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Abstract

Objectives

To determine the diagnostic performance of susceptibility-weighted magnetic resonance
imaging (SWMR) for the detection of pineal gland calcifications (PGC) compared to conven-
tional magnetic resonance imaging (MRI) sequences, using computed tomography (CT) as
a reference standard.

Methods

384 patients who received a 1.5 Tesla MRI scan including SWMR sequences and a CT
scan of the brain between January 2014 and October 2016 were retrospectively evaluated.
346 patients were included in the analysis, of which 214 showed PGC on CT scans. To
assess correlation between imaging modalities, the maximum calcification diameter was
used. Sensitivity and specificity and intra- and interobserver reliability were calculated for
SWMR and conventional MRI sequences.

Results

SWMR reached a sensitivity of 95% (95% Cl: 91%-97%) and a specificity of 96% (95%
Cl: 91%-99%) for the detection of PGC, whereas conventional MRI achieved a sensitivity
of 43% (95% Cl: 36%-50%) and a specificity of 96% (95% Cl: 91%-99%). Detection rates
for calcifications in SWMR and conventional MRI differed significantly (95% versus 43%,
p<0.001). Diameter measurements between SWMR and CT showed a close correlation
(R? = 0.85, p<0.001) with a slight but not significant overestimation of size (SWMR: 6.5
mm +2.5; CT: 5.9 mm = 2.4, p = 0.02). Interobserver-agreement for diameter measure-
ments was excellent on SWMR (ICC = 0.984, p < 0.0001).

Conclusions

Combining SWMR magnitude and phase information enables the accurate detection of
PGC and offers a better diagnostic performance than conventional MRI with CT as a refer-
ence standard.
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Introduction

To the present day, the functions of the pineal gland are not fully understood. Unlike most
parts of the brain, it lies outside the blood-brain barrier and is not separated from the blood-
stream. Current knowledge indicates that by secretion of melatonin, the pineal gland plays an
important role in the regulation of the sleep-wake cycle and of reproductive function (e.g.
onset of puberty) [1], with melatonin also acting as a neuroprotector or antioxidant [2, 3].
Previous studies have suggested a decline of melatonin secretion with age and an association
between melatonin decrease and neurodegenerative diseases such as Alzheimer’s or Parkin-
son’s disease [4-7]. The amount of uncalcified pineal tissue was shown to predict total mela-
tonin excretion with lack of melatonin being hypothesized to result from pineal gland
calcification (PGC) [8, 9]. As a consequence, detection and measurement of PGC might be
of clinical interest by identifying patients with possible melatonin deficits and a risk for the
development of neurodegenerative diseases [8, 9].

Another aspect is, that a wide range of lesions from different entities arises in the pineal
region, which can be classified into tumors of germ cell origin, tumors of pineal cell origin
and other tumors, and makes up for approximately 1% of intracranial tumors [10, 11]. Cal-
cification of pineal region tumors is very common and tumor-specific patterns of calcifica-
tion have been reported [11-13]. In germinomas, pineal calcifications tend to be engulfed
by the tumor, whereas in pineoblastomas calcification is often not central, but “exploded”
to the periphery [12]. As a consequence, the assessment of calcification in the pineal region
might also have a clinical benefit by narrowing differential diagnosis of pineal region
tumors.

PGC, also referred to as “brain sand”, involves the development of hydroxyapatite depos-
its and is very common with a reported prevalence of approximately 68-75% in adults [14-
16]. It is frequently detected on computed tomography (CT) scans. As CT causes substantial
radiation exposure, it would be of advantage to identify PGC with MRI instead. Apart from
the absence of ionizing radiation, MRI provides superior soft-tissue contrast and is the
modality of choice to evaluate the pineal region, as it enables an accurate delineation of
pineal tumors before surgery. However, in the case of calcifications of the pineal gland or
tumor calcifications in the pineal region, conventional MRI sequences do not allow for a
reliable identification and have a poor sensitivity, as calcifications appear hypointense on
T1, T2 and T2*weighted sequences and consequently cannot be reliably differentiated from
e.g. soft tissue artifacts or microbleeds.

Recent advances in MRI imaging have led to the development of novel gradient echo
(GRE) imaging techniques such as SWMR, which is based on magnetic susceptibility and sen-
sitive to materials distorting the local magnetic field. SWMR allows for a reliable differentia-
tion of calcifications from tissue artifacts, hemorrhage and other causes of susceptibility
differences by using T2* weighted magnitude and GRE filtered-phase information to generate
a unique contrast [17-21]. So far, SWMR, has mainly been used in neurovascular imaging, e.g.
to detect and differentiate intracranial haemorrhage from calcifications, to visualize intracra-
nial vessels, to identify intracranial thromboembolism or to evaluate cerebral metastases [19-
24]. In recent studies the use of SWMR was also extended to extra-cranial imaging such as
detection of calcific tendonitis [25] or the assessment of prostatic calcifications [26, 27]. With
regard to intracranial calcifications there have been publications on vascular and tumor-asso-
ciated calcifications, but not on calcifications of the pineal gland.

The purpose of the present study was to assess the diagnostic performance of SWMR for
the evaluation of PGC, comparing it to conventional MRI sequences with CT as the reference
standard.
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Materials and methods
Study population

The local ethics committee approved this retrospective study, including a waiver of informed
consent (approval number: EA1/385/16). Prior to analysis, all data were anonymized and de-
identified. In total, 384 patients, who had received both a 1.5 Tesla MRI with SWMR sequences
and a CT brain scan at the Department of Radiology at Charité University Hospital between
January 2014 and October 2016, were investigated. The following exclusion criteria we defined:
Age under 18 years (n = 22) and an interval of more than three months between CT and MRI
examination (n = 16). CT imaging was performed with 64/128-slice scanners (Toshiba Medical
Systems, Otawara, Japan) and MRI was conducted on 1.5 Tesla scanners (Aera/Avanto, Siemens
Medical Solutions, Erlangen, Germany). In total, 346 patients could be included, of which
61.8% showed a calcification of the pineal gland on unenhanced CT brain scans. The mean age
of the study population was 58.7 + 17.4 (mean age + standard deviation) with an age range of
18-95 (173 men with a mean age of 57.8 years + 16.9, age range 21-88 years and 173 women
with a mean age of 59.6 years + 17.8, age range 18-95 years; difference in mean age values
between men and women, p = 0.55). 132 patients without PGC were used for comparison and
to evaluate sensitivity and specificity. In this group, the mean age was 55.7 + 19.3 with an age
range of 18-94 (59 men with a mean age of 56.3 years + 17.6, age range 21-88 years and 73
women with a mean age of 55.3 years + 20.7, age range 18-94 years; difference in mean age val-
ues between men and women, p = 0.77). Patients with pineal gland calcifications were signifi-
cantly older than those without (mean age of 60.5 years versus 55.7 years, p = 0.017).

Imaging protocol

CT, which was used as the standard of reference in the present analysis, was performed based on
the following parameters (Toshiba Medical Systems): FOV of 220 x 220 mm, 1.0-mm slice thick-
ness and al.0 mm increment, 120 kV and 280 mAs. The AIDR 3D reconstruction algorithm was
applied for iterative noise reduction. FC26 (Toshiba Medical Systems) was used as a standard
reconstruction kernel for the head. A bone window was used for the analysis. MRI was performed
with a 1.5 Tesla unit (Aera/Avanto, Siemens Medical Solutions, Erlangen, Germany) provided
with a standard brain coil. According to a MRI protocol routinely used for clinical examinations,
the following conventional sequences were acquired: axial T1-weighted turbo-spin-echo (TSE)
images (field of view (FOV) of 230 x 230 mm, matrix of 256 x 256, repetition time of 550 ms, echo
time of 8.4 ms, 23 slices, 5-mm slice thickness, 2 averages), axial T2-weighted TSE images (FOV of
230 x 230 mm, matrix of 256 x 256, repetition time of 3180 ms, echo time of 86 ms, 23 slices,
5-mm slice thickness, 2 averages), axial T2-weighted fluid-attenuated inversion recovery (FLAIR)
images (FOV of 230 x 230 mm, matrix of 256 x 256, repetition time of 9000 ms, echo time of 89
ms, inversion time 2500 ms, 23 slices, 5-mm slice thickness, 1 average) and a sagittal magnetiza-
tion-prepared rapid gradient-echo (MP-RAGE) sequence (FOV of 260 x 260 mm, matrix of 256 x
256, repetition time of 1940 ms, echo time of 2.91 ms, 192 slices, 1-mm slice thickness, 1 average).
For SWMR, a 3D fast low-angle gradient-echo sequence was performed. The imaging
parameters of SWMR for brain imaging were as follows: FOV of 230 x 230 mm, matrix of 320
x 320, repetition time of 49 ms, echo time of 40 ms, 104 slices, 1.6-mm slice thickness, 1 aver-
age. SWMR images were created by a combination of magnitude and phase information [17,
18, 28]. While the magnitude image is calculated from a velocity-compensated three-dimen-
sional GRE sequence to support detection of lesions with shortening of T’ relaxation times
[17, 18], phase images are computed in order to enable a differentiation between calcifications
and other lesions such as tissue artefacts or microbleeds. Even though typical susceptibility
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weighted imaging (SWI) furthermore implies the generation of a phase mask, we found that
for the visualization of larger calcifications and susceptibility changes, such as in the pineal
gland, which is moreover surrounded by CSF, an approach using a combination of separate
inverted magnitude and filtered phase images (SWMR) was better suited.

Imaging analysis

SWMR, MRI and CT images were analyzed using PACS workstations (Centricity Radiology
RA1000, GE Healthcare, United Kingdom). All CT, MRI and SWMR scans were assessed inde-
pendently and in a randomized order by two radiologists with 1 (L.A.) and 4 (S.B) years of
diagnostic experience. To determine calcifications on unenhanced CT scans, they were
assessed based on their specific shape und density, whereby a threshold of 130 Hounsfield
units (HU) was set [29]. Concerning conventional MRI, calcifications were more difficult to
assess, as they appeared as focal hypointense areas in T1 and T2 weighted sequences. On
SWMR sequences, PGCs were identified if they were located in the pineal region within the
quadrigeminal cistern, showed a hyperintense signal intensity on the inverted magnitude
image and a hyperintense signal on the filtered phase image [17, 18]. However, filtered phase
images are more challenging to evaluate with regard to larger amounts of calcifications. Larger
calcifications do not appear homogeneously hyperintense, but can show a hypointense rim or
(central) areas that appear dark as a consequence of aliasing effects when the field is large
enough so that the phase exceeds m radians [17, 30]. Calcification diameters were measured
with electronic calipers on CT scans, MRI T2 weighted sequences and SWMR magnitude by
two radiologists in order to assess interobserver and intermodality correlations. There was a
washout period of two weeks between CT, MRI and SWMR assessment.

Statistical analysis

Statistical analysis was performed using “R” Statistical Software (Version 3.2.2, R Development
Core Team, 2015). Variables were expressed as means + standard deviations. 95% confidence
intervals were calculated. To determine the p-values for sex-related differences, two-tailored t-
tests were applied. Sensitivities and specificities for the detection of PGC on SWMR and conven-
tional MRI were computed with CT as a standard of reference. A McNemar’s paired-sample test
was conducted to compare the sensitivity and specificity of conventional MRI and SWMR. As
measurements were provided by two independent observers, averages over observers were calcu-
lated and analyses were performed average-based. Bland-Altman plots with prediction intervals
were produced to display the distribution of measurements and the limits of agreement. As mea-
sure outcomes were numeric, the intraclass correlation coefficient (ICC) was used for calculation
of intra- and interobserver reliability. According to the commonly cited cut-offs by Cicchetti

et al. [31], intra- or interobserver reliability was considered poor for ICC values less than 0.40,
fair for values from 0.40 to 0.59, good for values between 0.60 and 0.74 and excellent for values
above this threshold. Linear regression was performed to evaluate the correlation between diam-
eter measurements on SWMR, MRI and CT. To determine the confidence intervals for R* a
bootstrapping was conducted. A p-value of less than 0.05 was considered statistically significant.

Results

Detection rate, sensitivities and specificities for the detection of pineal
gland calcifications

All investigated patients received both MRI (including SWMR sequences) and CT imaging of
the brain with a time interval of less than three months between the examinations. On CT

PLOS ONE | DOI:10.1371/journal.pone.0172764 March 9, 2017 4/14



o @
@ : PLOS | ONE Diagnostic accuracy of SWMR for the evaluation of pineal gland calcification

Fig 1. Imaging findings of a 63-year-old man with a calcified pineal gland. (A), CT shows a sharply defined oval-shaped pineal calcification with a
diameter of 7 mm. In axial T1-weighted MRI (B) and in axial T2-weighted MRI (C) it is hardly possible to demarcate the calcified area against the surrounding
tissue. In conventional MR, it is not possible to reliably identify the hypointense foci as calcifications. The inverted SWMR magnitude image (D) and the
phase image (E) show well-defined focal hyperintensities in the pineal region area. While the image information solely derived from the magnitude image is
not superior to conventional MRI sequences, the combination of SWMR magnitude and phase image allows for a clear and reliable identification of
diamagnetic calcifications. Magnified images are provided for (B), (C), (D) and (E). As CT and MRI of the brain have diverged reference lines with the
bicommissural line used as a convenience standard for MRI and the orbitomeatal line used for CT, the slice angles vary slightly.

doi:10.1371/journal.pone.0172764.9001

scans, which were used as the standard of reference for the detection of calcifications, 214
patients showed PGC.

By combining the SWMR magnitude and the phase image it was possible to identify most
of the calcifications (n = 203, 94.9%). Figs 1 and 2 show corresponding examples of PGC and
illustrate the clinical applicability of SWMR for the detection of pineal gland-related calcifica-
tions compared to conventional MRI sequences. In the 11 cases where SWMR failed to detect
calcifications this was due to small lesion size (1.5 + 1.1 mm) in combination with motion arti-
facts, which caused a poor image quality leading to a false-negative result. Through assessment
of conventional MRI sequences a significantly smaller amount (p = 0.012) of PGC could be dif-
ferentiated from the surrounding tissue (n = 92, 43,0%), as calcifications appear as hypointense
spots both on T, and T, weighted images. Calcifications that were not detected on conven-
tional MRI had a diameter range from 1.2 to 10.9 mm (mean 4.5 + 2.3 mm). By use of conven-
tional MR imaging, 5 lesions were falsely classified as calcifications because of tissue artifacts.

To evaluate the validity of the diagnostic tests performed, sensitivity and specificity were
calculated with respective 95% confidence intervals. Table 1 provides corresponding two-by-
two confusion matrixes for SWMR and conventional MRI. While SWMR reached a sensitivity
0f 95% (95% CI: 91% - 97%) and a specificity of 96% (95% CI: 91% - 99), conventional MRI
yielded a sensitivity of only 43.0% (95% CI: 35.0%— 84.1%) and a specificity of 96% (95% CI:
91%- 99%). McNemar’s test confirmed that SWMR showed a sensitivity that was significantly
higher compared to conventional MRI sequences (p<0.001). The difference in specificity
between SWMR and conventional was not significant (p = 1).
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Fig 2. Imaging findings of a 55-year-old woman with a calcified pineal gland. (A), CT shows a sharply defined oval-shaped pineal calcification with a
diameter of 11 mm. In axial T1-weighted MRI (B) and in axial T2-weighted MRI (C) it is hardly possible to demarcate the calcified area against the
surrounding tissue. In conventional MR, it is not possible to reliably identify the hypointense foci as calcifications. The inverted SWMR magnitude image (D)
and the phase image (E) show well-defined focal hyperintensities in the pineal region area. While the image information solely derived from the magnitude
image is not superior to conventional MRI sequences, the combination of SWMR magnitude and phase image allows for a clear and reliable identification of
diamagnetic calcifications. Magnified images are provided for (B), (C), (D) and (E). As CT and MRI of the brain have diverged reference lines with the
bicommissural line used as a convenience standard for MRI and the orbitomeatal line used for CT, the slice angles vary accordingly.

doi:10.1371/journal.pone.0172764.g002

Intra- and interobserver correlation

Intraobserver agreement on calcification diameters in both CT and SWMR was excellent

(ICC =0.989, p <0.0001 and ICC = 0.984, p <0.0001). Intraobserver agreement for conven-
tional MRI was also excellent (ICC = 0.960, p <0.0001). The visual illustration of intraobserver
agreement is provided by the Bland-Altman-plots in Fig 3. Interobserver agreement for diame-
ter measurements in SWMR was also excellent (ICC = 0.954, p <0.0001). On conventional
MR, there was a good intraclass agreement (ICC = 0.712, p<0.0001). Linear regression analy-
sis confirmed a strong correlation between SWMR measurements of two readers (R = 0.910,
P<0.0001, 95% CI: 0.884, 0.932) and a slightly poorer but still good correlation between the
two reader measurements in conventional MRI (R* = 0.808, p = 0>0.0001, 95% CI: 0.714,

Table 1. Two-by-two confusion matrixes for SWMR (A) and conventional MRI (B).

A CT (reference standard) B CT (reference standard)

SWMR + - total Conventional MRI + - total
+ 203 5 208 + 92 5 97
- 11 127 138 - 122 127 249
total 214 132 346 total 214 132 346

doi:10.1371/journal.pone.0172764.t001
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Fig 3. Bland—-Altman plots for the assessment of intraobserver variability for diameter measurements of calcifications in meningiomas in
conventional MRI (A) and SWMR (B). The mean ratio was 1.00 for conventional MRI (Cl: 0.79 to 1.22) and 1.01 for SWMR magnitude images (Cl: 0.82 to
1.19). The mean ratio of the data is illustrated by the central horizontal line. Upper and lower reference lines show the upper and lower limits of agreement
(95% confidence intervals).

doi:10.1371/journal.pone.0172764.9003

0.876). Fig 4 provides a linear regression and Bland-Altman plot for the assessment of interob-
server variability in SWMR. Compared to standard T, and T, weighted sequences, SWMR
showed a considerably higher intra- and interobserver correlation.

Analysis of calcification diameter

The level of agreement between the imaging modalities SWMR, conventional MRI and CT-
based size measurements was illustrated with Bland-Altman plots and the strength of agree-
ment was interpreted based on the intraclass coefficient. Diameter correlations revealed an
excellent agreement between SWMR and CT (ICC = 0.881, p <0.0001) and a good to excellent
agreement between conventional MRI sequences and CT (ICC = 0.745, p <0.0001). Fig 5 pro-
vides the corresponding Bland-Altman plots and linear regression graphs. Correlation was
measured by use of a linear regression analysis for the association between two variables,
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Fig 4. Linear regression and Bland-Altman plot for the assessment of interobserver variability for diameter measurements of calcifications in
meningiomas in SWMR. Diameter measurements show an excellent correlation (RZ = 0.91) with a mean ratio of 1.00 (Cl: 0.72 to 1.29) between
calcification measurements of the two readers in SWMR magnitude images. The mean ratio of diameter measurements of readers 1 and 2 is illustrated by
the central horizontal line. Upper and lower reference lines show the upper and lower limits of agreement (95% confidence intervals).

doi:10.1371/journal.pone.0172764.g004
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doi:10.1371/journal.pone.0172764.g005

whereby a strong correlation between SWMR and CT was confirmed (R = 0.844, p <0.001).
Correlation between conventional MRI sequences and CT was moderate (R* = 0.48, p <0.001).
SWMR showed a slight overestimation of calcification diameters, which, however, did not
reach significance level (SWMR: (SWMR: 6.5 + 2.5 mm; CT: 5.9 + 2.4 mm, p = 0.02).

Discussion

The present study shows that using a combination of inverted magnitude and phase images
enables the reliable detection of calcifications of the pineal gland without making use of ioniz-
ing radiation. The majority of the calcifications identified on CT as the standard of reference
could be recognized as calcifications by combining magnitude and phase images with excellent
intra- and interobserver reliability and a slight, but not significant, overestimation of diame-
ters. In contrast, conventional MRI sequences did not allow for a reliable identification of cal-
cifications and showed a poor diagnostic performance. Because pineal calcification might lead
to a decrease in melatonin production by calcified glands [32], the radiation-free detection of
pineal calcifications by SWMR may help to identify patients with an increased risk for the
development of neurodegenerative diseases. Furthermore, the assessment of calcifications in
the pineal region might also facilitate narrowing differential diagnosis of pineal region tumors,
as some of the tumors show unique patterns of calcification.
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Current assessment of PGC

With the development of computed tomography technology, it has been possible to accu-
rately detect the localization and extent of intracranial calcifications, such as choroid plexus,
habenular, basal ganglia or pineal gland calcifications, to which many clinical or pathologi-
cal entities have been linked, e.g. Alzheimer’s or Parkinson’s disease [2, 14]. More recent
data from a single retrospective hospital-based study suggested that PGC might also be asso-
ciated with stroke [33]. However, this was challenged in a subsequent study [34]. With
regard to pineal gland calcifications in pediatric patients, one study also found that pineal
calcification in childhood appeared to be associated with the development of pediatric pri-
mary brain tumors [35].

The incidence of PGC reported in the literature varies depending on the age of the popula-
tion, its ethnic and geographical makeup and might also vary depending on the use of com-
puted tomography versus skull radiography, as phantom studies showed that cranial CT is up
to 15 times more sensitive than skull radiography in the detection of intracranial calcifications
[36]. Generally, calcifications of the pineal gland are one of the most common forms of intra-
cranial calcifications with former studies based on computed tomography reporting a preva-
lence between 68.5% and 75.1% [15, 16, 37]. In all population groups, calcification of the
pineal gland was found to increase with age. The findings of the present study regarding the
approximate incidence of PGC and its higher prevalence in older age are consistent with the
literature [14, 16].

The pineal gland is considered central to chronopharmacology with multiple additional
properties such as acting immune-enhancing and cytoprotective [38]. Both the pineal volume
and the circadian rhythm of melatonin excretion show a high interindividual variability.
Recent years have witnessed an increasing interest in studies regarding the impact of PGC on
decreased secretory activity of the gland and on specific pathological entities such as Alzhei-
mer’s disease [2]. Mahlberg et al. suggested, that PGC was significantly higher in patients with
Alzheimer’s disease compared to others types of cognitive impairment and that PGC might
contribute to the pathogenesis of Alzheimer’s disease by reflecting a reduced level of crystalli-
zation inhibitors [2, 4]. With regard to the association between plasma melatonin and uncalci-
fied solid pineal tissue, Liebrich et al. reported that uncalcified pineal functional volume as
derived from MRI was linked to the hormonal function of the pineal gland [32, 39]. On the
other hand, there has also been a study suggesting that the levels of melatonin did not signifi-
cantly differ by presence of cysts or calcification [40]. Consequently, it is not yet fully resolved
whether there is an association between the incidence of PGC and reduced melatonin
excretion.

Pineal region tumors

The pineal region also plays host to several masses or tumors, the most common being
pineal cysts, germinomas or pineocytomas [10]. For pineal mass detection and assessment,
MRI, with its excellent soft-tissue contrast and multiplanar imaging abilities, is the modality
of choice. However, conventional MRI sequences do not allow for a reliable assessment of
calcifications. While pineal tumors can be difficult to differentiate, each of the lesions may
have unique imaging characteristics such as tumor-specific patterns of calcifications [13].
Pineal parenchyma tumors usually show “exploded” calcifications, which are dispersed to
the periphery, whereas pineal germinomas tend to engulf the calcification [12, 13]. As a con-
sequence, the addition of SWMR sequences to the MRI standard protocol might prospec-
tively also be able to facilitate the narrowing of differential diagnosis with regard to pineal
region masses.
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Use of SWMR to evaluate pineal gland calcifications

Advances in MRI techniques for the evaluation of changes in magnetic susceptibility eventu-
ally culminated in the development of SWMR, enabling a reliable detection of calcified lesions
in MRI possible [17, 18, 41]. Magnetic susceptibility is a measure of the magnetic properties
of a material placed in a magnetic field. Diamagnetic (e.g. calcifications), ferromagnetic (e.g.
iron) or paramagnetic (e.g. hemosiderin) substances distort the local magnetic field and cause
a phase alteration of the local tissue, which results in a loss of signal. Paramagnetic compounds
line up with the external magnetic field, whereas diamagnetic substances align in the opposite
direction. The introduction of new filtering techniques has made it possible to differentiate
between calcifications, hemorrhage and other causes of susceptibility changes. While calcifica-
tions cause a negative phase shift with a hyperintensity on phase-filtered images, hemosiderin
or desoxyhemoglobin result in a positive phase shift and a signal loss on phase images, pro-
vided that an appropriate echo time is selected [17, 18, 24, 41].

In the present study, it was possible to reliably identify most PGCs based on SWMR, using
a combination of SWMR magnitude and phase images. Computed tomography was used as a
standard of reference. The reconstruction kernel applied (FC26) is a standard reconstruction
kernel used in the clinical setting for the detection of calcifications. In 11 cases SWMR failed to
accurately detect pineal calcifications. This was due to a combination of poor image quality
resulting from motion artifacts and small size/inhomogeneity of the calcifications. Comparable
findings in different disease entities have been shown in a series of previous studies addressing
the detection of calcification by use of SWMR [25-27], such as, for example, one study which
demonstrated the reliable detection of intratumoral calcifications in oligodendrogliomas [42].

Development of quantitative susceptibility mapping (QSM)

In recent years, there were further developments in magnetic susceptibility imaging regarding
the quantification of signal changes. While typical SWI depends on nonlocal and orientation-
dependent phase signals, making it challenging to quantify susceptibility changes in phase
images, the novel development of quantitative susceptibility mapping is nonlocal and allows
for quantitative measurements of magnetic susceptibility [43]. Compared to magnetic suscep-
tibility imaging, which generates a robust contrast based on phase images, QSM computes the
susceptibility of each voxel in form of a scalar quantity [43]. Although there still is an ongoing
discussion on which algorithms are best suited to achieve a pixel-by-pixel estimate of suscepti-
bility distribution [44], QSM has been shown to have a high sensitivity for the detection and
quantification of iron and to demonstrate superb contrast of brain structures [45]. With regard
to the detection of calcification, several studies suggest that QSM may be superior to conven-
tional SWI in the identification of subtle calcifications and in differentiating microcalcifica-
tions from hemosiderin, at the same time also allowing for a quantification [19, 46]. As a
consequence, there is a multitude of future clinical applications for QSM, such as in the diag-
nosis and longitudinal evaluation of quantitative changes in neurodegenerative diseases [47],
multiple sclerosis [48] or the prognosis of neoplasms such as glioblastomas [46].

Limitations

This study has several potential limitations. Even though pineal calcifications have been linked
to various pathologies such as neurodegenerative diseases, so far, no definite association has
been proven. Further studies are needed to investigate the clinical significance of pineal gland
calcification. Furthermore, it might be argued that we did not use the typical SWI imaging,
where calcifications or other causes of susceptibility changes between tissues are highlighted
as signal voids with a negative contrast, but an approach using a combination of inverted
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magnitude images and filtered phase images. However, while SWI has been proven to be well
suited for visualization of small susceptibility changes in the cerebrum, we think this approach
might be better suited for visualization of relatively large calcifications surrounded by CSF,
such as pineal gland calcifications. Conclusions from our data are not applicable to patients
with contraindications to MRI.

Future studies

SWMR was performed on a 1.5 Tesla scanner in the present study. The comparatively lower
field strength has the advantage of a higher magnetic field homogeneity and a consecutive
reduction of artifacts. While higher field strengths such as 3 Tesla might cause an increase in
the overestimation of calcification sizes, they provide a superior signal-to-noise- and contrast-
to-noise- ratio with shorter scan times and can consequently further improve detection rates.
As a consequence, comparison of 1.5 versus 3 Tesla scanners for susceptibility-weighted imag-
ing might be addressed in future studies.

Another aspect is, that there have been few studies so far, which directly compared SWI
and QSM to each other. It would be very interesting for future research to compare both meth-
ods to determine their diagnostic performance for various applications.

Conclusion

Combining SWMR magnitude and phase images allows for the accurate detection and assess-
ment of pineal gland calcification, using non-enhanced CT as standard of reference. Com-
pared to conventional MRI, SWMR offers a considerably higher diagnostic performance.
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