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Abstract

Many studies use threshold-based techniques to assess in vivo the muscle, bone and adi-

pose tissue distribution of the legs using computed tomography (CT) imaging. More

advanced techniques divide the legs into subcutaneous adipose tissue (SAT), anatomical

muscle (muscle tissue and adipocytes within the muscle border) and intra- and perimuscular

adipose tissue. In addition, a so-called muscle density directly derived from the CT-values is

often measured. We introduce a new integrated approach to quantify the muscle-lipid sys-

tem (MLS) using quantitative CT in patients with sarcopenia or osteoporosis. The analysis

targets the thigh as many CT studies of the hip do not include entire legs The framework

consists of an anatomic coordinate system, allowing delineation of reproducible volumes of

interest, a robust semi-automatic 3D segmentation of the fascia and a comprehensive

method to quantify of the muscle and lipid distribution within the fascia. CT density-depen-

dent features are calibrated using subject-specific internal CT values of the SAT and exter-

nal CT values of an in scan calibration phantom. Robustness of the framework with respect

to operator interaction, image noise and calibration was evaluated. Specifically, the impact

of inter- and intra-operator reanalysis precision and addition of Gaussian noise to simulate

lower radiation exposure on muscle and AT volumes, muscle density and 3D texture fea-

tures quantifying MLS within the fascia, were analyzed. Existing data of 25 subjects (age:

75.6 ± 8.7) with porous and low-contrast muscle structures were included in the analysis.

Intra- and inter-operator reanalysis precision errors were below 1% and mostly comparable

to 1% of cohort variation of the corresponding features. Doubling the noise changed most

3D texture features by up to 15% of the cohort variation but did not affect density and volume

measurements. The application of the novel technique is easy with acceptable processing

time. It can thus be employed for a comprehensive quantification of the muscle-lipid system

enabling radiomics approaches to musculoskeletal disorders.
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Introduction

Loss of muscle function, as a result of diseases such as neuropathies and myopathies on one

hand, or sarcopenia, the age-related loss of muscle mass and function on the other, results in

reduced function. Muscle diseases also play a role in the pathogenesis of osteoporosis, falling

incidence and bone frailty and fractures. Muscle biopsy is the gold standard for muscle assess-

ment but is invasive and only evaluates a small sample, not always representative, of the rele-

vant muscle tissue. Two different approaches are currently available for in vivo 3D muscle and

fat evaluation. The first consists of a qualitative or, at best, semi-quantitative grading of muscle

structures based on a washed-out and moth-eaten muscle appearance in MRI [1–3] or CT [4,

5] images. The second approach consists of a quantitative measurement of muscle volume or

cross-sectional area (CSA) in both MRI or CT images and density measurements with CT

[6–10]

While MRI has advantages in the qualitative assessment of muscle structures due to its

superior soft tissue contrast, quantitative MRI analyses are affected by complex artifacts such

as proton spin inhomogeneities, which usually depend on the specific MR scanner and acquisi-

tion sequence. In contrast, CT is less affected by technical variations [11], and provides a

higher spatial resolution, which is an important advantage for fine-grained measurements as

3D texture. In addition, muscle density cannot be measured by MRI.

For a radiomics [12] approach to the muscle-lipid system (MLS), a reproducible, robust

and fast segmentation and quantification method is required, to exploit more diagnostic rele-

vant information from CT images. This study specifically targeted the thigh instead of the

whole upper or even combined upper and lower legs, because many CT scans originally per-

formed to determine bone mineral density of the hip extend to the upper to mid shaft of the

femur.

Tissue composition of the thigh

For a better understanding of the specific segmentation and quantification techniques

described in the following sections, a brief overview of the various tissues and compartments

of the thigh will be given. The outer layer of the leg is the subcutaneous adipose tissue (SAT)

with the skin as an outer surface and the deep fascia (F) as an inner surface (Fig 1). The volume

of interest (VOI) inside the fascia (VOIIF: IF = Intrafascia) can be separated into the femoral

bone, anatomical muscles (M) consisting of muscle tissue and adipocytes within the muscle

border and perimuscular adipose tissue (PAT) separating the anatomical muscles. In the pres-

ent work, no attempt was made to separate individual muscles. Therefore, M will always refer

to the combination of all muscles. Adipose tissue (SAT and PAT) consists of adipocytes (fat

cells) containing lipids.

Muscle tissue can be further differentiated into myocytes (muscle fibers), which may con-

tain intramyocellular (IML) [13], and extramyocellular lipids (EML). In a CT image, IML can

be measured indirectly only via the CT muscle density, which will decrease with increasing

IML [14]. EML are adipocytes embedded within M among the muscle fibers. EML is typically

present as adipocyte clusters, which, depending on their size and the spatial resolution of the

CT image, can be directly segmented because their CT value differs from that of the surround-

ing muscle tissue. According to reference [15] IMAT (intermuscular AT) will include both

PAT and EML in the present study (Fig 1), although some authors [16] refer to PAT only.

Materials and methods

The integrated approach can be divided into four steps: (A) definition of a global VOI analysis

of the thigh, (B) segmentation of the fascia to delineate SAT and IMAT, (C) segmentation of
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muscle and lipid VOIs within VOIIF and (D) definition of features characterizing the muscle-

lipid distribution within VOIIF. CT scans of the proximal femur, obtained earlier [17] to mea-

sure bone mineral density in subjects with high fracture risk, were used. Subjects were scanned

on top of a calibration phantom to calculate BMD from the measured CT values. The femoral

bone was segmented as part of a previous study [18].

A. Analysis VOI

The thigh surface was first segmented using a threshold-based volume growing. The threshold,

which was empirically selected as 70%-threshold between highest and lowest CT values, was

determined from the CT value spectrum of a sphere automatically positioned on the thigh

surface.

The muscle-lipid analysis was carried out at the level of the upper femoral shaft (VOIUS; Fig

2). Segmentation of the VOIUS started with the automatic determination of two points: the

first was the center of mass of the femur in plane A, which was perpendicular to the femoral

shaft axis and intersected the mid-height of the lesser trochanter. The second point was the

voxel of the femoral head at a maximal distance from A. The projected distance between the

two points onto the scanner z-axis was used as an anatomic size- and pose-specific distance

d. VOIUS consisted of n = 0.5 d / s (s: CT slice thickness) slices. The most proximal slice was

defined as the distal end of the acetabulum.

B. Segmentation of the fascia

Accurate fascia segmentation is essential for the separation of SAT from muscle and IMAT.

However, fascia segmentation is difficult since it is a very thin structure with low contrast

Fig 1. Muscle-lipid system (MLS) of the thigh. Cross section of the femur (left) and schematic composition (right) with muscle

(dark grey) and adipose tissue (light grey). The fascia is shown in yellow and the periosteal bone surface in green. AT within the

fascia is termed intermuscular AT (IMAT), outside subcutaneous adipose tissue (SAT). IMAT within the anatomical muscle M

(magenta contours define the border of the Semitendinosus) is termed extramyocellular lipids (EML) and outside perimuscular AT

(PAT). In CT images intramyocellular lipids (IML) can only be measured indirectly by a lower average CT value compared to that of

pure muscle tissue.

https://doi.org/10.1371/journal.pone.0175174.g001

Semi-automatic method to quantify muscle-lipid distribution in clinical CT images

PLOS ONE | https://doi.org/10.1371/journal.pone.0175174 April 28, 2017 3 / 15

https://doi.org/10.1371/journal.pone.0175174.g001
https://doi.org/10.1371/journal.pone.0175174


relative to the surrounding AT. Pure muscle tissue has higher CT values than AT. However,

muscle tissue with high lipid infiltration has CT values close to those of AT. Muscle had also to

be distinguished from blood vessels, edema, dermis and genital organs through the following

steps:

1. The first step was a gross identification of muscle, based on its CT appearance: a grade G

in the range [1, 3] was first set by the operator where G = 3 denotes moth-eaten and washed-

out muscle structures (Fig 3a and 3b). In addition, a contrast value (C), relative to AT and

water was assigned to each voxel (v) according to a linear scale where C = 0 for a CT value

equal to the average CT value of the adipose tissue (CTAT) and C = 1 for a CT value equal to

that of water. CTAT was determined in a VOIAT resulting from simple volume growing using a

CT value range [-190 HU; -30 HU], which started within the sphere on the thigh surface.

CTH2O was determined from the in-scan calibration phantom.

In order to classify a voxel v as potential muscle, four empirical conditions had to be ful-

filled: (1) a minimum distance of 10 voxels from the body surface; (2) connection with the

femur; (3) a contrast C above the minimum contrast Cmin characterizing the washed-out

appearance; and (4) an aggregation α above the minimum aggregation αmin characterizing the

Fig 2. Definition of the analysis VOI. VOIUS defined by 1: The center of mass of the femur in plane A, which is perpendicular to the

shaft axis and intersects the center of the trochanter minor and 2.: The voxel of the femoral head with maximum distance from A. The

projected distance between the two points onto the scanner z-axis is used as an anatomic size- and pose-specific distance d. VOIUS

contains n = 0.5 d / s (s: slice thickness) slices; the most proximal slice contained the distal end of the acetabulum (not visible here).

https://doi.org/10.1371/journal.pone.0175174.g002
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moth-eaten appearance, where:

aðvÞ ¼
P26

v0¼1
yðCðv0Þ � CminÞ

26

Cmin ¼ 0:75 � 0:15 G

amin ¼ 0:85 � 0:05 G

Θ denotes the Heaviside function and v’ is a voxel in the 26-neighborhood of the voxel v. The

aggregation value is the ratio of neighboring voxels with the contrast above Cmin.

From the resulting voxel clusters only the two largest connected components within VOIUS

were kept. According to the position of their center of mass relative to the femur, the two com-

ponents were classified as right (VOIRC) or left (VOILC). VOIRC and VOILC were indepen-

dently processed by simple morphological closing using a z-axis elongated elliptical structure

Fig 3. Multi step 3D hierarchical segmentation of the volume of interest inside the fascia (VOIIF) exemplified in one 2D axial slice.

Step 1: Connected components of right leg (VOIRC) for G = 1 (a) and G = 3 (b) (G: Grade of muscle appearance, see text). Step 2: Probable

muscle voxels within processed left leg (VOILC) (c) and compactification resulting in VOIIFA (d and e) (IFA: Approximation of IF). Step 3:

refinement of VOIIFA. Candidate voxels close to FA that may belong to VOIIF (f and g), seed points to select clusters that belong to VOIIF (h),

clusters that were not selected stay porous (i) and are removed by morphological smoothing yielding the final result (j). User-dependence is

indicated by blue color.

https://doi.org/10.1371/journal.pone.0175174.g003
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element to account for the cylindrical shape of the fascia and the predominant extension of the

muscles along the leg axis, and contour-filling.

2. The processed VOIRC and VOILC exclude the dermis, connective tissue and genital

organs, whose CT values are typically similar to those of muscle. Within each of these VOIs, a

simple contrast value threshold was used to identify probable muscle voxels (Fig 3c). These

voxels were compacted (Fig 3d and 3e) resulting in a structure named VOIIFA, an approxima-

tion of the intrafascia VOI. Its surface was named fascia approximation (FA).

3. FA was already a very good approximation of the fascia when the amount of IMAT was

low, i.e. in younger healthy subjects, in which the fascia is usually in direct contact with the

muscle. However, with increasing adipose tissue infiltration, the amount of IMAT increases

and the fascia is often bordered by adipose tissue on either side, SAT on the outer and IMAT

on the inner side. In many areas, the CT contrast of the fascia is very low, preventing the direct

detection of a closed surface. Instead, in our study FA was used as a start point to select addi-

tional voxels, which were likely to belong to VOIIF. Specifically, voxels, which were connected

to FA, were not connected with the dermis and were located at a maximal distance of 15 voxels

from FA, were identified as candidates (Fig 3f and 3g). Connection to the dermis was defined

as voxels with C> 1 connected with the thigh surface. Based on volume growing, connection

to FA was ensured by a local noise adaptive threshold. Namely, a voxel v was accepted by the

volume growing if f was true:

f ¼

true if C > 1

g if 1 � C � 0:5

false else

8
><

>:

where g depended on the mean CT value (mean), and the standard deviation (SD) in the

26-neighborhood of v:

g ¼
true if CTvalue � mean26 � 2SD26

false else

(

The 2SD factor accounted for noise in the CT data. Next, starting from a seed point set by the

operator in the space between FA and a local group of the new candidate voxels, ‘rays’ were

sent out isotropically (26 directions). If 65% or more of these rays were reflected by one of the

candidate voxels or by FA, the status of the voxel was changed to ‘shielded’ [18] (Fig 4). All

shielded and candidate voxels were merged with VOIIFA (Fig 3i), which was then filtered for

porous or non-compact structures by a morphological smoothing. The resulting VOI was

called intrafascia (VOIIF, Fig 3j), its surface defined the 3D fascia. As shown in Fig 3h, often

multiple seed points were required to process the complete dataset. The operator could also

select not to add certain conglomerates of candidate voxels to VOIIF.

4. Optionally, a fascia-specific modification of the explicit deformable model by Mast-

meyer [19] could be utilized to attract the fascia to the nearest maximum under constraint of

a given regularity of the 3D surface. This step was useful, if neither strong edema nor very

washed-out muscle structures were present in the image, which was typically the case for

younger patients.

C. Muscle and lipid VOIs

In order to facilitate a comprehensive analysis of the relation between muscle and lipids, vari-

ous VOIs were determined. With the exception of VOISAT, all of them were located within

VOIIF. Specifically an anatomical muscle VOIM and a muscle tissue VOIMT were defined.
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1. VOISAT was obtained by subtracting VOIIF and all voxels connected with the dermis

from VOIUS. The spectrum of CT values of VOISAT (Fig 5) was used to define an AT threshold

(TAT), which differed from CTAT used for the fascia segmentation. Typically, SAT is very

homogenous but may contain edema and blood vessels that have higher CT values than

Fig 4. 3D ray reflection model. Approximation of the intrafascia VOI (yellow), candidate voxels (purple)

and seed point (blue) for the ray reflection model: The space between IFA and candidate voxels that were

connected with the seed were either x: shielded, -: not-shielded or h: filled by contour-filling.

https://doi.org/10.1371/journal.pone.0175174.g004

Fig 5. Image-specific definition of thresholds for anatomical muscle and muscle tissue. Left graph: definition of the adipose

tissue threshold TAT from SAT*; SD: standard deviation. Right graph: CT value spectrum of the combined subcutaneous adipose

tissue and muscle tissue VOIs (VOIMLS) (black). Gaussian mixture model used to fit adipose (yellow) and muscle tissue (magenta)

distributions; a: intersection between the two curves, b: peak of the muscle tissue curve.

https://doi.org/10.1371/journal.pone.0175174.g005

Semi-automatic method to quantify muscle-lipid distribution in clinical CT images

PLOS ONE | https://doi.org/10.1371/journal.pone.0175174 April 28, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0175174.g004
https://doi.org/10.1371/journal.pone.0175174.g005
https://doi.org/10.1371/journal.pone.0175174


adipose tissue. Therefore high and low CT values of the spectrum with frequencies lower than

30% of the most frequent CT value were cut. In order to determine TAT from a symmetric

spectrum to prevent an influence of noise on the mean value, the lower tail of the spectrum

was also cut resulting in a spectrum SAT�. TAT was defined as mean + 2SD from the mean and

the standard deviation of the SAT� CT value histogram (Fig 5 left).

2. VOIM was determined by subtracting VOIPAT from VOIIF under the assumption that

PAT but not EML was connected with SAT. VOIPAT was defined by connection with the fascia

under the condition that the CT value of the voxel under consideration was smaller than TAT.

3. For the definition of VOIMT, a Gaussian mixture model (GMM) was employed in combi-

nation with a Levenberg-Marquard optimization algorithm [20] to fit two Gaussian curves to

the CT value spectrum of the combined SAT and IF VOIs (VOISAT [ VOIIF = VOIMLS) (Fig 5,

right). One fit curve represented AT and one MT. For AT, height, peak and width of the SAT�

distribution were used for initialization of the fit procedure. For MT the ratio of the number of

voxels of VOIAT versus those of VOIMLS was used to initialize the height. A phantom based CT

value was used to initialize its peak. VOIMT was then defined by 3D volume growing inside

VOIIF starting from seed points defined as voxels with CT values higher than the peak b of the

fitted MT curve. Voxels were included if their CT values were higher than that of the intersec-

tion a between AT and MT distributions (Fig 5, right).

4. Finally, in order to exploit the fact that the CT values of MT also reflect IML, similar to

[21] an abstract description for the muscle-lipid distribution was formulated. For each voxel of

VOIIF, a muscle concentration between 0% and 100% was determined using TAT and THDM

with TAT defining a muscle concentration of 0% and THDM, a muscle concentration of 100%

(HDM: high density muscle). It was determined as mean CT value minus the SD determined

in a sphere placed in the muscle tissue of young climbers. Results from 30 subjects were aver-

aged and resulted in a CT value of 35 HU. In order to account for calibration differences

among scanners, THDM was finally defined as 35 HU + CTH20. Thus, apart from the constant

of 35HU, it only depended on the water value of the in-scan calibration phantom. The two CT

value thresholds THDM and TAT were used to define 6 bins with decreasing “muscle concentra-

tions”. Bin 6 (B6) defined HDM for� 100% muscle concentration, B5 muscle concentration

for 75–99%, B4 for 50–74%, B3 for 25–49%, B2 for 0–24% and intermuscular adipose tissue

(IMAT) for� 0%.

D. Feature extraction

Numerous image features can be calculated in the segmented VOIs to describe the muscle-

lipid distribution. Only few features quantifying volume, density and structure will be dis-

cussed in the present report to investigate the reproducibility and stability of the segmentation

and the feature extraction.

Densities were determined either from the segmentation-based or from GMM-based pro-

cedures. Segmentation-based densities were defined as average CT values in a VOI after sub-

traction of CTH2O. GMM-based densities were defined as peaks of IF or MLS distribution

curves again after subtraction of CTH2O i.e. DIF
GMM(MT) or DMLS

GMM (MT). rV defined a vol-

ume of a VOI relative to VOIMLS or VOIIF.

A more advanced 3D descriptor was the average grain size Gavg as determined by granulo-

metry [22]. Porous and atrophic MT and HDM should have a smaller Gavg. Fractal dimen-

sion (FD) [23] was used as a measure of 3D texture roughness. The 3D texture of dystrophic

muscles should have a rougher appearance. Further, sphericity C of M and MT was quanti-

fied. C should be smaller for irregular surfaces and elongated muscle shape in case of

pathologies.
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E. Validation

Validation of the segmentation stability and features included determination of the intra- and

inter-operator precision errors and the impact of noise and of CTH2O derived from the in-scan

calibration phantom.

25 datasets from elderly subjects (age: 75.6 ± 8.7) of the EFFECT study [30] with a washed-

out and moth-eaten muscle appearance and high levels of IMAT and edema were processed.

In these subjects, FA differed largely in most cases from the true fascia and an operator-inter-

action was needed in such cases. For the precision analysis, all 25 datasets were analyzed three

times on different days by the same operator for intra-operator-precision and once by three

different operators after an initial training for inter-operator-precision. Precision errors were

calculated as CVRMS values [24]. In order to assess the diagnostic value of a feature, the CVRMS

was compared to the biological variation of the 25 subjects measured as percentage coefficient

of variation divided by a factor of 100 (CV100).

Gaussian noise was added to the CT datasets acquired at 120 kV with 170 mAs to simulate

a lower exposure of 135 mAs. Finally, CTH2O obtained from the in-scan calibration phantom

was changed by ± 5 HU.

Results

Fig 6 shows segmentation results for three different patients, in which muscles were heavily

infiltrated by adipose tissue and fascia not always in direct contact with the muscle. Thus, seg-

mentation required operator interactions. However, even in these challenging cases the hierar-

chical segmentation process limited the required operator interaction to a few clicks by setting

some seed points as shown in Fig 4f.

Depending on the segmentation complexity the complete processing time per CT dataset

was around 12 min (i5 processor 5GHz, 4GB RAM). Table 1 shows results for intra- and inter-

operator analysis precision errors. There were no repeat scans of patients. For comparison,

Table 1 also shows the CV100 of the same feature from the 25 subjects. All CVRMS results were

below 2% and even below 0.6% in most cases reflecting the low impact of the operator interac-

tions. Most of the CVRMS results were comparable to the CV100 value.

Fig 6. Segmentation results for three subjects with washed-out and moth-eaten muscles and strong

edema. First row: native images; second row: segmented fascia (yellow).

https://doi.org/10.1371/journal.pone.0175174.g006
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Table 2 shows the percentage changes after simulating an exposure level of 135 mAs, which

would double the noise when compared to the 170 mAs exposure, which was actually used for

the CT acquisition. Density and volume measurements of VOISAT and VOIIF were not affected

by higher noise. For most other features, the noise related change was about one magnitude

higher than the reanalysis precision error at 170 mAs. Highest noise related changes were mea-

sured for the volume of VOIIMAT relative to the volume of VOIIF and for the average grain size

of VOIMT

For the features or segmentations underneath the fascia that were calibrated by water cali-

bration or more specifically CTH2O, minor variations (± 5 HU) in the CTH2O value, which in

our case was obtained from the in-scan calibration phantom, caused a much larger effect than

a increase in noise. Apart from the density of HDM, a small change (± 5 HU) in the CTH2O

Table 1. Reanalysis precision errors as CVrms in per cent and biological variance as CV/100 in percent for density, relative volume and features for

different VOIs. In each row intra/interoperator CVrms results are on top and CV100 results below. D: density; DIf
GMM, DMLS

GMM: density derived from Gaussian

mixture model applied to of VOIIF or VOIMLS, respectively; rVMLS, rVIF: Volume relative to VOIIF or VOIMLS, respectively; Gavg: average grain size; FD: fractal

dimension;Ψ: sphericity. VOIs: SAT: subcutaneous adipose tissue; IF: intrafascia; M: muscle; MT: muscle tissue; HDM: high density muscle; IMAT: intermus-

cular adipose tissue. Note: not all features are determined for all VOIs.

SAT IF M MT HDM IMAT

D 0.06/0.10/ 0.53 / 1.05 0.21 / 0.27 0.19 / 0.20 0.03 / 0.10 0.06 / 0.15

0.07 0.79 0.27 0.23 0.08 0.18

DIF
GMM 1.60 / 1.90

0.18

DMLS
GMM 0.53 / 0.56

0.44

rVIF 0.11 / 0.24 0.10 / 0.27 0.20 / 0.33 0.51 / 1.90

0.27 0.07 0.22 0.55

rVMLS 0.15 / 0.26 0.25 / 0.40

0.12 0.15

Gavg 0.24 / 1.1 0.04 / 0.15 0.18 / 0.31

0.27 0.26 0.16

FD 0.03 / 0.05 0.04 / 0.05 0.05 / 0.06

0.017 0.019 0.021

Ψ 0.57 / 0.62 0.55 / 0.70

0.20 0.23

https://doi.org/10.1371/journal.pone.0175174.t001

Table 2. Percentage changes for density, relative volume and features for different VOIs when an exposure level of 135 mAs was simulated. D:

density; DIF
GMM, DMLS

GMM: density derived from Gaussian mixture model applied to of VOIIF or VOIMLS, respectively; rVMLS, rVIF: Volume relative to VOIIF or

VOIMLS, respectively; Gavg: average grain size; FD: fractal dimension;Ψ: sphericity. VOIs: SAT: subcutaneous adipose tissue; IF: intrafascia; M: muscle; MT:

muscle tissue; HDM: high density muscle; IMAT: intermuscular adipose tissue.

SAT IF M MT HDM IMAT

D 0.0 0.0 5.1 3.5 3.4 2.6

DIF
GMM 4.0

DMLS
GMM 4.2

rVMLS 0.0 0.0

rVIF 2.0 1.1 0.71 15.0

Gavg 14.1 4.9 2.1

FD 0.89 0.79 0.99

Ψ 3.8 8.1

https://doi.org/10.1371/journal.pone.0175174.t002
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value caused density differences of more than 10% (Table 3) although relative to CV100 results

were comparable.

Discussion

To our knowledge, this is the first study presenting a hierarchical 3D approach to segment and

quantify the different muscular and lipid components of the thigh. One critical step is segmen-

tation of the fascia, which separates SAT from IMAT and muscle from edema, blood vessels,

genital organs etc. Calibration based on the relatively homogeneous subcutaneous adipose tis-

sue and the CT value of water, which, in the present work, was determined using an in-scan

calibration phantom, is another important characteristic of our method. The third critical step

is the attempt to characterize muscle in different manners: as anatomical muscle, as muscle tis-

sue, and in an abstract way—comparable to grey matter concentration in neuroimaging [25]—

as muscle concentrations.

The most difficult step was the segmentation of the fascia covering the muscles, which, in

elderly subjects, is no longer in tight contact with the muscle surface. The main purpose of

most of the preparatory steps illustrated in Fig 3a–3i was the identification of a search space

for voxels likely to belong to VOIIF. A second purpose was the differentiation of external geni-

tal organs, vessels, dermis and edema from the moth-eaten and washed out muscle as shown

in Fig 3. CT value differences, for example between edema and washed out muscle structures,

are small and therefore techniques based on a simple global threshold to separate muscle and

adipose tissue will have severe limitations. Our method based on fascia segmentation and inte-

gration of anatomical knowledge does not have such inconvenients (Fig 6).

A limitation to our study is the lack of comparison to a gold standard such as manual seg-

mentation. However, manual segmentation is highly fastidious and therefore almost not feasi-

ble in 3D and not used by radiologists who prefer to perform semi-quantitative grading based

on gross muscle CT appearance [1–3]. We also have not applied our method to patients with

diseases that largely destroy muscle tissue. In this case, the separation of adipose and muscle

tissue as shown in Fig 5 may fail. Further, we have not analyzed any longitudinal data in order

to quantify the effect of age, disease or treatment related morphological changes on segmenta-

tion. Finally, we have not analyzed the impact of spatial resolution on segmentation. CT

images used here had a slice thickness of 1 mm and an in plane voxel size of (0.8 mm)2 and

were reconstructed with a medium kernel. This provides an adequate balance between spatial

resolution, noise and radiation exposure. Different settings of CT acquisition and reconstruc-

tion parameters would be required to evaluate the impact of spatial resolution.

The very low intra- and inter-operator precision errors of our method, below 1% (Table 1)

is due to the high degree of automation of the analysis. Manual interactions as those shown in

(Fig 3h) and pre-grading of muscle structures (Fig 3a and 3b) had minimal impact on preci-

sion. However, we did not carry out a precision study including patient repositioning, which

Table 3. Effect of water calibraton. A simulated addition / subtraction of 5 HU from CTH2O.caused the per-

cent change shown in the table. D: density; DIF
GMM, DMLS

GMM: density derived from Gaussian mixture model

applied to of VOIIF or VOIMLS, respectively; SAT: subcutaneous adipose tissue; IF: intrafascia; M: muscle;

MT: muscle tissue; HDM: high density muscle muscle.

IF M MT HDM

D 27.4 / 27.4 15.8 / 15.8 13.4 / 13.4 3.2 / 3.5

DIF
GMM 11.6 / 11.6

DMLS
GMM 17.8 / 17.8

https://doi.org/10.1371/journal.pone.0175174.t003
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may increase precision error, since muscle shape may change across multiple scans. Repeating

CT acquisitions in humans is difficult due to ethical issues.

Precision error has to be put in perspective with the changes to be measured, either longitu-

dinally to assess changes in a given subject or cross-sectionally to compare different subjects.

Table 1 shows that the reanalysis precision errors were comparable with 1% of the variation of

the corresponding measurement in 25 elderly female subjects, again a very good result.

It remains speculative whether other segmentation methods [26–29] would improve the

results obtained here. When applying a hierarchical approach, selection of the different steps

and their order remains subjective. To our knowledge, starting with a segmentation of the fas-

cia, an anatomical boundary at the superficial aspect of the muscles is an innovative method.

However, a comparison of the different segmentation methods remains to be done.

Existing techniques for muscle measurements on CT images are restricted to measure mus-

cle volume or area and density. Several authors used fixed CT value thresholds for muscle seg-

mentation [30–32]. Use of fixed thresholds to carry out muscle segmentation does not address

differences in muscle density caused by variable degrees of muscle lipid infiltration, which

vary widely among muscles.

Use of fixed CT values or Hounsfield units also does not address variation with scanner

type and manufacturer. Although all clinical CT scanners are routinely calibrated to water,

deviations of ±10 HU are frequent. In addition, a second value is required for calibration of

muscle and adipose tissue. In the field of osteodensitometry [33], specific in-scan phantoms

are used for the calibration of CT to measure bone mineral density.

In the method developed here, calibrated CT values were used for two different purposes.

In the segmentation process CTH2O, the CT value of the water insert of the calibration phan-

tom and the mean CT value of adipose tissue were used to define a contrast scale, which was

primarily used to define probable muscle voxels and to define upper and lower limits for the

local adaptive threshold based ray reflection model. However, the final fascia resulted from the

combination of several advanced image-processing procedures rather than from simple

thresholding.

For segmentation of VOIs inside the fascia, two CT values derived from image information

were used, CTH2O and a second CT value defined precisely using the SAT CT value histogram

(Fig 6). SAT is one of the most homogenous adipose tissues in the human body [34], and is

well-suited for this purpose but, in order to exclude higher density voxels due to vessels and

edema contained into the SAT, the histogram was trimmed, which resulted in a unique sub-

ject-specific threshold TAT. Finally, the threshold for 100% muscle depended only on CTH2O

and a constant determined from muscle tissue of a group of young athletes.

Thus, our segmentation method uses a calibration that depends only on subject-specific

internal CT values and CTH2O and is therefore independent from the scanner model and man-

ufacturer. An accurate determination of CTH2O is critical: as shown in Table 3, a change of ± 5

HU in CTH2O results in a change in density values of up to 30%, emphasizing that deviations

from the regular water calibration of clinical CT scanners must be controlled.

Another critical characteristic of segmentation and feature extraction is the sensitivity to

noise. To test our method, we simulated a 100% noise increase by retrospectively adding

Gaussian noise to the CT images. Table 2 shows that density and volume measurements of

SAT were not affected by a 100% noise increase, which is very important with regard to the cal-

ibration. With the exception of rVIF of VIMAT, effects on muscle density and volume measure-

ments were below 5%. Not surprisingly, an increase in noise had larger effects on structural

measurements like 3D texture features. Automatic exposure control techniques, nowadays

often used in clinical CT [35], can approximately guarantee similar noise levels between

patients. A new data-driven method to identify and reduce the impact of technical variation—
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such as noise—on features is currently developed in our group for e.g. retrospective analyses of

studies without automatic exposure control techniques.

Conclusion

We have developed an innovative semi-automatic approach for segmentation and quantifica-

tion of the muscle-lipid distribution in CT images of the thigh. An important characteristic is

the calibration combining subject-specific internal subcutaneous adipose tissue with an exter-

nally derived water calibration. Another characteristic is the hierarchical segmentation of the

fascia consisting of a pre-grading based on established diagnostic criteria and a local adaptive

threshold-based 3D ray reflection model which requires only minimal user interaction and

offers an automatic refinement by an explicit deformable model. Extracted features included

density- and volume-based muscle and lipid measurements as well as advanced 3D features

for a detailed quantification of the muscle-lipid distribution underneath the fascia. The preci-

sion of the method was excellent and processing speed acceptable, enabling a comprehensive

radiomics approach to musculoskeletal lipid distribution disorders from standard-of-care CT

images. Results reported here concern the thigh but the same concept may be applicable to

other body parts although some anatomy specific changes will be required in the segmentation

step.
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