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Abstract

Brain changes associated with Alzheimer’s disease (AD) begin decades before disease

diagnosis. While β-amyloid plaques and neurofibrillary tangles are defining features of AD,

neuronal loss and synaptic pathology are closely related to the cognitive dysfunction. Brain

imaging methods that are tuned to assess degeneration of myelinated nerve fibers in the

brain (collectively called white matter) include diffusion tensor imaging (DTI) and related

techniques, and are expected to shed light on disease-related loss of structural connectivity.

Participants (N = 70, ages 47–76 years) from the Wisconsin Registry for Alzheimer’s Pre-

vention study underwent DTI and hybrid diffusion imaging to determine a free-water elimina-

tion (FWE-DTI) model. The study assessed the extent to which preclinical AD pathology

affects brain white matter. Preclinical AD pathology was determined using cerebrospinal

fluid (CSF) biomarkers. The sample was enriched for AD risk (APOE ε4 and parental history

of AD). AD pathology assessed by CSF analyses was significantly associated with altered

microstructure on both DTI and FWE-DTI. Affected regions included frontal, parietal, and

especially temporal white matter. The f-value derived from the FWE-DTI model appeared to

be the most sensitive to the relationship between the CSF AD biomarkers and microstruc-

tural alterations in white matter. These findings suggest that white matter degeneration is

an early pathological feature of AD that may have utility both for early disease detection and

as outcome measures for clinical trials. More complex models of microstructural diffusion
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properties including FWE-DTI may provide increased sensitivity to early brain changes

associated with AD over standard DTI.

Introduction

Among the neuropathological characteristics associated with dementia due to Alzheimer’s

disease (AD), neuronal loss and synaptic pathology—not β-amyloid plaques or neurofibril-

lary tangles—appear to be most strongly related to dementia severity and cognitive deficits

in AD [1–5]. Beyond standard volumetric magnetic resonance imaging (MRI), there are few

options for gauging cell loss, and sensitive approaches [5]are needed, especially to measure

early changes. Diffusion-weighted MRI is an increasingly used technique that is sensitive to

the random self-diffusion of water molecules. In an unstructured medium, diffusion charac-

teristics reflect properties of the fluid such as temperature and viscosity. However, in struc-

tured media such as brain tissue, the measured signals are instead modulated by the geo-

metry of the tissue microstructure [6]. Thus, water molecules are used as a noninvasive

endogenous tracer to probe tissue microstructure.

Diffusion tensor imaging (DTI) describes the distribution of diffusion displacements using

a Gaussian model and has been used extensively to assess tissue microstructure changes in

aging, AD and preclinical AD [7–12]. Despite the promising sensitivity of DTI, it has known

limitations that can impair utility and specific interpretation. To date, very few studies have

applied advanced diffusion-weighted imaging methods for characterizing complex micro-

structural changes in the early stages of AD.

In this study, a free water elimination model was utilized to estimate and remove the signal

contributions from cerebrospinal fluid and apparent free water components from the esti-

mated diffusion tensor of the tissue. The FWE-DTI model contains an isotropic diffusion (free

water) component with a diffusion coefficient that is constrained to be approximately three

times larger than is typically encountered in tissue [13] in addition to the standard diffusion

tensor. The free water diffusivity (3x10-3 mm2/s) matches the theoretical diffusion coefficient

of CSF at body temperature [14]. The free water signal fraction, denoted as the f-value, corre-

sponds to the water that has minimal interaction with tissue barriers over the diffusion time of

the experiment. This model minimizes the CSF contamination of DTI measurements in tissues

adjacent to CSF filled spaces such as the ventricles and cerebral cortex [15], which is particu-

larly important as brain atrophy increases with aging and disease burden. Non-zero f-values

present in tissues distal from CSF may also reflect the relative volume of extracellular spaces in

the tissue [13,16,17].

We hypothesize that FWE-DTI would provide improved sensitivity to microstructural

alterations that occur early in the development of AD. In addition to shedding light on the

early features of AD pathogenesis, focusing on microstructural alterations is important given

that plaques and tangles—while central features of AD—may be accompanied by additional

features that predict progression to dementia [4,18,19]. Greater sensitivity in detecting micro-

structural pathology may help identify individuals at greatest risk for cognitive decline, as well

as providing a novel outcome measure for clinical trials.

Thus, this study focused on individuals who may harbor preclinical pathology. Asymptom-

atic participants were recruited from the Wisconsin Registry for Alzheimer’s Prevention

(WRAP) study[20], a cohort that is enriched for AD risk based on parental history of AD and

a greater percentage of adults who carry a risk gene for AD, the ε4 allele of apolipoprotein E
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(APOE ε4)[21]. In addition to standard DTI participants underwent both hybrid diffusion

imaging (HYDI) MRI [22] and lumbar puncture to assess levels of proteins related to AD and

neurodegeneration in CSF. Biomarkers in CSF were used as a proxy for elevated preclinical

AD pathology. CSF Aβ42 was used as a marker of cortical amyloid deposition; CSF Aβ42 pre-

dicts conversion to AD dementia [23] and correlates with in vivo [24] amyloid burden mea-

sured with positron emission tomography. Phosphorylated tau (P-tau181) was used as a marker

of neurofibrillary tangle load [25], and total tau (T-tau) as a marker of degeneration of thin

unmyelinated axons. Both P-Tau and T-Tau are elevated in patients with dementia due to AD

[26,27], P-tau181 discriminates AD from non-AD dementias [28] and higher levels of T-Tau

are associated with a more rapid disease progression [29]. Neurofilament light chain protein

(NFL) measured in CSF was used as a marker of large caliber axon degeneration [30], while

YKL-40 and monocyte chemoattractant protein 1 (MCP-1) were used as markers of microglial

activation and neuroinflammation [31]. Finally, we evaluated soluble amyloid precursor pro-

tein beta (sAPPβ) as a marker of upstream APP processing in the β-secretase pathway [32]. We

hypothesized that individuals with higher burden of preclinical AD pathology as shown by the

CSF biomarkers would show microstructural alterations as measured by FWE-DTI.

Methods

Participants

Participants were 70 late-middle-aged adults (19 males and 51 females, age: 61.2 ± 6.2 yrs.) with-

out dementia from the WRAP study. The WRAP cohort comprises well characterized and lon-

gitudinally followed participants who are either positive or negative for parental history of AD.

Positive parental family history of AD classification was defined as having one or both parents

with AD as determined by a validated interview [33] or autopsy-confirmed or clinically diag-

nosed probable AD as outlined by research criteria [34,35], and reviewed by a multidisciplinary

diagnostic consensus panel. Detailed medical history obtained from phone interviews were con-

ducted to confirm AD negative participants. Absence of family history of AD required that the

participant’s father survive to at least age 70 years and the mother to age 75 years without diag-

nosis of dementia or cognitive deterioration. APOE ε4 genetic testing was performed at the

Wisconsin Alzheimer’s Disease Research Center. Of those recruited 52 were identified as having

a positive family history (FH+). Additionally, 27 subjects were carriers of one or more APOE ε4

alleles (APOE4+).

Participants underwent a comprehensive neuropsychological battery that included the

Mini Mental State Exam [36]as a general cognitive screen, Rey Auditory Verbal Learning Test

(RAVLT)[37], and the Weschler Memory Scale-Revised (WMS-R) [38]to assess memory func-

tion, in addition to Trail Making Test A and B [39], which reflect processing speed and execu-

tive function, respectively.

Study procedures were approved by the University of Wisconsin Health Sciences institu-

tional review board and were in accordance with U.S. federal regulations. All participants pro-

vided written informed consent.

Cerebrospinal fluid analyses

CSF was collected with a Sprotte 25-or 24-gauge spinal needle at the L3/4 or L4/5 using gentle

extraction into polypropylene syringes. Samples were collected in the morning after a 12h fast.

Approximately 22mL of CSF were combined, gently mixed and centrifuged at 2000g for 10

minutes. Supernatants were frozen in 0.5mL aliquots in polypropylene tubes and stored at

-80˚C. Samples were analyzed for T-tau, P-tau181 and the 42 amino acid form of amyloid β
(Aβ42) using INNOTEST enzyme-linked immunosorbent assays (Fujiurebio, Ghent Belgium).
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Soluble α- and β-cleaved amyloid precursor protein (sAPPα and sAPPβ, respectively) and

MCP-1 levels in CSF were measured using the Meso Scale Discovery technique (Meso

Scale Discovery, Gaithersburg, MD, USA). YKL-40 was determined using a sandwich

enzyme-linked immunosorbent assay (ELISA) (R&D Systems, Minneapolis, Minn., USA).

CSF NFL was measured with a sandwich ELISA method (NF-light ELISA kit, UmanDiag-

nostics AB, Umeå, Sweden). Board-certified laboratory technicians who were blinded to

clinical diagnosis performed all analyses on one occasion. All samples were analyzed

according to protocols approved by the Swedish Board of Accreditation and Conformity

Assessment (SWEDAC) using one batch of reagents (intra-assay coefficients of variation

<10%). Individual biomarkers as well as biomarker ratios were entered into the statistical

analyses as predictor variables.

Magnetic resonance imaging

Acquisition. Diffusion-weighted imaging was completed on a 3-Tesla MR750 Discovery

scanner (General Electric Healthcare, Waukesha, WI) using an 8-channel receive-only head

coil. Separate diffusion scans were acquired for the DTI and FWE-DTI model fits. For the

FWE-DTI scan, multiple nonzero b-values were acquired [40]: (number of images x b-value

s/mm2): 7 x 0, 6 x 300, 21 x 1200, and 24 x 2700 s/mm2. For the DTI scan, 8 non-diffusion

weighted volumes were acquired along with 40 diffusion encoding directions at a b-value of

1000 s/mm2 were acquired. Other pertinent parameters were: TR = 6500 ms (FWE-DTI) or

8000 ms (DTI), TE = 102 ms (FWE-DTI) or 67.8 ms (DTI), slice orientation: axial, slice thick-

ness = 3 mm, and in-plane resolution = 2.5 mm x 2.5 mm interpolated to 0.9735 mm x 0.9735

mm.

MRI processing and analysis. Image analyses of both DTI and FWE-DTI used both

region-of-interest (ROI) and voxel-wise methods. ROIs were generated using tractography

methods. The primary outcome measures for DTI were fractional anisotropy (FA), a measure

of directional water diffusion that is highly sensitive to microstructural features including axo-

nal density, diameter, and myelination, and mean diffusivity (MD), a measure of isotropic dif-

fusion that is sensitive to cellular structure, necrosis, and edema [6,41]. These were compared

to FA and MD generated using FWE-DTI. Additionally, we conducted analyses on f-value

generated with FWE-DTI, further described below. The processing steps for all data sets

included movement and eddy current correction, gradient direction correction, and brain

extraction before fitting the respective models. Eddy current correction and brain extraction

was performed using the FSL toolkit.

FWE-DTI. The FWE-DTI signal model [42] is described by

Si ¼ S0½ð1 � f Þexpð� big
T
i DgiÞ þ fexpð� bDisoÞ� ð1Þ

where Si and S0 are the signal from the i-th diffusion and non-diffusion weighted measure-

ments, respectively, Diso = 3 x10-3mm2/sec is the isotropic free water diffusivity, D is the tissue

diffusion tensor, bi and gi are the diffusion-weighting amplitude (in mm2/s) and unit gradient

encoding vector, respectively. In this implementation, the use of two non-zero b-values greatly

simplifies the parameter space allowing accurate and stable diffusion measures even without

spatial constraints and assumptions.

As separate scans were used for each of the diffusion models, all processing procedures

through template construction were carried out in parallel, independent processing streams.

The FWE-DTI and DTI models were fit in each subject’s native space. Subject specific tem-

plates were then created using DTI-TK http://www.nitrc.org/projects/dtitk/, as a means to

leverage the full tensor information for optimal normalization[43–45].
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Tractography. Whole-brain tractography was performed using the fiber assignment by

continuous tracking (FACT) algorithm [46] as implemented in the Camino software package

(http://cmic.cs.ucl.ac.uk/camino/). Tracts were seeded at the center of every voxel with an FA

greater than or equal to 0.3. Specific tracts were then reconstructed by constraining viable

fibers through the use of targeted inclusion and exclusion ROIs. An FA threshold of 0.3 and a

curvature threshold of 60 degrees over 5 mm were used as stopping criteria. Visualization was

carried out using TrackVis [47].

The tractography was carried out utilizing the tensor fitting from the FWE-DTI scheme.

For each individual subject, the DTI scan was aligned to the native FWE-DTI scan. In this

way, the DTI diffusion metrics could be projected onto the tracts reconstructed using

FWE-DTI tensors. Using the FWE-DTI tensors instead of DTI tensors ensured a more full

reconstruction of the fornix [48]. The metrics of interest for FWE-DTI were the FA, MD, and

f-value. Standard DTI analyses were carried out for FA and MD. These metrics were calculated

by taking the average value over all voxels, which intersected some portion of the reconstructed

tracts.

ROIs were drawn in the template space and subsequently warped back to the native spaces

to use as a seed point for deterministic tractography. Native-space tractography reconstruc-

tions were performed in brain regions known to be affected by AD [49–54], including the cor-

pus callosum (CC), fornix, and cingulum. A single ROI defined on the midsagittal fractional

anisotropy (FA) image was used to define the corpus callosum, Fig 1. This was further subdi-

vided into five regions using the scheme proposed by Hofer and Frahm, based on fiber projec-

tion regions [55]. These regions were prefrontal (CC-I), premotor and supplementary motor

(CC-II), primary motor (CC-III), primary sensory (CC-IV), and parietal, temporal, and visual

(CC-V). The fornix was delineated based on intersection with two primary ROIs in the col-

umns and body of the fornix and one of two secondary ROIs in the left and right crux [56], Fig

2. The superior portion of the right and left cingulum bundles were defined by tracts that pass

through a pair of ROIs–anterior above the corpus callosum genu and posterior above the cor-

pus callosum splenium [57,58], see Fig 2.

ROI statistical analysis. The mean value of each diffusion metric was extracted for each

ROI for statistical analysis. For the fornix and cingulum bundles, the left and right structures

that were separately defined above were merged created a single ROI for each structure. The

metrics of interest were FA and MD for DTI as well as FA, MD, and f-value for the FWE-DTI

acquisition. Analysis was carried out by fitting a generalized linear model in SPSS 22 (IBM

Corp., Armonk, NY), treating the diffusion metrics as dependent variables and the CSF bio-

markers and biomarker ratios as predictors, along with age and sex as covariates. In this way,

Fig 1. Seed ROIs and example segmentation of the corpus callosum overlaid on an MNI T1-weighted template. The

CC was segmented into the following five regions: CC-I (yellow), CC-II (red), CC-III (blue), CC-IV (orange), and CC-V (green).

The middle image shows a streamline reconstruction of the CC with DEC encoding based on the primary eigenvector

direction. The rightmost image shows the same reconstruction with color determined by the seed ROI from which the tract

originated.

https://doi.org/10.1371/journal.pone.0173982.g001
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the effect of each biomarker or ratio of markers was analyzed separately on each of the seven

tracts and metrics of interest. As a means of controlling for multiple comparisons, a false dis-

covery rate threshold of p� 0 .05 was utilized [59].

Voxel-based analysis. In addition to the tractography analysis, a voxel-based analysis

(VBA) was performed across white matter constrained by white matter mask. This mask was

defined as all voxels for which FA� 0.2. Given its importance in AD and susceptibility to early

pathology, a separate VBA analysis was also conducted on the hippocampus using a mask

based on the Desikan probabilistic structural atlas [60–63]. This atlas, which is in Montreal

neurological institute (MNI) standard space, was warped to the population atlas space using

an affine registration of an accompanying MNI space FA map to the population space FA

map.

The VBA analysis utilized nonparametric permutation testing using the randomize func-

tion in FSL [64] along with threshold free cluster enhancement [65]. Prior to the VBA, all met-

ric maps were smoothed with a 4mm full width half max Gaussian smoothing kernel. As with

the tractography analysis, the effect of age and sex was controlled and the main effect of each

biomarker on the diffusion metrics of interest was tested. For each permutation test, 25,000

permutations were carried out. Multiple comparisons were accounted for through the use of a

family wise error threshold of p� 0 .05. Once again, this analysis was carried out for the

Fig 2. The ROIs used to define the fornix (top row) and superior cingulum (bottom row) in template space. Fornix

tracts were reconstructed if they passed through the columns (green), body (blue) and either the right crux (red) or left crux

(yellow). Cingulum tracts were reconstructed if they passed through an anterior ROI (left: yellow, right: purple) and a posterior

ROI (left: orange, right: green).

https://doi.org/10.1371/journal.pone.0173982.g002
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FWE-DTI FA, MD, f-value, and the DTI FA and MD. While all analysis took place in the pop-

ulation template space, these maps were warped to MNI via the inverse warp used for the hip-

pocampus map for standardized reporting and visualization.

Cognitive analysis. A post-hoc analysis was performed to determine whether white mat-

ter impacted by preclinical AD pathology in turn underlies worse cognitive test performance.

To test this, we used regression analysis to examine the relationship between white matter

microstructure, and MMSE, Trails A, Trails B, RAVLT total, RAVLT delayed, and Wechsler

Memory Scale total. As will be reported below, CSF biomarkers of AD were most closely asso-

ciated with f-value, thus f-value served as the predictor variable in this analysis. To reduce the

number of comparisons, we averaged the f-value extracted from all significant clusters and

used multiple regression to test the relationship between mean f-value and the cognitive tests.

Covariates were age, sex, education, and the time between MR scan and cognitive testing. Cor-

rection for multiple comparisons used Bonferroni correction, where there are 6 tests [.05/6],

and a corrected p = .008.

Results

Demographics, cognitive function, and CSF

A summary of the cohort demographics is included in Table 1. Participants were non-

demented. Mini-Mental Exam scores were largely in the range of normal, with the exception

of one participant who scored 25 (3 scored 27, 8 scored 28, 16 scored 29, and the rest scored

30). The one participant who scored 25 on MMSE scored was within normal range on the Rey

Auditory Verbal Testing delayed measure and thus remained in the analysis.

Age was associated with NFL only, as shown in Table 2. One subject (male, APOE4+, FH-)

was censured based on poor image quality along with an especially high value on the NFL

assay that was more than 5.5 standard deviations above the group mean. This left 69 partici-

pants in the remainder of the analyses. Correlations with age in Table 2 were computed after

censure of the subject noted above. Several CSF markers were correlated with one another

with the strongest correlations being between sAPPα and sAPPβ (ρ = 0.954, P< 0.001) as well

as pTau181and tTau (ρ = 0.876, P < 0.001). The APOE4+ group displayed a lower (P< 0.005)

Table 1. Summary demographics, cognitive data, and CSF measures from the included participants.

Age 61.21 ± 6.16 yrs

Sex 18 male, 51 female

MMSE 29.34 ± 1.00

RAVLT Delayed 10.97 ± 2.85

RAVLT Total 52.74 ± 7.69

WMS-R Total 55.81 ± 14.69

Trails A 25.01428571 ± 8.02

Trails B 59.3 ± 22.15

sAPPα 640 ± 314 ng/mL

sAPPβ 531 ± 231 ng/mL

MCP 543 ± 119 ng/L

YKL 142076 ± 48926 ng/L

NFL 581 ± 191 ng/L

Aβ42 743 ± 194 ng/L

tTau 299 ± 112 ng/L

pTau181 41 ± 13 ng/L

https://doi.org/10.1371/journal.pone.0173982.t001
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mean Aβ42 value (655 ± 168) compared to the APOE4- group (797 ± 192). None of the CSF

markers were significantly associated with sex or parental family history of AD.

Tractography

The diffusion metrics along each tract are presented in Table 3. All DTI results showed a posi-

tive correlation between the MD and CSF biomarkers (Table 4). Of the seven ROIs investi-

gated, the ROIs situated in the posterior portions of the corpus callosum (CC-III, CC-IV, and

CC-V) were the only ones which showed an association with CSF biomarkers, including

pTau181, tTau, and YKL-40 as well as the ratio of each to Aβ42. The most robust results were

for the ratios of markers as opposed to individual markers. Table 4 contains the results from

tractography for relationships found significant at the uncorrected p = 0.05 threshold. This

table also shows the corrected critical value significance threshold level once multiple compari-

sons are considered. No correlations were significant after false discovery rate correction.

For the FWE-DTI metrics, only the f-value showed a correlation with the CSF biomarkers

(Table 5). As with DTI MD, the f-value was positively correlated with the CSF biomarkers.

However, in this case the tracts that were affected were primarily the cingulum bundles and

CC-I. The FWE-DTI f-value showed a positive relationship with pTau181, pTau181/Aβ42, tTau/

Aβ42, YKL-40/Aβ42 and sAPPβ/Aβ42.

Voxel based analysis

The voxel based analysis revealed widespread areas where diffusion metrics were related to

pTau181/Aβ42, tTau/ Aβ42 and sAPPβ/Aβ42 in both DTI and FWE-DTI analyses. For

FWE-DTI but not DTI, pTau181 was significantly correlated with diffusion measures. As

Table 2. Linear Pearson Correlation between biomarkers and age.

sAPPα sAPPβ MCP YKL NFL Aβ42 tTau pTau181

Age 0.057 0.028 0.321 0.300 0.546† -0.190 0.202 0.237

sAPPα 0.954† -0.399* 0.385* 0.053 0.229 0.516† 0.631†

sAPPβ -0.385* 0.436* 0.040 0.328 0.571† 0.663†

MCP 0.009 0.117 -0.241 -0.145 -0.318

YKL-40 0.193 0.299 0.517† 0.559†

NFL 0.095 0.319 0.314

Aβ42 0.188 0.230

tTau 0.876†

Significant correlations at P < 0.05 (*) and P < 0.001 (†) after Bonferroni correction are noted.

https://doi.org/10.1371/journal.pone.0173982.t002

Table 3. Diffusion metrics of tracts. All values are listed as mean ± standard deviation.

FWE-DTI DTI

F MD (x10-3 mm2/s) FA MD (x10-3 mm2/s) FA

CC-I 0.40 ± 0.024 0.042 ± 0.025 0.67 ± 0.038 1.09 ± 0.115 0.34 ± 0.073

CC-II 0.46 ± 0.048 0.40 ± 0.048 0.69 ± 0.045 1.18 ± 0.126 0.31 ± 0.059

CC-III 0.45 ± 0.037 0.38 ± 0.037 0.73 ± 0.049 1.14 ± 0.118 0.34 ± 0.058

CC-IV 0.47 ± 0.044 0.39 ± 0.016 0.71 ± 0.054 1.18 ± 0.142 0.33 ± 0.051

CC-V 0.45 ± 0.025 0.40 ± 0.019 0.76 ± 0.042 1.18 ± 0.108 0.38 ± 0.060

Fornix 0.72 ± 0.060 0.47 ± 0.022 0.72 ± 0.071 1.76 ± 0.206 0.25 ± 0.025

Cingulum 0.37 ± 0.029 0.42 ± 0.024 0.65 ± 0.079 1.02 ± 0.101 0.29 ± 0.055

https://doi.org/10.1371/journal.pone.0173982.t003
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detailed in Tables 6 and 7, associations were largely found in temporal and frontal white mat-

ter. Similar to the tractography analysis, the only metrics which showed a significant relation

to the CSF biomarkers were DTI MD and FWE-DTI f-value. Likewise, the relationship was

positive for all of the clusters identified. An additional summary of the overall extent of signifi-

cant findings may be found in Table 8.

The spatial distribution of clusters for which FWE-DTI f-value or DTI MD were correlated

with pTau181/Aβ42 is displayed in Figs 3 and 4, respectively. Scatter plots corresponding to the

single largest clusters from Figs 3 and 4 are shown in Figs 5 and 6. For both imaging methods

the largest cluster includes the left temporal lobe though with FWE-DTI the contiguous cluster

is spread diffusely beyond. Regions where significant associations were found overlapped

among comparisons. Tables 9 and 10 show the overlap between the significant cluster areas

related to each biomarker or biomarker ratio. As shown in Table 9, with the exception of the

clusters due to pTau181 alone, there was substantial overlap between all FWE-DTI clusters with

one another; similarly, as shown in Table 10, significant regions of association in the DTI MD

analysis also showed substantial overlap. No significant effects were observed for either diffu-

sion method within the hippocampus.

Table 4. DTI tractography results.

Method Tract Metric Predictor Uncorrected P FDR alpha

DTI CC-IV MD pTau181 / Aβ42 0.0005 0.0002

DTI CC-IV MD YKL-40/ Aβ42 0.0009 0.0005

DTI CC-IV MD tTau / Aβ42 0.0010 0.0007

DTI CC-III MD tTau / Aβ42 0.0011 0.0010

DTI CC-III MD pTau181 / Aβ42 0.0017 0.0012

DTI CC-IV MD pTau181 0.0022 0.0014

DTI CC-III MD pTau181 0.0029 0.0017

DTI CC-IV MD tTau 0.0036 0.0019

DTI CC-III MD tTau 0.0038 0.0021

DTI CC-III MD YKL-40 / Aβ42 0.0041 0.0024

DTI CC-IV MD YKL-40 0.0058 0.0026

DTI CC-V MD YKL-40 / Aβ42 0.0244 0.0029

All results with an uncorrected P� 0.05 along with the false discovery rate α value.

https://doi.org/10.1371/journal.pone.0173982.t004

Table 5. FWE-DTI tractography results.

Method Tract Metric Predictor Uncorrected P FDR

FWE-DTI CC-I f pTau181 / Aβ42 0.0005 0.0002

FWE-DTI Cingulum f pTau181 / Aβ42 0.0007 0.0003

FWE-DTI CC-I f YKL-40 / Aβ42 0.0010 0.0005

FWE-DTI CC-I f sAPPβ / Aβ42 0.0022 0.0006

FWE-DTI Cingulum f sAPPβ / Aβ42 0.0024 0.0008

FWE-DTI CC-I f tTau / Aβ42 0.0035 0.0010

FWE-DTI Cingulum f pTau181 0.0051 0.0011

FWE-DTI Cingulum f YKL-40 / Aβ42 0.0101 0.0013

FWE-DTI CC-IV f pTau181 0.0114 0.0014

FWE-DTI Cingulum f tTau / Aβ42 0.0202 0.0016

FWE-DTI CC-III f pTau181 / Aβ42 0.0359 0.0017

All results with an uncorrected P� 0.05 along with the false discovery rate α value.

https://doi.org/10.1371/journal.pone.0173982.t005
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Cognitive function and white matter microstructure

Altered white matter microstructure was not a significant predictor of cognitive test perfor-

mance. Of the six cognitive test scores assessed, only Trails B showed a modest relationship

with mean f-value (b = -.27, p = .03), but this relationship did not survive correction for multi-

ple comparisons.

Discussion

An estimated 5.4 million Americans have AD. In the absence of effective treatments for the

disease, there has been an increased focus on understanding the pathological features that

occur in the earliest stages of the disease. Pathological features identified at an early stage may

be targets for treatment prior to significant cell loss, in addition to providing utility for identi-

fying candidates for clinical trials. In this study, we tested the extent to which preclinical AD

involves alteration to white matter microstructure. White matter alterations have been

Table 6. Listing of all significant clusters for which the FWE-DTI f-value was correlated to one of the predictors.

Biomarker MNI Coordinats (x,y,z) Peak T value k (mm3) Region

pTau181 (-41, -24, -8) 4.54 140 L inferior frontal-occipital fasciculus

pTau181 (-29, -23, 23) 4.67 136 L posterior corona radiate

pTau181 (-50, -31, -20) 4.81 128 L inferior temporal gyrus white matter

tTau / Aβ42 (-35, -48, -12) 6.69 3223 L fusiform gyrus white matter

tTau / Aβ42 (-20, 45, 5) 4.73 355 L anterior corona radiate

tTau / Aβ42 (-36, -76, -5) 5.15 69 L inferior occipital gyrus white matter

pTau181 / Aβ42 (-35, -48, -12) 7.94 31689 L fusiform gyrus white matter

pTau181 / Aβ42 (38, -40, -17) 5.64 1338 R fusiform gyrus white matter

pTau181 / Aβ42 (-36, -3, -31) 5.47 1178 L inferior temporal gyrus white matter

pTau181 / Aβ42 (36, -3, 24) 5.42 522 R inferior temporal gyrus white matter

pTau181 / Aβ42 (-35, -8, -7) 4.64 379 L insular gyrus

pTau181 / Aβ42 (17, 56, 10) 5.99 135 R superior frontal gyrus white matter

pTau181 / Aβ42 (40, 12, 21) 4.38 122 R inferior frontal gyrus white matter

pTau181 / Aβ42 (-8, -12, 40) 3.13 68 L cingulate gyrus

sAPPβ / Aβ42 (-36, -49, -12) 6.21 11941 L fusiform gyrus white matter

sAPPβ / Aβ42 (-15, 49, 10) 5.71 4845 L superior frontal gyrus white matter

sAPPβ / Aβ42 (38, -40, -17) 5.72 1572 R fusiform gyrus white matter

sAPPβ / Aβ42 (-27, 22, 28) 4.8 1562 L middle frontal gyrus white matter

sAPPβ / Aβ42 (-36, -3, -32) 6.05 1306 L inferior temporal gyrus white matter

sAPPβ / Aβ42 (-32, -11, 36) 5.16 1044 L precentral gyrus white matter

sAPPβ / Aβ42 (22, 52, 5) 5.11 547 R superior frontal gyrus white matter

sAPPβ / Aβ42 (37, 1, 27) 4.92 506 R precentral gyrus white matter

sAPPβ / Aβ42 (-17, -6, 48) 3.77 450 L superior frontal gyrus white matter

sAPPβ / Aβ42 (30, 19, 27) 4.26 395 R middle frontal gyrus white matter

sAPPβ / Aβ42 (27, 43, 5) 4.17 378 R middle frontal gyrus white matter

sAPPβ / Aβ42 (-13, -25, 54) 4.91 234 L precentral gyrus white matter

sAPPβ / Aβ42 (47, -38, 30) 4.55 137 R supramarginal gyrus white matter

sAPPβ / Aβ42 (-15, 0, 58) 3.7 81 L superior frontal gyrus white matter

sAPPβ / Aβ42 (-51, -8, 20) 4.82 78 L postcentral gyrus white matter

Information presented for each cluster includes diffusion metric and the related biomarker, relevant white matter region, MNI coordinates (in mm) of the

peak t-value, and the cluster size (k). An explicit cluster size threshold is not needed when using TFCE as this threshold is strictly for reporting.

https://doi.org/10.1371/journal.pone.0173982.t006
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observed in presymptomatic familial AD [66,67], in addition to being associated with risk fac-

tors for sporadic AD [51,68–70]. Thus, microstructural white matter changes may be an early

and measurable feature of the disease, and new methods for modeling complex diffusion are

expected to be sensitive to this early pathology. We found significant associations between

markers of AD pathology measured in CSF, and white matter microstructure, especially as

indicated by FWE-DTI f-value. In particular, elevated ratios of pTau/Aβ42 and tTau/Aβ42 were

robustly associated with higher free water or f-value in frontal and temporal lobe white matter.

A novel marker of the amyloid pathway (sAPPβ) also showed a robust association with altered

microstructure as shown on FWE-DTI, especially when combined as a ratio with Aβ42. A simi-

lar correlation was seen with sAPPα as sAPPα and sAPPβ are themselves highly correlated.

It was previously shown in a smaller group of participants (n = 42) that tau and Aβ42 ratios

are associated with MD[10]. Interestingly, the results of the current study also showed that

MD derived from standard DTI was associated with higher pTau/Aβ42 in CSF, with peaks of

association in temporal lobe white matter. Of note, the current study extends these findings by

showing that FWE-DTI appears to demonstrate greater sensitivity to associations between AD

pathology and white matter microstructure compared to standard DTI. Further, an analysis of

hippocampal gray matter showed no association, suggesting that preclinical AD pathology

may be detectable in white matter prior to changes in hippocampal microstructure. Gold et al

[49] have previously tested the relationship between CSF markers of AD and both white matter

alteration and hippocampal volume. While effects were observed in white matter, no relation-

ship was observed between AD pathology as shown on CSF and hippocampal volume. The

results of the current study suggest that indeed, effects on white matter may occur earlier than

Table 7. Listing of all significant clusters for which the DTI MD was correlated to one of the predictors.

Biomarker MNI Coordinats (x,y,z) Peak T value k (mm3) Region

tTau / Aβ42 (-50, -21, -19) 5.39 3913 L parietal operculum

tTau / Aβ42 (24, 25, -13) 5.2 497 R posterior orbital gyrus white matter

tTau / Aβ42 (36, 2, -33) 5.26 381 R inferior temporal gyrus white matter

tTau / Aβ42 (54, -24, -16) 4.75 353 R middle temporal gyrus white matter

tTau / Aβ42 (37, -7, -5) 5.45 130 R insular gyrus

tTau / Aβ42 (35, 1, 19) 4.7 100 R precentral gyrus white matter

pTau181 / Aβ42 (-53, -33, -15) 6.36 5640 L inferior temporal gyrus white matter

pTau181 / Aβ42 (36, 1, -33) 5.8 491 R inferior temporal gyrus white matter

pTau181 / Aβ42 (28, 14, -8) 5.24 467 R inferior fronto-occipital fasciculus

pTau181 / Aβ42 (36, 3, 18) 5.5 351 R precentral gyrus white matter

pTau181 / Aβ42 (35, -6, 23) 5.13 255 R precentral gyrus white matter

pTau181 / Aβ42 (52, -21, -23) 5.04 194 R inferior temporal gyrus white matter

sAPPβ / Aβ42 (-53, -33, -15) 6.15 5342 L middle temporal gyrus white matter

sAPPβ / Aβ42 (51, -21, -23) 5.22 96 R inferior temporal gyrus white matter

Information presented for each cluster includes diffusion metric and the related biomarker, relevant white matter region, MNI coordinates (in mm) of the

peak t-value, and the cluster size (k). An explicit cluster size threshold is not needed when using TFCE as this threshold is strictly for reporting.

https://doi.org/10.1371/journal.pone.0173982.t007

Table 8. The total extent of significant voxels (mm3).

pTau181 pTau181/Aβ42 tTau181/Aβ42 sAPPβ/Aβ42

FWE-DTI: f-value 404 35509 3701 25263

DTI: MD ~ 7558 5398 5572

https://doi.org/10.1371/journal.pone.0173982.t008
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hippocampal alteration, and further, that this is the case even when diffusion weighted mea-

sures are used, which may be more sensitive to subtle change compared to T1-weighted

imaging.

The FWE model has been applied previously to a variety of cohorts including older individ-

uals with mild cognitive impairment [71–73]. In these instances, the model was applied with

the goal of removing confounding CSF effects, as it was here. Some have referred to the f-value

as an indicator of atrophy [74,75]. However, the results here indicate that the f-value may be

something more than simply the CSF fraction. Parenchymal f-values reported here (~40%) are

considerably higher than published reports from a similarly aged cohort (~7–9%) [72]. It is

important to consider that the previously mentioned studies use a single b = 1000 s/mm2 diffu-

sion acquisition and heavily regularized fitting scheme [76]. It is likely that the difference in f-

value stems from the difference in acquisition schemes. Pasternak and colleagues have noted

that using multishell acquisitions results in differences in estimated f-value [16]. While the dif-

ference presented here is much greater, so is the deviation in acquisition scheme. We also note

that Bruggen et al. observed similar high free water values in their higher b-value multishell

study of Alzheimer’s disease[77]. It is well documented that diffusion in tissue at high b-values

is decidedly non-Gaussian [78], which may be a significant factor in the elevated f-value.

Fig 3. Higher levels of pTau181/Aβ42 were associated with higher FWE-DTI f-value throughout white

matter. The red-yellow color scale above shows the familywise error corrected P-value. The underlay image

is a T1w MNI template with 1 mm isotropic resolution.

https://doi.org/10.1371/journal.pone.0173982.g003
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Non-zero f-values that are measured in tissue distal from CSF may reflect the relative vol-

ume of extracellular space in the tissue. In the context of AD, this signal could be due to loss of

axons, or loss of myelin in brain white matter. Roher et al have demonstrated substantial alter-

ation in both myelin and axons in familial and sporadic AD [79,80]. The pathology of AD

includes hyperphosphorylation of tau protein, resulting in axonal abnormalities and displace-

ment of tau to neuronal cell bodies [81]. Markers in this study that were related to tau (tTau

and pTau), in addition to NFL, were strongly associated with white matter microstructural fea-

tures as shown on FWE-DTI. Given that tau and NFL are components of the axonal cytoskele-

ton, these results may suggest that the f-value is sensitive to early axonal degeneration. CSF

markers and advanced multi-compartment imaging are expected to shed further light on the

temporal sequence of axonal and myelin alteration in the course of AD [82].

In this study, we found robust associations between CSF biomarkers reflecting core AD

pathology, associated features, and white matter microstructure. Amyloid pathology has been

linked with axonal degeneration. Hippocampal neurons cultured in vitro show axonal degen-

eration due to Aβ42 toxicity, an event that occurs prior to cell body death [83]. Other studies

suggest that pathological changes in AD include leakage of amyloid from the extracellular

space into the neuron, for example, at the axon hillock [84], causing subsequent axonal pathol-

ogy. Krstic et al. review evidence that inflammation is involved in increasing neuronal cell vul-

nerability [85], and indeed, the results of the tractography analysis showed a positive

Fig 4. Higher levels of pTau181/Aβ42 were associated with higher DTI MD primarily in the left and right

temporal lobes. The color scale, underlay, and presented slices are the same as those in Fig 3.

https://doi.org/10.1371/journal.pone.0173982.g004
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association between MD and YKL-40, a marker of microglial activation—suggesting inflam-

mation—as well as the ratio of YKL-40 to Aβ42. The results did not survive correction for mul-

tiple comparisons, but are suggestive. Additional studies are needed to determine the

importance of biomarkers of inflammation for predicting development of dementia due to

AD.

It is also of interest that higher sAPPβ/Aβ42 showed a widespread association with higher f-
value across bilateral temporal and frontal white matter. Soluble Aβ-40 and Aβ-42 are elevated

in white matter brain tissue assessed post mortem in AD patients compared to control [86].

APP cleavage by Beta-secretase 1 (BACE1) produces a membrane-bound fragment of APP

that when further cleaved by γ-secretase yields several Aβ species including Aβ42 ultimately

leading to formation of deposited amyloid plaques [87]. Products of the β-secretase pathway

include increases in amyloid-β oligomers, which may be more toxic to neuronal cells than

deposited plaques [88]. While CSF sAPPβ is not a direct measure of the oligomeric form of

Aβ, the sAPPβ/Aβ42 ratio may reflect both increased proteolytic processing of APP through

the amyloidogenic pathway, as well as increased deposition of amyloid, providing a better

marker of amyloid pathology than either measure alone. The ratio may also account for inter-

individual differences in APP production. To the author’s knowledge, this is the first study

showing a link between elevated β-secretase cleavage of APP and in vivo white matter abnor-

malities as shown on diffusion-weighted imaging in humans.

Fig 5. The largest contiguous cluster for which FWE-DTI f-value correlated with pTau181/Aβ42. All

other clusters were masked out of the image. The color scale is the same as that of Fig 3.

https://doi.org/10.1371/journal.pone.0173982.g005
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Our study had a few limitations that deserve mention. The cohort was predominantly

female (51 of 69 participants) with little male representation. Additionally, the parameters for

the HYDI scan used for fitting the FWE-DTI model differs from the published “optimal” scan

for this model [40]. As the DTI and FWE-DTI scans were independent, the acquisitions had

different numbers of total images, as well as a different signal to noise ratio per image.

Conclusion

The findings demonstrated that markers of AD pathology are associated with microstructural

white matter alteration. In an improvement upon prior DTI studies, we employed a FWE-DTI

approach to model complex water diffusion in cerebral white matter. Markers of elevated AD

Fig 6. The largest contiguous cluster for which DTI MD correlated with pTau181/Aβ42. All other clusters

were masked out of the image. The color scale is the same as that of Fig 3.

https://doi.org/10.1371/journal.pone.0173982.g006

Table 9. The percent overlap between the significant finding maps using the FWE-DTI f-value.

f ~ pTau181/Aβ42 f ~ tTau/Aβ42 f ~ sAPPβ/Aβ42

f ~ pTau181 94% 36% 80%

f ~ pTau181/Aβ42 100% 80%

f ~ tTau/Aβ42 93%

These are computed as the percent of the smaller map, which overlaps with the larger map.

https://doi.org/10.1371/journal.pone.0173982.t009
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pathology were robustly associated with altered diffusion in bilateral temporal and frontal

lobes, regions known to be involved in early stages of AD. These findings add to a growing

body of literature indicating that white matter degeneration is likely an early and measurable

feature of AD.
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