activity are

indicated in grey. Identical amino acids are indicated by an asterisk (*), conservative substitutions by a colon

(:) and semiconserved substitutions by a period (.). B. Representation of the 3-D structure of CcAOXd (in

Alternative oxidase family in citrus
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amino acid residues in the positions 150–170, and the second has 20 residues in the positions

112–131 (Fig 5A and 5B). The length of the two transmembrane helices is compatible with the

length required to cross the mitochondrial membrane. The largest portion of the CcAOXd

protein remained in contact with the mitochondrial matrix, with only few residues anchored

in the mitochondria membrane, which explains the negative values of hydropathicity, typical

of cytoplasmic proteins (Table 2). CcAOXd presents 4 highly conserved domains (LET,

NERMHL, LEEEA and RADE-H; Fig 5A, S4 Fig) that contains histidine and glutamate resi-

dues responsible for the interaction with the iron atoms; all these elements constitute the di-

ferric center of the AOX enzyme (Fig 5C) [46, 49]. This association with iron atoms classifies

the AOX proteins as belonging to the R2 subunit of ribonucleases [46, 49]. Two cysteine resi-

dues [C68 (I) and C118 (II)] that are conserved in the AOX proteins of different plant species

and assumed to be involved in the redox regulation of AOX activity were identified in the

CcAOXd structure (C68 (I) and C118 (II); Fig 5D). C68 (I) and C118 (II) also play a role in the

post-translational regulation of most angiosperm AOX proteins [50]. The CcAOXd structure

contains a redox-active Y221 that is highly conserved across other AOX proteins [47, 51] and

that could play a key role in the AOX catalytic site (Fig 5F). The active site, which is located in

a hydrophobic environment deep inside the CcAOXd molecule, is composed of the diiron cen-

ter as well as 4 glutamate (E124, E163, E214 and E265) and 2 histidine (H166 and H268) residues,

all of which are highly conserved among AOX proteins (Fig 5F). Molecular docking results

presented an affinity energy of -7.0 Kcal/Mol and indicated that UQ bound to CcAOXd in a

recessed pocket formed between the helices and submerged into the membrane (Fig 5D and

5E); the pocket is formed by Arg105, Asp109, Arg119, Leu123, Glu124, Ala127, Glu163, Leu213,

Glu214, Glu216, Ala217 and Glu265 amino acid residues. The 2-D map of the interaction between

CcAOXd and UQ showed the van der Waals, carbon hydrogen bonds and alkyl interactions,

among others, which related the CcAOXd proteins to UQ (S7 Fig). As in TbAOX, this second

cavity connects the diiron active site with the outer mitochondrial membrane and interacts

with the inhibitor-binding cavity at the active site [52].

In silico CsAOX gene expression

The expression of the CsAOX genes was previously obtained and was available in the CAP

database [31]. Four tissues were analyzed: callus, flower, leaf and fruit (Fig 6). The CsAOXa,

CsAOXc and CsAOXd showed high expression levels (>3 Reads Per Kilobase Million/RPKM

excepted for CsAOXc in leaf) while the CsAOXb was lowly expressed (<1 RPKM) (Fig 6). The

CsAOXa gene was highly expressed in the fruit (17.5 RPKM) but also showed significant

expression levels in callus, flower and leaf (6.6, 5.9 and 4.3 RPKM, respectively; Fig 6). The

CsAOXc gene showed the highest expression level in callus (78.5 RPKM) and significant

expression levels in fruit and flower (7.68 and 3.37, respectively; Fig 6). The CsAOXd gene pre-

sented similar expression in callus and fruit (about 15 RPKM) and also close values of expres-

sion in flower and leaf (8.4 and 7.2, respectively; Fig 6). These results showed that the CsAOX

grey) containing 6 helices. Iron atoms are represented by orange spheres. C. Structural details of the

CcAOXd catalytic center, showing the CcAOX diiron center. The diiron center contains 4 Glu and 2 His

residues. Iron atoms are represented by orange spheres. D. Molecular surface position of the hydrophobic

cavity during docking with UQ. UQ is shown in red. E. Structural details of UQ occupying the hydrophobic

cavity. Iron atoms and UQ are represented by orange spheres and in red, respectively. Donors and acceptors

H-bonds are indicated by a purple and green color gradient F. Predicted CcAOXd peptide sequence showing

conserved domains and structurally important amino acids. The black triangle indicated the position of the

redox-active Tyr (Y), and the 4 iron-binding sites are numbered from 1 to 4. The black arrows highlight the Glu

(E) and His (H) residues, which are important for the coordination of the diiron center.

https://doi.org/10.1371/journal.pone.0176878.g005
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family members were spatially differentially expressed among citrus organs; some similar

results were previously described in A. thaliana [53, 54]. The very high expression of the

CsAOXc in callus could be correlated with high expression level of AtAOX1A and AtAOX1C –

both phylogenetically closed to CsAOXc (Fig 4)–in chilling-stressed callus [53]. The relatively

high expression of CsAOXa and CSAOXd in fruits (>15 RPKM; Fig 6) may be related to the

expression of AOX genes from other species producing fruits such as tomato, papaya or

mango [55–58]. Some AOX genes were related to fruit maturation, ripening and post-harvest

ripening in association with ethylene peak emission (climacteric fruits) [56, 57], while other

Fig 6. Expression of CsAOX genes in different C. sinensis tissues.

https://doi.org/10.1371/journal.pone.0176878.g006
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AOX genes were associated to gametophyte development [58]. Some AOX genes related to cli-

macteric fruit ripening presented elements responsive to ethylene in their promoter sequences

[57]. Here, the CsAOXa and CSAOXd genes did not present any elements responsive to ethyl-

ene in their promoter sequences; this could be related to the fact that citrus are non-climacteric

fruits, or may suggest an involvement of these CsAOX genes in fruit formation more than in

fruit ripening (Figs 2 and 6).

Conclusion

To the best of our knowledge, this is the first characterization of the AOX gene family in C.

clementina and C. sinensis. Four AOX genes were identified in each species; the C. clementina
genes were orthologues of the C. sinensis genes. Phylogenetic analysis of the AOX citrus and

A. thaliana sequences showed that the CcAOXb and CsAOXb were closed to the AtAOX1D

sequence while CcAOXd and CsAOXd were closed to AtAOX2. According to the cis-element

present in the citrus AOX promoters, the gene expression may be regulated by several external

or internal factors. Expression of CsAOX genes revealed that CsAOXc was highly expressed in

callus while CsAOXa and CsAOXd were highly expressed in fruits. Other regulation levels were

also predicted, such as alternative splicing and post-translational modifications. The corre-

sponding proteins were predicted to be directed to the mitochondria, and the analysis of the

3-D structure of one the C. clementina AOX isoforms showed the presence of two hydrophobic

helices that may be involved in the anchoring of the protein in the inner mitochondrial mem-

brane. The active site of the protein is located in a hydrophobic environment deep inside the

AOX structure and contains a diiron center. The molecular docking of CcAOXd with UQ

showed that the binding site is a recessed pocket formed by the helices and submerged into the

membrane. These data are important for future functional studies of citrus AOX genes and/or

proteins, as well as for biotechnological approaches leading to AOX inhibition using UQ

homologs.
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