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Abstract

The oriental river prawn (Macrobrachium nipponense) is mainly distributed in East Asia. The

phylogeography, population genetic structure and historical demography of this species in the

East Asia were examined by using partial sequences of the cytochrome oxidase subunit I

(COI) and 16S rRNA in mitochondrial DNA. Ten populations that included 239 individuals

were collected from Taiwan (Shihmen Reservoir, SMR, Mingte Reservoir, MTR and Chengch-

ing Lake Reservoir, CLR), mainland China (Taihu Lake, TLC, Min River, MRC, Jiulong River,

JRC and Shenzhen Reservoir, SRC), Japan (Biwa Lake, BLJ and Kasumigaura Lake, KLJ)

and Korea (Han River, HRK). The nucleotide diversity (π) of all individuals was 0.01134, with

values ranging from 0.0089 (BLJ, Japan) to 0.01425 (MTR, Taiwan). A total of 83 haplotypes

were obtained, and the haplotypes were divided into 2 main lineages: lineage A included the

specimens from BLJ, KLJ, CLR, MTR, TLC, MRC and JRC, and lineage B comprised the

ones from HRK, SRC, SMR, MTR, TLC, MRC and JRC. Lineage A could be further divided

two sub-lineages (A1 and A2). Individuals of lineage A2 were only from TLC. Demographic

expansion was observed in each lineage, starting within the second-to-latest interglacial

period for lineage A and within the last glacial period for lineage B. All FST values among the

ten populations were significantly different, except for the values between MRC and JRC, and

SMR and SRC. The phylogeography and genetic structure of M. nipponense in East Asia

might be influenced by Pleistocene glacial cycles, lake isolation and human introduction. The

possible dispersal routes of M. nipponense in the East Asia were also discussed.

Introduction

The complex geological events and climatic history of various regions helped shape current

phylogeographical patterns [1, 2]. Therefore, the current population genetic structure of a
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specific species had been influenced by the interactions of biology, geography, and climatic

shifts [3]. During the last glacial maximum, the sea level was 130–150 m lower than the present

level in the East China Sea and 100–120 m lower in the South China Sea [4, 5]. Consequently,

the entire Bohai gulf, the Yellow Sea, and the Tsushima and Taiwan Straits were exposed, and

the islands of Taiwan, Japan and Korea were linked to mainland China [6]. Moreover, recent

studies have shown that there are many rivers that were separated by the sea but became con-

nected to one another during the glacial period, and this resulted in gene flow between differ-

ent river systems [7]. Therefore, the present genetic structures of populations in the marginal

seas of the East Asia have been greatly affected by ice ages.

The gene flow of inland freshwater between populations is obviously lower than the one

between populations in estuaries or oceans, and thus historical phylogeographical analyses of

freshwater species permit strong inferences regarding the biotic and geological evolution of a

region [8, 9]. More recently, the climatic change can create great changes in species’ geographi-

cal distributions and biotic richness from some theoretical and empirical studies, and the

advent of DNA technology provides proper markers to reflect the genetic effects of adaptation

as well. [2, 3]. Mitochondrial (mt) DNA has many attributes that make it particularly suitable

for population genetic studies, including its rapid rate of evolution, a lack of recombination,

and its maternal inheritance [10, 11].

The oriental river prawn (Macrobrachium nipponense) originated in mainland China about

one million years ago [12], and is mainly distributed over East Asian regions including main-

land China, Japan, Korea, and Taiwan. This species has the potential for aquaculture because it

can reproduce easily and is highly tolerant of various environments [13]. In fact, M. nipponense
is considered as one of the most important freshwater prawns for aquaculture in China [14].

Many studies on the population structure of the oriental river prawn were conducted in

East Asia, but the populations analyzed in those papers were collected from one specific coun-

try [15]. One of the newest paper using mitochondrial DNA sequences to determine the popu-

lation structure of this species was performed in Taiwan [16], and two different lineages were

found. Various DNA markers or techniques including RAPD, ISSR and COI gene were

applied to determine the population structure of this species in China [17, 18, 19, 20, 21, 22].

Two different lineages were also found. Different genetic markers were also applied to eluci-

date the population genetic structure of this species in Japan [13, 14, 23], and different clades

were found. However, the phylogeography and the population genetic structure of M. nippo-
nense from different area in East Asia is still unknown. In this study, we used mtDNA fragment

sequences of cytochrome oxidase subunit I (COI) and the 16S rRNA gene to reveal the phylo-

geography, the population genetic structure and historical demography of the oriental river

prawn populations in East Asia.

Materials and methods

Sample collection

All samples were collected in open and public waters, and thus specific permission is not nec-

essary. The specimens were collected by five bait traps each reservoir and each estuary from

the evening 17:00 to next morning 7:00 during successive 3 days in winter season, from

December 2013 to March 2014. Ten populations that included 239 individuals from Taiwan

(Shihmen Reservoir, SMR, Mingte Reservoir, MTR and Chengching Lake Reservoir, CLR),

mainland China (Taihu Lake, TLC, Min River, MRC, Jiulong River, JRC and Shenzhen Reser-

voir, SRC), Japan (Biwa Lake, BLJ and Kasumigaura Lake, KLJ) and Korea (Han River, HRK)

were collected respectively (Fig 1; Table 1). The specimens were immediately iced or frozen

after capture and kept at -75˚C for DNA extraction.

Population structure of the oriental river prawn
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DNA extraction, amplification and sequencing

Total genomic DNA was extracted from pereopod muscle using QIAamp DNA Mini Kit.[24].

Two different fragments (16S rRNA and COI) of mtDNA were amplified and sequenced. The

Fig 1. Sampling localities and haplotypes frequencies of Macrobrachium nipponense in Taiwan. Numbers of lineages A and B in each sampling

site are also shown in Table 1.

doi:10.1371/journal.pone.0173490.g001
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16S rRNA and COI sequences were amplified using 1471 (5’-CCT GTT TAN CAA AAA CAT-
3’) and 1472 (5’-AGA TAG AAA CCA ACC TGG-3’) [25], and COI-F (TTT ATC TTC GGA
GCG TGA GC) and COI-R (AGT TAT TCC TGG GGC TCG TAT G) [26] primers, respectively.

Thermal cycling was performed on a GeneAmp 2400 thermal cycler (Perkin-Elmer, Norwalk,

CT, USA), and PCR conditions consisted of 39 cycles of denaturation at 95˚C for 50 s, anneal-

ing at 50˚C for 1 min, and extension at 72˚C for 1.5 min. An initial denaturation step at 95˚C

for 5 min and a final extension holding at 72˚C for 10 min were included in the 1st and last

cycles, respectively. The PCR product was separated by electrophoresis on 1.5% agarose gels,

purified with the Gene Clean II kit (Bio101, Vista, CA, USA), and sequenced on an ABI 377

DNA sequencer (Applied Biosystems, Inc.; Foster City, CA, USA).

Sequence analyses

All sequences were aligned using MegAlign (DNASTAR, LaserGene, WI, USA). The number

of variable and parsimony informative sites, base composition, haplotype diversity and nucleo-

tide diversity [27] were calculated using DnaSP version 5.00 [28].

Part of the sequences of the 16S rRNA and COI genes were concatenated in the following

analyses. Phylogeographic analyses of 16S rRNA and COI genes were carried out by the neigh-

bour-joining (NJ) and maximum likelihood (ML) methods, respectively, by MEGA 6 [16, 29].

Bootstrap analyses with 1,000 replicates were used to evaluate the phylogenetic relationships of

all haplotypes. The optimal substitution model was determined using MEGA. A network of

haplotypes was also constructed using the median-joining method [30] in Network version

4.6.1.3, available at http://www.fluxus-engineering.com. The historical demographic expansion

was investigated by examining the frequency distributions of pair-wise differences between

sequences (mismatched distribution) with ARLEQUIN [16]. The approximate age of the pop-

ulation or lineage was estimated with the formula A = μπ [31]. A is the age of the population or

lineage, π is nucleotide diversity and μ is μ (the mutation rate) x generation time; the approxi-

mate dates of population expansion were estimated with the formula τ = 2μT [32], where T is

the time since expansion, τ is the expansion time, and 2μ is μ (the mutation rate) x generation

time x the number of bases sequenced. The average divergence rate of 1.17–1.66% per million

years and a generation time of one year were used [33].

To examine the genetic differentiation between any two populations, pair-wise FST statistics

were estimated by ARLEQUIN version 3.5 [34]. A dendrogram of the ten sampling sites was

also constructed using the unweighted pair-group method with arithmetic means (UPGMA)

based on the FST values. The population structure was also assessed by an analysis of molecular

variance (AMOVA; [35] in ARLEQUIN). Various groupings of these populations were sug-

gested by an UPGMA tree of these ten populations. The grouping that revealed the maximal

value of FCT and significantly differed from a random organization of similar groupings was

assumed to represent the most-probable geographic subdivisions [36]. The significance test of

the statistical result was evaluated by a permutations test with 10,000 random permutations.

Tajima’s D [37] was used to check for deviations from neutrality, indicating whether popu-

lation expansion had occurred in the past. Fu’s Fs test [38] was also carried out to assess the

evidence for population expansion using DnaSP. In addition, population expansion was also

investigated with a mismatch analysis to examine the frequency distributions of the nucleotide

difference as a function of frequency using DnaSP.

The Mantel test [39], available in ARLEQUIN, was used to test for isolation by distance. We

used the pair-wise FST values and the corresponding pair-wise geographical distances as the

input data, and 1000 permutations were performed to determine the level of significance. The
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approximate geographic distances between sampling locations were used as the minimum dis-

tance map.

Results

In total, 239 specimens were sequenced. The size of the 16S rRNA fragment was 421 bp, with

78 variable sites and 37 parsimony informative sites, resulting in 38 unique haplotypes (S1

Dataset). All sequences were deposited in GenBank, with accession numbers KU235597—

KU235646, KU235699—KU235720 and KY084569—KY084735. No gap was detected. The fre-

quency of the nucleotide composition showed an AT bias (with G + C contents of 33.7%). The

size of the COI fragment was 371 bp; there were 42 variable sites and 31 parsimony informative

sites, resulting in 47 unique haplotypes (S2 Dataset). All sequences were deposited in GenBank,

with accession numbers KU235799—KU235848, KU235901—KU235922 and KY092174—

KY092340. The frequency of nucleotide composition showed an AT bias (with G + C contents

of 39.8%).

The following results were obtained by analyzing the combined sequences of the 16S rRNA

and COI genes (S3 Dataset). The haplotype diversity (h) of all ten populations was 0.956, with

values that ranged from 0.572 (BLJ) to 0.964 (MTR) (Table 1). The nucleotide diversity (π) of

all populations was 0.011, with values that ranged from 0.001 (BLJ) to 0.014 (MTR) (Table 1).

A total of 83 haplotypes was detected in 239 specimens. The most common allele was shared

by 36 individuals from the HRK (17), SMR (10), MRC (3), JRC (3) and SRC (3) populations.

The second most common allele was shared by 20 individuals from the populations of MRC

(14) and JRC (6). The third most common alleles were shared by 17 individuals from the popu-

lations of SMR (12) and SRC (5).

The best-fitting model explaining our data was the K2 model. This model was used for NJ

and ML reconstructions and AMOVA analyses. A phylogenetic tree of all haplotypes is shown

in Fig 2. The results of both the NJ and ML trees were very similar. Two distinct lineages (A

and B) were found. Lineage A might be further divided into two sub-lineages (A1 and A2).

Bootstrap values are 77 and 75 for the NJ and ML trees between lineage A and lineage B,

respectively. The bootstrap values are 74 and 66 for the NJ and ML trees between lineage A1

and lineage A2, respectively. The network for all specimens (Fig 3) supported the result

obtained from these phylogenetic trees. Two sub-lineages were also found in lineage A in the

network. The distribution of specimen of lineages A and B for different populations are also

shown in Fig 1 and Table 1. All individuals from CLR, KLJ and BLJ were only included in line-

age A, and all individuals from SMR, SRC and HRK were only involved in lineage B. All speci-

men from the other four sites were distributed into the two lineages at the same time.

The haplotype diversities (h) of lineages A, A1, A2 and lineage B were 0.955, 0.943 0.882 and

0.866, respectively. The nucleotide diversities (π) of lineages A, A1, A2 and lineage B were

0.009, 0.008, 0.006 and 0.005, respectively (Table 1). The τ values of lineages A, A1, A2 and line-

age B were 4.713/2μ, 4.237/2μ, 0.812/2μ, 1.108/2μ generations, respectively. The average muta-

tion rate of 1.42% / myr and a generation time of 1 year were used to calculate the time of

expansion. The estimated time of expansion for lineage A was 209,533 years ago, A1 was

188,371 years ago, and A2 was 36,100 years ago. For lineage B, the estimate was 49,248 years

ago.

All FST values among the ten populations were significant, except for the ones between

MRC and JRC and between SMR and SRC (Table 2). The UPGMA tree of these ten sampling

areas could be divided into two main groups (Fig 4); the first group included the SMR, HRK,

SRC, MRC and JRC, and the second group included the other five populations. The second

group may be further divided into four subgroups; the first subgroup included the CLR and

Population structure of the oriental river prawn
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Fig 2. Neighbour-Joining (NJ) tree based on mtDNA 16S rRNA and COI sequences with bootstrap

values (NJ/ML, respectively) shown adjacent to the corresponding two lineages for Macrobrachium

nipponense. The numbers at the nodes indicate bootstrap values (expressed as percentage) with 1,000

replicates.

doi:10.1371/journal.pone.0173490.g002
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Fig 3. The haplotype network of Macrobrachium nipponense in all sampling sites.

doi:10.1371/journal.pone.0173490.g003

Table 2. Matrix of pairwise FST (below diagonal) and P values (above diagonal) among 10 populations

of Macrobrachium nipponense in East Asia.

SMR MTR CLR BLJ KLJ TLC MRC JRC SRC HRK

SMR - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.063 0.000

MTR 0.553 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CLR 0.781 0.172 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000

BLJ 0.900 0.425 0.635 - 0.000 0.000 0.000 0.000 0.000 0.000

KLJ 0.882 0.227 0.369 0.776 - 0.000 0.000 0.000 0.000 0.000

TLC 0.592 0.297 0.473 0.549 0.553 - 0.000 0.000 0.000 0.000

MRC 0.297 0.477 0.687 0.806 0.791 0.455 - 0.189 0.000 0.000

JRC 0.265 0.380 0.584 0.699 0.678 0.352 0.010 - 0.000 0.000

SRC 0.035 0.434 0.663 0.787 0.757 0.460 0.222 0.194 - 0.000

HRK 0.170 0.590 0.784 0.888 0.874 0.599 0.231 0.222 0.167 -

doi:10.1371/journal.pone.0173490.t002

Population structure of the oriental river prawn

PLOS ONE | DOI:10.1371/journal.pone.0173490 March 7, 2017 8 / 16



MTR populations; the second subgroup included the KLJ; the third subgroup included TLC;

and the fourth subgroup included BLJ.

Five different groupings for the ten populations were suggested by the UPGMA trees. The

results of the AMOVA are shown in Table 3. The AMOVA for the ten populations yielded a

significant FST value of 0.57445, indicating that at least one of the pair-wise populations had

significant heterogeneity. Significant values of FCT were observed in all groupings. The highest

FCT values (0.4817) were found in grouping 2, and supported the conclusion that these ten

populations could be divided into two main groups: the first group included SMR, HRK, SRC,

MRC, and JRC, and the second group included the other five populations. Significant FCT val-

ues were also found in different groupings, indicating that an additional genetic discontinuity

may also have occurred among populations.

No significant Tajima’s D values were found for all populations, except SRC (Table 1).

However, Tajima’s D values were significant for each lineage and for the total population. Fu’s

Fs tests were significant for the MTR, TLC and HRK populations (Table 1). Significant Fu’s Fs

values were also obtained for lineages A and B and for the total population. The mismatched

distribution of all specimens was bimodal (Fig 5a), with one mode corresponding to the

number of differences within the lineages and the other mode corresponding to differences

between the two lineages. A unimodal distribution was obtained from either lineage A or B,

which did not significantly differ (as measured by the sum of the squared deviation; P> 0.05)

from that predicted by the growth expansion model (Fig 5b and 5e). A unimodal distribution

was also obtained from either lineage A1 or A2 (Fig 5c and 5d).

No correlations between genetic differentiation and the distance of geographic separation

among populations were observed for lineages A and B (lineage A: p = 0.838; lineage B:

p = 0.835), which indicates that oriental river prawns did not conform to an isolation-by-dis-

tance model of maternal gene flow.

Fig 4. UPGMA tree showing relationships among the 10 sampling sites.

doi:10.1371/journal.pone.0173490.g004
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Discussion

Two distinct lineages (A and B) of M. nipponense in East Asia were found in this paper, and

this result is the same as the one obtained in our previous paper [16]. Populations with

ancestral genotypes tend to preserve higher nucleotide and haplotype diversities because of

the long-term accumulation of mutations [40, 41, 42]. The nucleotide diversity (π = 0.009)

and haplotype diversity (h = 0.956) in lineage A were significantly higher than the values

(π = 0.005; h = 0.866) in lineage B. This suggested that lineage A was older than lineage B.

The approximate age of lineages A and B calculated were 490,000 and 253,000 years, respec-

tively (the average mutation rate of 1.42% / myr was used to calculate the age of the popula-

tion or lineage). The estimate of time of expansion for lineage A (209,533 yrs ago), lineage

A1 (188,371 yrs ago), lineage A2 (36,100 yrs ago) and lineage B (49,248 yrs ago) also proved

this result.

Table 3. AMOVA results for 10 populations of Macrobrachium nipponense in Taiwan.

Population Grouping Source of

variation

Percentage of

variation

Φ-

Statistics

p (more-

extreme

value)

One group Group 1{SMR, MTR, CLR,

BLJ, KLJ, TLC, MRC, JRC,

SRC, HRK}

AP 57.45 ΦST =

0.5745

***

WP 42.55

Two groups Group 1{MTR, CCL, BLJ,

KLJ, TLC}

AG 48.17 ΦCT =

0.4817

***

Group 2 {SMR, HRK, SRC,

MRC, JRC}

AP/WG 18.34 ΦSC =

0.3539

***

WP 33.49 ΦST =

0.6651

***

Three

groups

Group 1 {CLR, MTR, KLJ,

TLC}

AG 48.14 ΦCT =

0.4814

***

Group 2 {SMR, HRK, SRC,

MRC, JRC}

AP/WG 16.21 ΦSC =

0.3125

***

Group 3 {BLJ} WP 35.65 ΦST =

0.6435

***

Four groups Group 1{CLR, MTR, TLC} AG 47.98 ΦCT =

0.4798

***

Group 2 {SMR, HRK, SRC,

MRC, JRC}

AP/WG 15.23 ΦSC =

0.2928

***

Group 3{BLJ} WP 36.79 ΦST =

0.6321

***

Group 4{KLJ}

Five groups Group 1{CCL, MTR} AG 54.68 ΦCT =

0.5468

***

Group 2 {SMR, HRK, SRC,

MRC, JRC}

AP/WG 8.33 ΦSC =

0.1839

***

Group 3{TLC} WP 36.99 ΦST =

0.6301

***

Group 4{BLJ}

Group 5{KLJ}

AG is the among-group component of variance; AP/WG is the among-populations/within-group component

of variance; and WP is the within-population component of variance.

*** P < 0.001 by the permutation test.

doi:10.1371/journal.pone.0173490.t003
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Mismatch distributions of the two distinct lineages show that lineage B had a steeper peak,

which indicates that there is a smaller original population before an expansion or bottleneck

(Fig 5) [32]. This picture also suggests that lineage B could have experienced expansion in the

more-recent past than lineage A, the pairwise distribution mode of which was more-clearly

displaced to the right of the distribution pattern (Fig 5). This supported the conclusion that the

time of expansion of lineage A was earlier than that of lineage B.

The oriental river prawn originated in mainland China [12], and thus, the high genetic

diversity of populations in mainland China were expected. However, the nucleotide diversities

(0.014) and haplotype diversity (0.964) in the MTR were significant higher than the values in

these sites in mainland China and that may partly result from the specimens in MTR that were

involved in two different lineages (Figs 1, 2 and 3). However, the estimated nucleotide diversity

(0.013) and haplotype diversity (0.942) (Table 1) excluding the specimens that belonged to

lineage B in MTR were still significantly higher than the values in different populations (such

Fig 5. The observed pair-wise differences and the expected mismatch distributions under the sudden expansion model of oriental river

prawn. (a) All populations, (b) Lineage A, (c) Lineage B.

doi:10.1371/journal.pone.0173490.g005
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as TLC, π = 0.006, h = 0.924) (Table 1). Most individuals in MTR formed various unique hap-

lotypes, not shared by other individuals from other sampling sites (Fig 3). This indicated that

the MTR population had a longer time to accumulate mutations than the individuals from dif-

ferent sampling sites. Moreover, the haplotypes from the MTR population were distributed in

two different locations in sub-lineage A1 (Figs 2 and 3), and this revealed that two different

ancestral groups were recruited in the MTR population. Thus, these two different recruited

ancestral groups may also cause the high diversity in the MTR population. We found that the

haplotypes from the TLC population were also divided into two different sub-lineages (A1 and

A2) (Figs 2 and 3), and this might reveal secondary back contact between the TLC and Japan

populations occurred in this sampling site. However, the nucleotide diversities (0.008) and

haplotype diversity (0.931) of the TLC population were still significantly lower than the values

obtained from MTR. A large number of cultured prawns released into TLC in recent years

[29] may have led to lower genetic diversity in TLC. For these lineage B populations, the nucle-

otide and haplotype diversities in mainland China populations (e.g., SRC and JRC popula-

tions) were higher than the values from the other populations (e.g., SMR and HKR), and this

supported the conclusion that the oriental river prawn originated in mainland China and dis-

persed to other areas.

Although two lineages were found (Figs 1, 2 and 3), not all ten populations simultaneously

included both individuals from lineages A and B. The individuals in SMR, SRC and HRK were

only found to belong to lineage B, and the specimens from MTR, TLC, MRC and JRC were

included in lineage A or B, respectively, while the specimens in CLR, BLJ and KLJ were only

discovered in lineage A. This may partly result from different dispersal routes and different

times of origination for the two lineages, and their arrival time was apparently less than one

million years ago [11, 12, 43]. Demographic expansions were observed in each lineage, starting

in the second-to-latest interglacial period for lineage A (209,533 yrs ago) and within the last

glacial period in lineage B (49,248 yrs ago). The event of connecting the islands of Taiwan,

Japan and Korea to the mainland China occurred 2 to 3 times in the Pleistocene [44, 45, 46].

Our pervious paper [16] supported that (1) lineage A was older than lineage B, (2) lineages A

and B may originate from the same ancestor in mainland China and were then dispersed to

Taiwan at different times, and (3) lineage A moved to Taiwan earlier than lineage B.

For lineage B, the most common allele was shared by all populations (HRK, SMR, MRC,

JRC and SRC populations), and this indicated all populations have the same ancestor. Popula-

tions with ancestral genotypes tend to preserve higher nucleotide and haplotype diversities

because of the long-term accumulation of mutations [40, 41, 42]. The nucleotide diversity (π =

0.009) and haplotype diversity (h = 0.867) in SRC population was significantly higher than the

values from the other populations, and the HRK population had the lowest nucleotide and

haplotype diversities (Table 1). Therefore, the SRC and HRK populations were the oldest and

the youngest populations, respectively. Furthermore, the oriental river prawn originated in

mainland China [12]. Based on above discussions, the dispersal route of lineage B might be

from the south of China (SRC), north to higher latitude areas (MRC, JRC and Taiwan), and

further north to the north of China (TLC) and Korea. For lineage A, we also found that KLJ

and BLJ populations located the most north sampling areas liked as HRK population in lineage

B had the lowest nucleotide and haplotype diversities. Furthermore, the relationship between

KLJ (located in the eastern Japan) and TLC (in the north of China) populations was not such

close as the one between BLJ (located in the western Japan) and TLC (Fig 3). Thus, two differ-

ent dispersal routes might yield for lineage A. The first route is from the south of China, north

to higher latitude areas (MRC, JRC and Taiwan), and further north to eastern Japan (KLJ);

and the other one is from the south of China, north to higher latitude areas (MRC, JRC and

Taiwan), north to the north of China (TLC), and to western Japan (BLJ).

Population structure of the oriental river prawn
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Significant genetic differences were found in most pairs of the ten populations (Table 2),

and the hierarchical AMOVA revealed that a significant genetic structure across all hierarchi-

cal levels existed among the ten populations, but no obvious geographic division was found in

genealogic reconstructions except for TLC in lineage A (Figs 2 and 3). This outcome is differ-

ent from the outcomes that were often found of a high degree of phylogeographically related

genetic structure [11, 42, 47, 48, 49, 50, 51, 52, 53, 54]. This might be because the expansion

time for lineage A (209,533 yrs ago) or lineage B (49,248 yrs ago) were too short to accumulate

enough genetic variation and form geographically unique clade [55, 56, 57]. The haplotypes of

lineage A2 (TLC population) were close to BLJ haplotypes, and this might result in the second-

ary back contact from BLJ populations.

There was no significant genetic divergence between MRC and JRC, which may result from

frequent gene flow because the geographical distance between JRC and MRC is very close and

their environments were similar (Fig 1). The transportation of M. nipponense from SRC to

SMR for aquaculture or the maintenance of genetic diversity [54] may partly explain the lack

of genetic variation between SRC and SMR populations.

Conclusions

Our study indicated a high level of genetic structure among the oriental river prawn popula-

tions in East Asia. Two main lineages (A and B) were found, and lineage A was older than line-

age B. A rough estimate of the ages of lineages A and B were obtained and were approximately

490,000 and 253,000 years old, respectively. Lineages A, A1, A2 and B of the oriental river

prawn M. nipponense have experienced population expansion since the Pleistocene glacial

cycles in East Asia (approximately 209,533, 188,371, 36,100 and 49,248 yrs ago, respectively).

The possible dispersal routes of M. nipponense in the East Asia were also speculated. Lineage B

could have experienced expansion more recently than lineage A. The phylogeography and

genetic structure of M. nipponense in East Asia might be influenced by land bridges during

Pleistocene glacial maximums and by human colonization.
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