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Abstract

Mucosal-associated invariant T cells (MAITs) are innate-like T cells that play a pivotal role in

the host defense against infectious diseases, and are also implicated in autoimmune dis-

eases, metabolic diseases, and cancer. Recent studies have shown that induced pluripotent

stem cells (iPSCs) derived from MAITs selectively redifferentiate into MAITs without altering

their antigen specificity. Such a selective differentiation is a prerequisite for the use of

MAITs in cell therapy and/or regenerative medicine. However, the molecular mechanisms

underlying this phenomenon remain unclear. Here, we performed methylome and transcrip-

tome analyses of MAITs during the course of differentiation from iPSCs. Our multi-omics

analyses revealed that recombination-activating genes (RAG1 and RAG2) and DNA nucleo-

tidylexotransferase (DNTT) were highly methylated with their expression being repressed

throughout differentiation. Since these genes are essential for V(D)J recombination of the

T cell receptor (TCR) locus, this indicates that nascent MAITs are kept from further rear-

rangement that may alter their antigen specificity. Importantly, we found that the repression

of RAGs was assured in two layers: one by the modulation of transcription factors for RAGs,

and the other by DNA methylation at the RAG loci. Together, our study provides a possible

explanation for the unaltered antigen specificity in the selective differentiation of MAITs from

iPSCs.
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Introduction

The advent of induced pluripotent stem cells (iPSCs) has enabled the generation of an unlim-

ited number of desired cells upon differentiation for regenerative medicine and/or cell therapy.

However, these differentiated cells need to be warranted for proper functionalities and con-

stant identities when clinical applications are envisaged. In the case of T cells, hematopoietic

stem cells (HSCs) and embryonic stem cells (ESCs) give rise to immature T cells such as double

negative and double positive T cells comprising polyclonal populations harboring a different

set of T cell receptors (TCR) [1,2]. TCR are composed of V (D) and J regions that stem from

DNA rearrangements of V (D) and J gene segments [3]. V(D)J recombination is mediated by a

series of enzymes such as recombination-activating genes 1 and 2 (RAG1 and RAG2) and

DNA nucleotidylexotransferase (DNTT). RAG1 and RAG2 recognize signal sequences in V

(D) and J segments in genomic DNA, and cleave DNA to rearrange these fragments. DNTT

inserts additional nucleotides at the junction (N-region) of the rearranging TCR. Different

combinations of V (D) and J gene segments produce TCR with different antigen specificities,

thereby enabling T cells to recognize diverse peptidic antigens. However, the polyclonality of T

cells has made it difficult to utilize these cells for cell therapy for two reasons. The first issue is

intrinsic to the polyclonality of T cells generated from pluripotent cells because the repertoire

of TCR is diverse and harbors no specificity to antigens. The second issue is that HSC- and/or

ESC-derived T cells still possess the machinery relevant to DNA rearrangements, which may

result in further rearrangements in TCR, thereby allowing TCR alternations. In this case, origi-

nal antigen specificity will be lost, which is inconvenient for cell therapy. Even though the reju-

venation of T cells recognizing specific antigens for HIV and cancer via reprogramming and

redifferentiation has been reported, external cues such as anti-CD3/CD28 stimuli have been

required to shut down the expression of RAGs and maintain the original TCR [3,4,5]. In con-

trast, Wakao et al. reported that invariant T cells, called mucosal-associated invariant T cells

(MAITs), may be differentiated from iPSCs in a highly selective manner without such external

stimuli when iPSCs are prepared from MAITs (MAIT-iPSCs) [6].

MAITs are innate-like T cells harboring an invariant TCRα chain (TRAV1-2-TRAJ33 in

both human and mouse), and recognize the vitamin B2 metabolites presented on MHC class

I-related protein (MR1) [7]. MAITs play a pivotal role in host defenses against infectious dis-

eases such as bacterial, fungal, and viral infections, and have been implicated in autoimmune

and metabolic diseases as well as in cancer, which are often accompanied by the depletion of

MAITs from the peripheral blood [7,8,9]. Thus, MAIT cell reprogramming and the selective

redifferentiation of MAITs from MAIT-iPSCs are promising strategies for cell therapy and/or

regenerative medicine for the above diseases. However, the molecular mechanisms underlying

this selective differentiation need to be elucidated in more detail, and proper functionality

with an appropriate epigenetic status must be ensured before in vivo use.

In the present study, we obtained transcriptome and methylome data relevant to governing

T cell identities by comparing the differentiation of T cells from HSC and that of MAITs from

MAIT-iPSCs (reMAITs). Our results revealed a difference in the expression of transcripts rele-

vant to the V(D)J recombination machinery concomitant with that in DNA methylation at the

corresponding gene loci, which may explain the quasi-exclusive generation of reMAITs from

MAIT-iPSCs.

Results

Transcriptome and methylome profiling of reMAITs

In order to elucidate the molecular mechanisms underlying the selective differentiation of

reMAITs from MAIT-iPSCs, we conducted transcriptome (mRNAs and microRNAs
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(miRNAs)) and methylome profiling using microarrays. We sampled reMAITs during the

course of differentiation from MAIT-iPSCs as well as MAITs from cord blood (CB MAITs).

We used immature T cells differentiated from HSCs as a control. We selected four time points

for reMAITs and immature T cells: Start, Early, Middle, and Late (Refer to Materials and

methods for a definition of these time points). The transcriptome and methylome of reMAITs

both evolved with differentiation, gradually becoming similar to those of CB MAITs (Fig 1a).

At the Late stage, the correlation coefficients between reMAITs and CB MAITs were high:

0.909 for gene expression and 0.958 for DNA methylation (S1 Table). These results demon-

strated that reMAITs gained similar transcriptome and methylome to CB MAITs as they dif-

ferentiated [6]. These gradual changes in the transcriptome and methylome were also

observed during immature T cell differentiation from HSCs (Fig 1b).

We then attempted to identify genes that are differentially expressed between reMAITs and

immature T cells in order to obtain an insight into the molecular mechanisms governing the

T cell fate because the latter consists of polyclonal double negative (CD4-CD8-) and/or double

positive (CD4+CD8+) T cells, while the former comprises monoclonal cells by the end of dif-

ferentiation [6]. We found that 4,041 genes were differentially expressed (limma, P< 0.05). As

expected, these included the hallmarks for MAITs such as FAS, KLRB1 (CD161), and ZBTB16
(PLZF) (Fig 2; S2 Table), and were enriched in immunity-related functions such as defense

responses (S3 Table).

Since gene expression is often regulated by DNA methylation, we evaluated the extent to

which differential gene expression between reMAITs and immature T cells was attributed to

differential DNA methylation (Fig 3a). Specifically, 987 out of 4,041 differentially expressed

genes were differentially methylated (limma, P< 0.05), showing a correlation between the two

groups (Fisher’s exact test, P< 0.05). Moreover, differential gene expression was attributed, at

least in part, to differential miRNA expression (Fig 3b; S4 Table). Although only five miRNAs

were detected as being differentially expressed (limma, P< 0.05), miR-146, which is known to

function in the innate immune system [10], was detected among them. By using miRNA target

information in the miRWalk database [11], we found that the five miRNAs targeted 28 out of

4,041 differentially expressed genes (Fisher’s exact test, P< 0.05). These results provide a

global view of gene regulation in reMAITs during differentiation for which gene expression

was regulated by DNA methylation and miRNAs.

Suppression of V(D)J recombination in reMAITs

In order to identify the genes responsible for the selective differentiation of reMAITs from

MAIT-iPSCs, we focused on genes that showed the differential expression of mRNAs concom-

itant with differential DNA methylation (Fig 3a). Of note, the genes ranked highest by their

statistical significance included RAG1 and DNTT (Table 1), both of which play a pivotal role in

V(D)J recombination [3]. In addition, we found that RAG2, another gene associated with V

(D)J recombination, showed a significant difference in gene expression and DNA methylation

(limma, P = 0.03 and 0.01, respectively). We also investigated the expression and methylation

status of other genes relevant to V(D)J recombination and non-homologous end joining (S5

Table), and confirmed that RAGs and DNTTwere the only genes that showed differential

expression concomitant with differential methylation.

The expression levels of RAGs and DNTTwere constantly lower in reMAITs and CB

MAITs than in immature T cells throughout differentiation (Fig 4a). Indeed, expression of the

mRNA transcripts for RAG1, RAG2, or DNTT in reMAITs was below the detection limit of

qPCR (Ct value>45) and at least 450-fold lower than that in immature T cells at any time

point (S1 Fig). The experiments were repeated with another preparation of reMAITs and

Epigenome analyses of MAIT cell differentiation
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Fig 1. Transcriptome and methylome profiles of reMAITs. (a) reMAITs differentiated from MAIT-iPSCs.

Normalized microarray intensities for mRNAs (left), methylation (center), and miRNAs (right). Four time points

during the course of reMAIT differentiation are shown (Start, Early, Middle, and Late; See Materials and

methods for the definition). Also shown are MAITs isolated from cord blood (CB MAITs). (b) Immature T cells

differentiated from HSCs are shown as a control. The top 10% of genes harboring the most time-dependent

Epigenome analyses of MAIT cell differentiation
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expression or methylation detected by the limma method are shown. Cluster dendrograms indicate that the

transcriptome and methylome change along with differentiation.

https://doi.org/10.1371/journal.pone.0174699.g001

Fig 2. Differential expression of MAIT marker genes. Normalized gene expression levels for the markers

of MAITs. Differentially expressed markers (limma, P < 0.05) are shown. See S2 Table for the complete list.

Marker gene information is obtained from [5].

https://doi.org/10.1371/journal.pone.0174699.g002

Fig 3. Relationship among differentially expressed genes, differentially methylated genes, and differentially expressed miRNAs between

reMAITs and immature T cells. (a) Venn diagram showing differentially expressed genes and differentially methylated genes (limma, P < 0.05). (b) Venn

diagram showing differentially expressed genes and those targeted by differentially expressed miRNAs (limma, P < 0.05). In (a) and (b), the overlap

between the two groups is significant (Fisher’s exact test, P < 0.05).

https://doi.org/10.1371/journal.pone.0174699.g003
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immature T cells, and similar results were obtained. The repression of these genes was accom-

panied by DNA hypermethylation. The methylation levels of the RAG1 locus were constantly

high in reMAITs, whereas this locus was hypomethylated from the Middle to the Late stages of

immature T cell differentiation (Fig 4b). Similar results were obtained at the RAG2 and DNTT
loci (Fig 4c and 4d). These results strongly indicate that V(D)J recombination is suppressed in

reMAITs, suggesting that the TCR locus in reMAITs is free from further rearrangements that

lead to alterations in antigen specificity, namely, T cell identity.

In an attempt to delineate the gene regulatory mechanisms suppressing V(D)J recombina-

tion in reMAITs, we also analyzed the expression of transcription factors known to regulate

RAGs [12]. The expression of transcription factors such as CEBPA, MYB, CEBPE, and LEF1,

which are known to positively regulate RAG expression, was up-regulated in immature T cells

(Fig 5a). In contrast, NFATC1, which has been shown to repress the expression of RAGs [13],

was more strongly expressed in reMAITs, in which the expression of RAGs was weak. Among

these transcription factors, the differential expression of CEBPA, CEBPE, andMYBmay be

partly attributed to the differential DNA methylation of the corresponding loci. In general, the

methylation levels of the CEBPA locus were constantly higher in reMAITs than in immature T

cells throughout differentiation (Fig 5b). This was also the case for the CEBPE andMYB loci

(Fig 5c and 5d). These results indicate that the repression of RAGs in reMAITs was assured not

only by DNA methylation at the RAG loci, but also by modulating the expression of transcrip-

tion factors relevant to RAG promoter activity.

Discussion

The results of the present study have provided an insight into the molecular mechanisms

underlying the selective differentiation of reMAITs from MAIT-iPSCs. We herein demon-

strated that V(D)J recombination was suppressed in reMAITs through the repression of rele-

vant genes such as RAGs and DNTT. The repression of RAGs was achieved at least in two

layers: one by transcription factors, and the other by the DNA methylation of loci. This

double-layered regulation may ensure that reMAITs are not subjected to further rearrange-

ments that ultimately alter antigen specificity and, thus, T cell identity. This lock mode may be

specific to MAITs with semi-invariant TCR because the rejuvenation of HIV and/or cancer

antigen-specific T cells via reprogramming accompanies RAG [4,5], similar to immature T

Table 1. Genes that showed differential expression concomitant with differential DNA methylation between reMAITs and immature T cells.

P-value

Description Differential expression Differential methylation

CAT catalase 9.40E-03 1.25E-03

DNTT deoxynucleotidyltransferase, terminal 9.40E-03 3.93E-02

C22orf34 chromosome 22 open reading frame 34 1.20E-02 2.00E-03

HOXA7 homeobox A7 1.20E-02 4.75E-03

RGS16 regulator of G-protein signaling 16 1.20E-02 4.98E-03

RHAG Rh-associated glycoprotein 1.20E-02 5.00E-03

D4S234E DNA segment on chromosome 4 (unique) 234 expressed sequence 1.20E-02 9.46E-03

RAG1 recombination activating gene 1 1.20E-02 9.81E-03

GP9 glycoprotein IX (platelet) 1.20E-02 1.31E-02

MYL4 myosin, light chain 4, alkali; atrial, embryonic 1.20E-02 2.68E-02

Top 10 genes ranked by their statistical significance are shown.

https://doi.org/10.1371/journal.pone.0174699.t001
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Fig 4. Repression and hypermethylation of genes associated with V(D)J recombination in reMAITs. (a)

Normalized gene expression levels for RAGs and DNTT. (b-d) Methylation status of the RAG1 (b), RAG2 (c), and DNTT (d)

loci. The methylation levels for each cell type are shown in the genome browser snapshots. Vertical lines represent the

positions of cytosine residues in the genome. The cytosine residues harboring differential methylation between reMAITs

and immature T cells are indicated by red arrows. Transcription start sites are depicted with a closed hexagon in each gene.

https://doi.org/10.1371/journal.pone.0174699.g004
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Fig 5. Differential expression of transcription factors known to regulate RAGs and their methylation

status at the corresponding loci. (a) Normalized gene expression levels for differentially expressed

transcription factors (limma, P < 0.05). (b-d) Methylation status of the CEBPA (b), CEBPE (c), and MYB (d)

loci. The methylation levels for each cell type are shown in the genome browser snapshots. Vertical lines

represent the positions of cytosine residues in the genome. The cytosine residues showing differential

Epigenome analyses of MAIT cell differentiation
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cells from HSC in this study. Future studies need to clarify what cue(s) or factor(s) trigger dif-

ferential DNA methylation at RAGs and DNTT loci, and how they keep these loci hypermethy-

lated during the differentiation of reMAITs from MAIT-iPSCs. The elucidation of such cue(s)

or factor(s) may lead to the more efficient differentiation of antigen-specific T cells without

further rearrangements in TCR.

Previous studies indicated that TCR rearrangements are regulated not only by RAG expres-

sion, but also by the epigenetic status of TCR loci [14]. According to this model, the chromatin

structure of TCR loci modulates the accessibility of RAG proteins to these loci, thereby regulat-

ing rearrangement efficiency. Although this type of regulation has been extensively studied in

terms of histone modifications, limited information is currently available on the DNA methyl-

ation status of MAITs. Our preliminary data on MAIT-specific TCR loci demonstrated

demethylation close to and within the TRAV1-2 and TRAJ33 loci, while the loci were heavily

methylated in immature T cells (S2 Fig). This difference may be responsible for the strong

expression of TRAV1-2-TRAJ33 in reMAITs at the Late stage of differentiation [6]. Further

analyses are warranted in order to establish whether these differentially methylated sites affect

TCR rearrangement efficiency and influence histone modifications.

Regarding miRNAs, only five miRNAs were found to be differentially expressed between

reMAITs and immature T cells (Fig 3b; S4 Table). Such a small number of miRNAs is due, in

part, to the relatively limited number of probes available for microarrays (targeting 2,027 miR-

NAs versus 21,754 mRNAs). Alternatively, miRNAs may have weaker effects on the fate deter-

mination of reMAITs than epigenetic regulation such as DNA methylation and transcription

factors relevant to RAG expression. We were unable to identify any differentially expressed

miRNAs that target RAGs, DNTT, or the transcription factors pertinent to the promoter activ-

ity of RAGs (limma, P< 0.05). Nevertheless, from an omics point of view, the differential gene

expression observed between reMAITs and immature T cells may, in part, be attributed to dif-

ferential miRNA expression (Fig 3b). However, the effects of this differential expression of

miRNAs on the destiny of T cells have yet to be elucidated.

Although the transcriptome and methylome of reMAITs at the Late stage became similar to

those of CB MAITs from an omics point of view (correlation coefficients of 0.909 for gene

expression and 0.958 for DNA methylation; S1 Table), a discrepancy was noted between

reMAITs and CB MAITs in terms of the specific genes for MAITs (e.g. ZBTB16 and KLRB1
(CD161) in Fig 2). This may be due to reMAITs, which differentiated in vitro, lacking the

appropriate external cue(s) that are a prerequisite for acquiring final differentiation (matura-

tion) concomitant with changes in the transcriptome and epigenome. We previously revealed

that the adoptive transfer of reMAITs into mice resulted in migration into different tissues,

and this was accompanied by a conversion from the naive to memory type based on cell sur-

face antigens [6]. Thus, in order to realize regenerative medicine and/or cell therapy with

reMAITs, the external cue(s) that confer the final maturation of reMAITs with appropriate

functionality need to be identified.

In conclusion, this study has provided possible transcriptional and epigenetic mechanisms

by which the antigen specificity of MAITs during differentiation from iPSCs was preserved

through the suppression of V(D)J recombination. In order to establish whether these mecha-

nisms are applicable to constraining the T cell fate, comprehensive analyses with T cells other

than MAITs will be necessary in the future.

methylation between reMAITs and immature T cells are indicated by red arrows. Transcription start sites are

depicted with a closed hexagon in each gene.

https://doi.org/10.1371/journal.pone.0174699.g005
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Materials and methods

Cell culture

Human cord blood (CB) was obtained from the Japanese Red Cross, Hokkaido Block Blood

Center with written informed consent. To reduce the influence of individual variability in dif-

ferential expression/methylation analyses, CB from three different individuals were combined

for reMAITs and for immature T cells. reMAITs were prepared as described previously [6].

Briefly, MAIT-iPSCs were cultured on OP9, and CD34+CD43+ cells were purified with a

MACS LS column (Miltenyi Biotech, catalog number 130-042-401). These cells were furthered

cultured on OP9/DL1. Based on the reported surface antigen profiles [6], reMAITs were har-

vested at four different time points after seeding on OP9/DL1: day 0 (Start), day 4 (Early), days

7–10 (Middle), and after day 30 (Late). Regarding the differentiation of immature T cells,

CD34+ cells from CB were isolated with the CD34 MicroBead Kit (Miltenyi Biotech, catalog

number 130-046-702). CD34+ HSCs differentiated into the T cell lineage on OP9/DL1, as pre-

viously described [15]. Based on surface antigen profiles, immature T cells were harvested at

four different time points: CD34+ cells at day 0 (Start), day 21 (Early; T lymphocytes remained

mostly as CD4-CD8- double negative), day 40 (Middle; some lymphocytes (approximately

20–30%) were CD4+ CD8+ double positive), and after day 50 (Late; most lymphocytes

(approximately 70–80%) were CD4+CD8+ double positive).

Transcriptome profiling by microarrays

Total RNA was extracted from each sample with an RNeasy MiniKit (Qiagen, catalog number

74104). In the mRNA analysis, RNA was labeled with reverse transcription by incorporating

Cy3, and subjected to an analysis using the Human Gene Expression v2 4x44K Microarray Kit

(Agilent). In the miRNA analysis, RNA was labeled with Cy3-pCp by ligation, and subjected to

an analysis using Human miRNA Microarray Release 19.0 8x60K (Agilent).

Methylome profiling by Infinium BeadChip

Genomic DNA was extracted from each sample using the Wizard Genomic DNA Purification

Kit (Promega, catalog number A1120). DNA (1 μg) was subjected to bisulfite conversion, and

subjected to an analysis using the Infinium HumanMethylation450 BeadChip Kit (Illumina).

qPCR

RNA was isolated using TRIzol reagent (Thermo Fisher Scientific) and cDNA was prepared

using SuperScript III First-Strand Synthesis System with random hexamers (Thermo Fisher

Scientific). For semi-quantitative real-time PCR, the reaction was performed with FastStart

Essential DNA Green Master (Roche) on a LightCycler Nano System (Roche). The PCR prim-

ers were described previously [16,17]. The PCR profile was as follows: 95˚C for 10 min, 45

cycles of 95˚C for 10 sec and 60˚C for 30 sec, and the melting curve analysis was performed to

verify the amplification specificity. GAPDH was used as housekeeping gene to standardize

data, following the ΔCq method.

Data analysis

Microarray intensities were intra-array and inter-array normalized using limma software [18]

for mRNA data, AgiMicroRna software [19] for miRNA data, and IMA software [20] for meth-

ylation data. These tools are available as bioconductor packages in the R statistical computing

environment. The methylation level for each gene was calculated as the mean methylation

level for all probes within -1,500 bp from the transcription start site (denoted by "TSS1500Ind"

Epigenome analyses of MAIT cell differentiation
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in the array annotation file). Differential expression and methylation analyses were performed

using limma software. For visualization by heatmaps (Figs 1, 2, 4a and 5a), expression levels

were log2-transformed, and further transformed into z-scores. Genome browser snapshots

(Figs 4b–4d and 5b–5d; S2 Fig) were generated using GenomeTools software [21]. A gene

ontology enrichment analysis (S2 Table) was performed using the DAVID web server [22].

The list of genes relevant to V(D)J recombination and non-homologous end joining (S5

Table) was extracted from the GO database ([23]; GO:0033151 and GO:0070419). All P-values

in statistical tests were corrected for multiple testing by the Benjamini-Hochberg method [24].

Supporting information

S1 Fig. qPCR verification of RAGs and DNTT expression in immature T cells. qPCR was

performed with the primer set specific for RAG1, RAG2, and DNTT as described in the Materi-

als and methods. Relative expression of RAG1, RAG2, and DNTT to that of GAPDH at the indi-

cated time is shown. Data are shown with means ± standard deviations (data are measured in

triplicate; n = 1). Note that expression levels are shown in a raw value scale, while expression

levels in Fig 4a are log2-transformed.

(PDF)

S2 Fig. Methylation status in the TCRα locus. The positions of the microarray probes

upstream of and within TRAV1-2 (Vα7.2) (a) and those downstream of TRAJ33 (Jα33) (b) are

shown with the methylation status of the cytosine residue. The position of TRAJ33 (Jα33) is

indicated by a red arrow.

(PDF)

S1 Table. Relationship between reMAITs and CB MAITs in terms of the transcriptome

and methylome. Correlation coefficients between reMAITs and CB MAITs are shown for

gene expression and DNA methylation.

(XLSX)

S2 Table. Normalized expression levels of MAIT cell marker genes. Differentially expressed

genes (limma, P< 0.05) between reMAITs and immature T cells are marked by "yes".

(XLSX)

S3 Table. Gene Ontology (GO) enrichment analysis of differentially expressed genes

between reMAITs and immature T cells. The biological process GO terms are shown with

their enrichment P-values.

(XLSX)

S4 Table. Differentially expressed miRNAs and their target genes. (a) Differentially

expressed miRNAs between reMAITs and immature T cells (limma, P< 0.05). The target

information obtained from the miRWalk database for each miRNA is described. (b) Differen-

tially expressed genes targeted by differentially expressed miRNAs between reMAITs and

immature T cells (limma, P< 0.05).

(XLSX)

S5 Table. Expression and methylation status of genes relevant to V(D)J recombination and

non-homologous end joining. For each gene, the statistical significance of differential expres-

sion and differential methylation between reMAITs and immature T cells is shown. Note that

RAGs and DNTTwere the only genes that showed differential expression concomitant with

differential methylation. Not significant: limma, P> 0.05.

(XLSX)
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