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Abstract

Lactobacilli represent a wide range of bacterial species with several implications for the

human host. They play a crucial role in maintaining the ecological equilibrium of different bio-

logical niches and are essential for fermented food production and probiotic formulation.

Despite the consensus about the ‘health-promoting’ significance of Lactobacillus genus, its

genotypic and phenotypic characterization still poses several difficulties. The aim of this

study was to assess the integration of different approaches, genotypic (16S rRNA gene

sequencing), proteomic (MALDI-TOF MS) and metabolomic (1H-NMR), for the taxonomic

and metabolic characterization of Lactobacillus species. For this purpose we analyzed 40

strains of various origin (intestinal, vaginal, food, probiotics), belonging to different species.

The high discriminatory power of MALDI-TOF for species identification was underlined by

the excellent agreement with the genotypic analysis. Indeed, MALDI-TOF allowed to cor-

rectly identify 39 out of 40 Lactobacillus strains at the species level, with an overall concor-

dance of 97.5%. In the perspective to simplify the MALDI TOF sample preparation,

especially for routine practice, we demonstrated the perfect agreement of the colony-picking

from agar plates with the protein extraction protocol. 1H-NMR analysis, applied to both cul-

ture supernatants and bacterial lysates, identified a panel of metabolites whose variations in

concentration were associated with the taxonomy, but also revealed a high intra-species

variability that did not allow a species-level identification. Therefore, despite not suitable for

mere taxonomic purposes, metabolomics can be useful to correlate particular biological

activities with taxonomy and to understand the mechanisms related to the antimicrobial

effect shown by some Lactobacillus species.
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Introduction

Members of Lactobacillus genus are heterogeneous, Gram-positive, non-spore-forming rods

or coccobacilli, catalase-negative [1]. This genus comprises close to 200 species with a G+C

content usually below 50 mol% [2]. Lactobacilli are at the interface of aerobic and anaerobic

life. Many lactobacilli retain the conditional capacity for respiration, but their ecology and

physiology are mainly related to the fermentative conversion of sugars to organic acids, with

lactic acid as the primary fermentation end product [3, 4].

The human body hosts various Lactobacillus species in different anatomic regions (oral cav-

ity, gut and female genital tract) entailing different interactions with the host [5–8]. Lactoba-

cilli play a crucial role in maintaining the ecological equilibrium of these environments,

through direct antimicrobial effects, enhancement of mucosal barrier integrity, and immune

modulation [9]. In addition, lactobacilli are important bacteria in food microbiology and

human nutrition due to their contribution to fermented food production and their use as pro-

biotics in food and pharmaceuticals [10, 11]. Probiotics are defined as “live microorganisms

which when administered in adequate amounts confer a health benefit on the host” [12]. A

number of studies have examined the role of probiotics in prevention and/or management of

intestinal infections, inflammatory bowel disease and irritable bowel syndrome, respiratory

tract infections, urogenital infections, periodontal disease, halitosis and allergic reactions [13].

Despite the scientific consensus about the significance of Lactobacillus genus for the indus-

trial applications related to food and human health, its species’ identification still poses several

difficulties. The most recent comprehensive revision of the taxonomy of the genus is based on

ribosomal sequence data: for successful inclusion into the species more than 97% similarity to

the consensus sequence of the 16S rRNA genes are required [14]. Although the 16S rRNA gene

sequence analysis contributed to the development of a more exhaustive taxonomy for lactoba-

cilli, it has become evident that this classification does not relate to the phenotype, impeding

the correlation of phylogenetic relationships with physiological properties or ecotype [4]. In

addition, 16S rRNA gene sequencing is relatively expensive, time- and labor-consuming, not

suitable for routine identification [15], and, in some cases, it has insufficient discriminative

power for closely related species. This implies that additional techniques, such as sequencing

of more divergent protein-coding genes and/or fingerprinting techniques, should be applied

to differentiate strains and allot them to the correct species after 16S rRNA gene—based clus-

tering [4, 14].

In the last years, matrix-assisted laser desorption/ionization time of-flight mass spectrome-

try (MALDI-TOF MS) has proven to be a rapid and effective tool for the identification of bac-

teria at the species and genus levels [16]. Recently, MALDI-TOF MS has been introduced into

routine microbiological diagnosis with marked success [17], and has been increasingly applied

for the species identification of food associated microorganisms [18, 19]. Some attempts have

been made to identify lactobacilli to species level both in clinical specimens and in food prod-

ucts [15, 20–25].

Unlike genotypic and proteomic techniques, validated and consolidated in microbial taxon-

omy studies, little information is available to date regarding the application of metabolomic

methods for the identification and typing of microorganisms. Metabolomics is able to analyze

different biological systems, using high-throughput analytical methods, such as nuclear mag-

netic resonance (NMR) spectroscopy, that allows robust and sensitive identification of metab-

olites produced by the cells present in the sample analyzed. Metabolites that are significantly

affected by experimental variables can be identified by multivariate statistics [26, 27]. Notably,

recent studies highlight the potential of metabolomics to measure the taxonomic distance

between different Lactobacillus species and predict their anti-microbial activity [28, 29].

Taxonomic and metabolic characterization of lactobacilli
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This study aims to evaluate the possible integration of different methodological approaches,

genotypic (16S rRNA gene sequencing), proteomic (MALDI-TOF MS) and metabolomic

(1H-NMR), for the taxonomic and metabolic characterization of Lactobacillus. For this pur-

pose we used a wide selection of strains of various origin (intestinal, vaginal, food and indus-

trial probiotic preparations), belonging to different species.

Materials and methods

Bacterial strains and culture conditions

A total of 40 Lactobacillus strains were used in this work (Table 1). MB and BC strains were

isolated from fecal and vaginal samples, respectively, and belong to the collection of the

Department of Pharmacy and Biotechnology (University of Bologna). DSM strains were

obtained from German Collection of Microorganisms and Cell Cultures (DSMZ, Braun-

schweig, Germany). Seven strains were included in probiotic products (Danisco US, Madison,

WI; kindly provided by Prof. Claudio De Simone).

All bacterial strains were grown in Man, Rogosa and Sharpe (MRS) medium supplemented

with 0.05% L-cysteine, at 37˚C for 24 h in anaerobic jars supplemented with GasPak EZ. MRS

and GasPak EZ were supplied by Becton Dickinson and Company (Sparks, MD).

Lactobacillus fraction preparation

The turbidity of 24-h lactobacilli cultures was adjusted to an optical density (OD600) of 2, cor-

responding to a cell concentration of 5 × 108 colony forming unit (CFU)/ml. Cell suspensions

were centrifuged at 5,000 × g for 10 minutes at 4˚C, then supernatants were filtered through a

0.2 μm membrane filter to obtain cell free supernatants, analysed by 1H-NMR to examine the

extracellular metabolome. Cell pellets were washed in sterile saline and lysed in 500 μL of

Enzymatic Lysis Buffer (20 mM Tris HCl pH 8, 2 mM sodium EDTA, 1.2% Triton X-100, 20

mg/mL lysozyme), incubated at 37˚C for 30 min and then vortexed with 0.2 g of glass beads to

ensure a complete lysis [30]. Glass beads were then precipitated by centrifugation (4,700 × g
for 5 minutes) and the supernatants, containing cellular DNA and metabolites, were collected

and employed for both DNA extraction and 1H-NMR analysis of the intracellular metabolome,

as described below.

DNA extraction, 16S rRNA gene sequencing and phylogenetic analysis

Genomic DNA was extracted from strains L. acidophilus MB233, MB422, MB423, L. brevis
CD2, L. delbrueckii FV13, L. helveticus LB31, L. paracasei LC10, L. plantarum BC18-BC20,

FV9, LPT, L. reuteri MB313, and L. rhamnosus B876. Cellular lysates were obtained from 24-h

cultures as described, and total bacterial DNA was purified by using DNeasy Blood & Tissue

Kit (Qiagen, Hilden, Germany).

The complete 16S rRNA gene (1.5 kb) was amplified with universal primer F27

(AGAGTTTGATCMTGGCTCAG) and R1492 (TACGGYTACCTTGTTACGACTT), as previously

reported [31], and sequenced. The sequences were searched with nucleotide BLAST web ser-

vice (blast.ncbi.nlm.nih.gov) to confirm the taxonomic identification at species level.

16S rRNA gene sequences of the remaining strains were available in GenBank and DDBJ

Nucleotide Sequence Databases, under accession numbers reported in Table 1.

A phylogenetic tree based on 16S rDNA sequences of all 40 lactobacilli strains considered

in this study was created by using MEGA 6 software [32].

Taxonomic and metabolic characterization of lactobacilli
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Table 1. List of Lactobacillus strains included in the present study, genotypic identification, 16S rDNA accession numbers, MALDI TOF MS identi-

fication and source.

Strain Genotypic identification

(16S rDNA accession n.)

MALDI-TOF MS Source

Identification Average score (min-max)

MB233 L. acidophilus

(LC155897)

L. acidophilus 2.0 (1.9–2.2) fecal

MB422 L. acidophilus

(LC155898)

L. acidophilus 2.1 (2.1–2.2) fecal

MB423 L. acidophilus

(LC155899)

L. acidophilus 1.9 (1.9–2.0) fecal

DSM 20079 L. acidophilus

(AB680529)

L. acidophilus 2.4 (2.2–2.4) human

LA14 L. acidophilus

(CP005926)

L. acidophilus 2.0 (1.9–2.1) Danisco#

CD2 L. brevis

(LC164743)

L. brevis 1.9 (1.9–2.0) Danisco#

DSM 20011 L. casei

(AF385770)

L. casei 1.8 (1.8–1.9) cheese

BC1 L. crispatus

(AB976542)

L. crispatus 2.3 (2.2–2.3) vaginal

BC3 L. crispatus

(AB976544)

L. crispatus 2.0 (1.9–2.1) vaginal

BC4 L. crispatus

(AB976545)

L. crispatus 2.0 (1.9–2.3) vaginal

BC5 L. crispatus

(AB976546)

L. crispatus 2.2 (2.1–2.2) vaginal

BC6 L. crispatus

(AB976547)

L. crispatus 2.1 (2.0–2.2) vaginal

BC7 L. crispatus

(AB976548)

L. crispatus 2.1 (1.9–2.2) vaginal

BC8 L. crispatus

(AB976549)

L. crispatus 2.2 (2.1–2.3) vaginal

DSM 20081 L. delbrueckii subsp. bulgaricus

(AY773948)

L. delbrueckii

subsp. bulgaricus

2.1 (2.1–2.2) bulgarian yoghourt

DSM 20074 L. delbrueckii subsp. delbrueckii

(AY773949)

L. delbrueckii

subsp. delbrueckii

2.1 (1.9–2.2) sour grain mash

DSM 20076 L. delbrueckii subsp. lactis

(AB680003)

L. delbrueckii

subsp. delbrueckii

1.8 (1.8–1.9) n.a.*

FV13 L. delbrueckii

(LC164739)

L. delbrueckii

subsp. delbrueckii

1.8 (1.8–1.8) Danisco#

BC9 L. gasseri

(AB976550)

L. gasseri 2.1 (2.0–2.2) vaginal

BC10 L. gasseri

(AB976551)

L. gasseri 2.0 (1.9–2.1) vaginal

BC11 L. gasseri

(AB976552)

L. gasseri 1.9 (1.8–2.1) vaginal

BC12 L. gasseri

(AB976553)

L. gasseri 2.1 (2.0–2.2) vaginal

BC13 L. gasseri

(AB976554)

L. gasseri 2.3 (2.2–2.4) vaginal

BC14 L. gasseri

(AB976555)

L. gasseri 2.3 (2.1–2.4) vaginal

DSM 20243 L. gasseri

(HE573914)

L. gasseri 2.1 (2.0–2.2) human

LB31 L. helveticus

(LC164740)

L. helveticus 2.0 (1.9–2.0) Danisco#

(Continued )
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MALDI-TOF MS sample preparation and analysis

Sample preparation for MALDI-TOF MS analysis was performed as previously described, with

slight modifications [33]. Cell pellets corresponding to 108 CFU (24-h cultures) were washed

with 300 μl of sterile water and 900 μl of absolute ethanol, then suspended in 25 μl of 70% for-

mic acid and 25 μl of pure acetonitrile. The solutions were thoroughly vortexed and centri-

fuged at 18,000 × g for 10 minutes. Afterwards, 1 μl of the supernatants was spotted in ten

replicates on a ground-steel MALDI target plate (Bruker Daltonics, Bremen, Germany), dried

at room temperature and overlaid with 1 μl of MALDI HCCA matrix solution (10 mg/mL of

α-ciano-4-hydroxycinnamic acid in 50% acetonitrile-2.5% trifluoroacetic acid; Bruker Dal-

tonics). A MALDI-TOF MS measurement was performed using a Bruker Microflex MALDI-

TOF MS instrument (Bruker Daltonics) operating in linear, positive ion mode and using the

Flex Control 3.3 software with the following parameters: laser frequency: 20%; ion extraction

delay time, 30 ns; ion source voltage one, 19 kV; ion source voltage two, 15.8 kV; and ion

source lens voltage, 7.75 kV. A total of 240 laser shots was automatic acquired for each spec-

trum. For instrument calibration, a bacterial test standard (BTS255343; Bruker Daltonics) was

used.

Table 1. (Continued)

Strain Genotypic identification

(16S rDNA accession n.)

MALDI-TOF MS Source

Identification Average score (min-max)

LC10 L. paracasei

(LC164738)

L. paracasei

subsp. paracasei

1.9 (1.8–1.9) Danisco#

DSM 20314 L. pentosus

(D79211)

L. pentosus 2.1 (2.0–2.2) n.a.*

BC18 L. plantarum

(LC155900)

L. plantarum 1.9 (1.9–2.0) vaginal

BC19 L. plantarum

(LC155901)

L. plantarum 1.9 (1.9–2.0) vaginal

BC20 L. plantarum

(LC155902)

L. plantarum 2.2 (2.0–2.3) vaginal

DSM 20174 L. plantarum

(FR775893)

L. plantarum 2.1 (2.0–2.2) pickled cabbage

FV9 L. plantarum

(LC164742)

L. plantarum 1.9 (1.8–2.1) Danisco#

LPT L. plantarum

(LC164741)

L. pentosus 2.1 (2.0–2.2) Danisco#

MB313 L. reuteri

(LC155903)

L. reuteri 2.0 (1.9–2.1) fecal

DSM 20016 L. reuteri

(L23507)

L. reuteri 2.1 (2.0–2.2) intestine of adult

B876 L. rhamnosus

(LC155904)

L. rhamnosus 2.0 (1.9–2.0) fecal

DSM 20021 L. rhamnosus

(D16552)

L. rhamnosus 2.0 (1.9–2.1) n.a.*

BC16 L. vaginalis

(AB976557)

L vaginalis 1.9 (1.8–2.0) vaginal

BC17 L. vaginalis

(AB976558)

L. vaginalis 2.0 (1.8–2.1) vaginal

*n.a.: not available
# kindly provided by Prof. De Simone

doi:10.1371/journal.pone.0172483.t001
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For species identification, spectra collected within a mass range of 2,000 to 20,000 Da were

analyzed with Bruker Biotyper 3.1 software and compared with the ones of the reference data-

base. The resulting similarity values were expressed as a log score. In particular, a score� 2.0

allowed the identification at the species level, a score comprised in the range 1.7–2.0indicated

identification only at the genus level, whereas any score under 1.7 meant no significant similar-

ity of the obtained spectrum with any database entry (not reliable identification).

A clustering analysis of all the Lactobacillus strains, belonging to different species, was per-

formed by the generation of a score-oriented dendrogram. In particular, the main spectrum

profiles (MSPs) of each strain were generated from at least 8 technical replicates (the ones with

the highest score values at the species identification) using the MALDI Biotyper 3.1 software,

with default setting parameters [34]. A peak quality control was performed using FlexAnalysis

software 3.3 (Bruker Daltonics): spectra with outlier peaks or anomalies were removed from

the spectra set of the Lactobacillus strain. The relationship between MSPs obtained from each

strain was visualized in a score-oriented dendrogram using the average linkage algorithm

implemented in the MALDI Biotyper 3.1 software.

To evaluate the reliability of MALDI-TOF MS in Lactobacillus identification without a pro-

tein extraction procedure, a direct analysis of bacterial colonies was performed starting from

freshly overnight cultures on MRS agar and without a detailed extraction step, as already

described [21].

1H-NMR analysis

For each Lactobacillus strain 700 μl of cell free supernatant and 350 μl of cellular lysate were

added to 160 μl of a D2O solution of 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt

(TSP) 6.25 mM set to pH 7.0 by means of a 100 mM phosphate buffer. 1H-NMR spectra were

recorded at 298 K with an AVANCE III spectrometer (Bruker, Milan, Italy) operating at a fre-

quency of 600.13 MHz, following the procedure previously described [27, 35]. The signals

were assigned by comparing their chemical shift and multiplicity with Chenomx software data

bank (Chenomx Inc., Canada, ver 8.2), with standard (ver. 10) and HMDB (ver. 2) data banks.

Differences in the extracellular/intracellular metabolome composition were firstly assessed by

calculating the intra-groups Euclidean distance in a multidimensional space where each

dimension represented the concentration of a molecule quantified in the cell free supernatant

or cellular lysate. In a second time, differences in intracellular/extracellular metabolites were

calculated by means of a one-tailed unpaired Wilcoxon test, through the homonym function

implemented in R computational software (www.r-project.org). A probability value for null

hypothesis of 0.05 was accepted, corrected according to Bonferroni for multiple comparisons.

Nucleotide sequence accession numbers

The nucleotide sequences of the 16S rRNA gene of the Lactobacillus strains sequenced in the

present work (L. acidophilus MB233, MB422, MB423, L. brevis CD2, L. delbrueckii FV13, L. hel-
veticus LB31, L. paracasei LC10, L. plantarum FV9, LPT, BC18-BC20, L. reuteri MB313, L.

rhamnosus B876) have been deposited in the DDBJ nucleotide sequence database under acces-

sion numbers reported in Table 1.

Results

Phylogenetic characterization of Lactobacillus strains

The genotypic identification of the Lactobacillus strains used in this work is reported in

Table 1. Complete sequences of 16S rRNA gene of L. acidophilus MB233, MB422, MB423, L.

Taxonomic and metabolic characterization of lactobacilli
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brevis CD2, L. delbrueckii FV13, L. helveticus LB31, L. paracasei LC10, L. plantarum BC18,

BC19, BC20, FV9, LPT, L. reuteri MB313 and L. rhamnosus B876, were amplified and

sequenced (ca. 1,500 nts). For the remaining strains, complete 16S rRNA gene sequences were

already available in GenBank and DDBJ Nucleotide Sequence Databases. A phylogenetic tree

of lactobacilli, on the basis of the 16S rDNA sequences, was built by applying the neighbor-

joining method (Fig 1). As expected, strains belonging to the same Lactobacillus species clus-

tered all together, and two main groups could be identified: the first included L. crispatus, L.

acidophilus, L. helveticus, L. delbrueckii, and L. gasseri species, the other comprised L. reuteri, L.

vaginalis, L. casei, L. paracasei, L. rhamnosus, L. brevis, L. plantarum and L. pentosus species.

Notably, L. pentosus DSM 20314 fell into L. plantarum group confirming the high phylogenetic

similarity between the two species [36, 37].

Identification of lactobacilli with MALDI-TOF MS analysis

The MALDI-TOF MS analysis of Lactobacillus strains performed after protein extraction with

formic acid/acetonitrile showed the great potential of this technique in the taxonomic charac-

terization of lactobacilli. For each bacterial strain, the ten technical replicates gave the same

species identification with score values> 1.8 and the average score value was always� 1.9,

except for three strains (L. casei DSM 20011, L. delbrueckii subsp. lactis DSM 20076 and L. del-
brueckii FV13). The analysis of bacterial colonies directly from MRS agar plates showed the

same species identification obtained with the protein extraction method and no significant dif-

ferences were noticed in MALDI-TOF score values (data not shown).

Fig 2 shows the hierarchic dendrogram of the 40 Lactobacillus strain MSPs created in rela-

tion to their mass signals and peak intensities. At an arbitrary distance level of 1000 (maximum

dissimilarity), MSP dendrogram clustered the lactobacilli in two main groups: the first one

comprised L. crispatus, L. helveticus, L. acidophilus, L. gasseri and L. delbrueckii species and the

second one included L. paracasei, L. casei, L. rhamnosus, L. brevis, L. reuteri, L. vaginalis, L.

plantarum and L. pentosus species. At minor distance levels, each main group was then subdi-

vided in smaller sub-groups: for example, at a distance level of 900, L. delbrueckii cluster was

clearly separated from the group including L. helveticus, L. crispatus, L. acidophilus and L. gas-
seri, whereas at a distance level of 700, L. gasseri group was definitely distinct from the other

species. Similarly, at an arbitrary distance level of 900, the cluster including L. pentosus and L.

plantarum species was separated from the group comprising L. casei, L. paracasei, L. rhamno-
sus, L. brevis, L. reuteri and L. vaginalis species, while at a distance level of 800 a distinct cluster

with L. vaginalis and L. reuteri was noticed. At a distance level of 200, each grouping was repre-

sented by a single Lactobacillus species.

Comparison of genotypic and MALDI-TOF identification of lactobacilli

When compared to the genomic analysis, MALDI-TOF MS allowed to correctly identify at the

species level all the 40 Lactobacillus strains, except one, with an overall concordance between

the two methods of 97.5% (39/40). The only discordant result was represented by L. plantarum
LPT, identified as L. pentosus at MALDI-TOF MS analysis. To note, a previous characteriza-

tion of this strain by automated ribotyping had revealed greater homology with L. pentosus
rather than with L. plantarum [36]. Table 1 shows in details the Lactobacillus species identifica-

tion obtained with the genomic analysis compared to MALDI-TOF MS. When the subspecies-

level identification was available (three L. delbrueckii strains), MALDI-TOF MS analysis agreed

with the genomic approach in two cases out of three, with the only exception of L. delbrueckii
subsp. lactis DSM 20076 identified as L. delbrueckii subsp. delbrueckii. Moreover, in two cases,

unlike the 16S rRNA gene sequencing that provided only species-level identification (L.

Taxonomic and metabolic characterization of lactobacilli
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Fig 1. Phylogenetic tree based on lactobacilli 16S rRNA sequences. The Neighbor-Joining method was used to infer

evolutionary history. The evolutionary distances were computed using the Maximum Likelihood method based on Tamura-

Nei model [32]. The tree is drawn to scale, with branch lengths measured in number of substitutions per site. The bootstrap

values inferred from 1000 replicates is shown next to the branches. The analysis involved 40 nucleotides sequences. All

positions containing gaps and missing data were eliminated. The tree was obtained by using MEGA 6 software.

doi:10.1371/journal.pone.0172483.g001
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paracasei LC10 and L. delbrueckii FV13), MALDI-TOF MS analysis allowed to obtain informa-

tion at subspecies level (L. paracasei subsp. paracasei and L. delbrueckii subsp. delbrueckii).

Variations in lactobacilli metabolome correlated with taxonomy

Consistently with previous reports on similar matrices [38, 39], a total of 30 and 17 molecules

were identified by 1H-NMR analysis in the extracellular and intracellular metabolome, respec-

tively. These metabolites mainly belong to the families of amino acids, organic acids, monosac-

charides, ketones and alcohols (Table A and B, in S1 File).

For the metabolomic analysis, lactobacilli were arbitrarily subdivided in seven groupings on

the basis of 16S rRNA gene sequence phylogenetic tree and MALDI-TOF MS score-oriented

dendrogram. In particular, differences in the intracellular/extracellular metabolome composi-

tion were assessed for the following species groupings: L. crispatus, L. gasseri, L. acidophilus, L.

delbrueckii, L. plantarum-L. pentosus, L. reuteri-L. vaginalis and L. casei-L. paracasei-L. rham-
nosus. About that, it is worthy to underline that the proposed groupings were similar and com-

parable to others previously reported [40–42]. L. helveticus and L. brevis species were excluded

from the metabolomic analysis, given that only one strain for each of these species was

available.

No specific metabolic profiles related to certain species or species groupings were clearly

identified. However, although the different Lactobacillus groupings showed the same pool of

metabolites, several significant differences were noticed when considering the concentration

of each molecule, both in the extracellular and in the intracellular metabolome. In order to

seek correlations between taxonomy and metabolome, we created a multidimensional space,

where each axis reported the concentration of a molecule quantified by 1H-NMR. Concerning

the extracellular metabolome, for L. crispatus (P = 3 × 10−3) and L plantarum-L pentosus
(P = 2 × 10−18) groupings, the intra-group distance in such space was statistically lower than

Fig 2. Cluster analysis of MALDI-TOF MS spectra obtained from the Lactobacillus strains included in the study. In the MSP

dendrogram, relative distance between isolates is displayed as arbitrary units. Zero indicates complete similarity and 1,000 indicates

maximum dissimilarity.

doi:10.1371/journal.pone.0172483.g002
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the average distance among each investigated Lactobacillus strain. Concerning the intracellular

metabolome, similar results were found for L. plantarum-L. pentosus (P = 2 × 10−4), L. crispatus
(P = 1 × 10−4), L. gasseri (P = 3 × 10−8) and L. delbrueckii (P = 4 × 10−4) groupings.

To evaluate differences in the concentration of single metabolites, we performed univariate

tests. This analysis allowed to identify 4 metabolites in the cell free supernatant (acetoin, ace-

tone, pyruvate and glucose) and 8 molecules in the cellular lysate (AMP, lactate, lysine, NAD+,

propionate, succinate, uracil, and valine) showing significantly different concentrations

between the diverse Lactobacillus species groupings considered.

Concerning the extracellular metabolome (Fig 3), it is noteworthy to underline that L. cris-
patus showed the highest glucose consumption compared to the other Lactobacillus groupings

(P = 1 × 10−3), whereas L. acidophilus species was characterized by the highest-level production

of acetone and pyruvate (P = 3 × 10-4and P = 1 × 10−3, respectively). Moreover, the grouping

including L. casei-L. paracasei-L. rhamnosus species differed significantly from the other spe-

cies for acetoin production (P = 1 × 10−5).

The intracellular metabolome analysis (Fig 4) highlighted that L. crispatus was the largest

producer of AMP (P = 3 × 10−4), NAD+ (P = 1 × 10−4), propionate (P = 1 × 10−4) succinate

(P = 8 × 10−4) and uracil (P = 8 × 10−5), compared to the other species. Moreover, L. gasseri
and L. delbrueckii were characterized by the highest production of valine (P = 2 × 10−3) and

lysine (P = 1 × 10−5), respectively. Finally, the lactate production was the metabolic signature

of L. casei-L. paracasei-L. rhamnosus grouping (P = 1 × 10−3).

The association between metabolome and taxonomy is outlined in Table 2. This table

shows how the increase/decrease of a specific extracellular/intracellular metabolite is charac-

teristic of a particular Lactobacillus species or grouping of species.

Discussion

An accurate Lactobacillus species identification is crucial in light of the findings that different

species are able to exert diverse effects on the host. For example, it is well known that particular

Lactobacillus species, as L. crispatus, dominate the vaginal microbiota of healthy premeno-

pausal women, whereas other species, as L. iners, are often found in women with vaginal dys-

biosis [43, 44]. Moreover, the correct species identification is fundamental in the choice of the

right strain during probiotic formulation, since it has been demonstrated a high species-speci-

ficity in Lactobacillus activity against pathogens [28, 29, 45]. In this study, a multi-omic

approach was assessed for the taxonomic and metabolic characterization of different Lactoba-
cillus species: the traditional genotypic approach based on the 16S rRNA gene sequence analy-

sis was compared and integrated with a proteomic approach based on MALDI-TOF MS

ribosomal protein pattern analysis and with a 1H-NMR metabolomic approach focused on the

bacterial intracellular and extracellular metabolome.

16S rRNA gene sequencing is regarded as an established method in taxonomic studies and

is also applied for clinical diagnosis [46]. Even though this method has proved to be highly dis-

criminative for Lactobacillus species identification, in some cases it fails to differentiate

between closely related species or subspecies, such as L. casei and L. paracasei or L. plantarum
and L. pentosus, due to the substantial similarities of their 16S rRNA gene sequences [21, 37].

Moreover, in our experience, the analysis of ribosomal sequences did not allow to discriminate

between the different subspecies of L. delbrueckii and L. paracasei, as already stated [47, 48].

MALDI-TOF MS represents a simple, reliable and cost-saving tool for the rapid taxonomic

characterization of lactobacilli of different origin [15, 20–25]. Up to date, the use of MALDI--

TOF MS for Lactobacillus species identification has been particularly pointed towards the anal-

ysis of strains originated from food and probiotics [15, 22, 49, 50] and only a few studies

Taxonomic and metabolic characterization of lactobacilli
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focused on clinical isolates [21, 24, 51]. In this work, we gave particular attention to lactobacilli

isolated from the human microbiota (gut/vagina), demonstrating the potential of MALDI--

TOF MS to identify species that are of importance for the human health. Our study demon-

strates the high discriminatory power of MALDI-TOF MS analysis for the identification of

Lactobacillus species, as underlined by the excellent agreement with the genotypic identifica-

tion. In some cases, i.e. subspecies-level identification of L. delbrueckii and L. paracasei, MAL-

DI-TOF MS could even overcome the limits of 16S rRNA gene sequencing. The only

discordant identification regarded the probiotic strain L. plantarum LPT, categorized as L. pen-
tosus by MALDI-TOF MS. To note, a previous taxonomic characterization of this strain had

revealed good homology levels with L. pentosus by automated ribotyping, whereas the 16S-23S

rRNA sequence indicates L. plantarum as referee species [36]. The identification as L. pentosus
by MALDI-TOF MS and ribotyping is not inconsistent and could be explained by considering

the close phylogenetic relationship between L. plantarum and L. pentosus species [37, 52].

Considering that only MALDI TOF scores� 2.0 are accepted for species assignment and

scores between 1.7 and 2.0 are accepted exclusively for genus level interpretation, our results

could seem not always convincing, i. e. when the identifications had scores < 2.0 at least in

one of the replicates. However, for each bacterial strain, ten technical replicates gave always

the same species identification and, when compared to the genomic analysis, MALDI-TOF

MS allowed to correctly identify all the 40 Lactobacillus strains at the species level, except one.

For these reasons, it is worth mentioning that even MALDI TOF scores in the range 1.7–2.0

Fig 3. Variations in lactobacilli extracellular metabolome. Box plots represent the concentration (mM) of extracellular

metabolites which vary significantly among the diverse Lactobacillus species considered. Metabolites were quantified in cell free

supernatants by 1H-NMR. Lines within the boxes indicate the median values of the metabolite concentration and each

box represents the interquartile range (25–75th percentile). The bottom and top bars indicate the 10th and 90th percentiles,

respectively. Boxes were colored in grey to highlight the Lactobacillus species groupings that show significantly different

concentration of the corresponding metabolite (P<0.05, Bonferroni-adjusted).

doi:10.1371/journal.pone.0172483.g003
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could be considered acceptable for Lactobacillus species level identification. Nevertheless, the

extension of the Biotyper reference database could probably improve MALDI-TOF MS perfor-

mance in Lactobacillus species identification, especially for those species showing the lowest

average score values (L. casei and L. delbrueckii), as already raised by other authors [15].

Fig 4. Variations in lactobacilli intracellular metabolome. Box plots represent the concentration (mM) of intracellular metabolites

which vary significantly among the diverse Lactobacillus species considered. Metabolites were quantified in cellular lysates by
1H-NMR. Lines within the boxes indicate the median values of the metabolite concentration and each box represents the interquartile

range (25–75th percentile). The bottom and top bars indicate the 10th and 90th percentiles, respectively. Boxes were colored in grey

to highlight the Lactobacillus species groupings that show significantly different concentration of the corresponding metabolite

(P<0.05, Bonferroni-adjusted).

doi:10.1371/journal.pone.0172483.g004
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Moreover, when we compared the two different protocols (protein extraction versus col-

ony-picking) of sample preparation for MALDI-TOF MS analysis, a perfect agreement in Lac-
tobacillus species identification was observed. Thus, the colony-picking from agar plates can be

suggested in routine clinical practice for its simplicity and few minutes’ hands-on-time. Glob-

ally, our results strongly support the role of MALDI-TOF MS in studies of lactobacilli taxon-

omy. In this context, the low cost, together with the ease-of-use and the rapidity of this

technique are fundamental strengths compared to the more complex and expensive genotypic

approaches [40, 41].

Differently from to the well-established role of genotypic and proteomic techniques, the

potential of metabolomic methods in the typing of microorganisms has yet to be validated.

Notably, the analysis of bacterial metabolites and/or metabolic pathways could provide infor-

mation on the phenotype, allowing to deepen the knowledge of the biological functions of cer-

tain bacterial species. Up to now, the metabolome of lactobacilli has been investigated only by

indirect methods, through genome-wide approaches based on the complete analysis of genes

responsible for several metabolic pathways [4, 42, 53, 54]. The interesting novelty of the pres-

ent taxonomic study lies on the direct metabolomic analysis by means of 1H-NMR of both

extracellular and intracellular bacterial compartments.

It is worth emphasizing some important strengths of metabolomic analysis by 1H-NMR: (i)

it is an intrinsically quantitative technique, which can avoid relying on internal standards [55],

(ii) the experimental protocol is therefore extremely simple and quick, allowing processing

tens of samples per batch, (iii) the method for sample preparation is the same used for the ribo-

somal sequences analysis, allowing excellent integration of the two techniques, (iv) the cost per

analysis, at present slightly lower than gene sequencing, can be foreseen to drop dramatically

in the short term [56].

From our results 1H-NMR analysis did not highlight specific metabolic profiles that could

be univocally associated to the different Lactobacillus species or species groupings. This finding

may be due to several aspects. 1H-NMR spectroscopy can detect only the most abundant

metabolites, present at concentrations greater than 1 to 5 μM [57, 58]. Probably, the low sensi-

tivity of this method led to identify only 47 molecules, considering globally the extracellular

and intracellular Lactobacillus metabolome. In addition, differently from the high variability

found in some regions of 16s rRNA gene and in the composition of ribosomal protein pattern,

Table 2. Association between a variation (increase/decrease) of metabolites (extracellular/intracellular) and Lactobacillus species or grouping of

species.

Metabolite Cellular localization Variation Species/Grouping of species

Acetoin extracellular Increase L. casei-L. paracasei-

L. rhamnosus

Glucose extracellular Decrease L. crispatus

Acetone extracellular Increase L. acidophilus

Pyruvate extracellular Increase L. acidophilus

AMP intracellular Increase L. crispatus

Lysine intracellular Increase L. delbrueckii

Propionate intracellular Increase L. crispatus

Uracil intracellular Increase L. crispatus

Lactate intracellular Increase L. casei-L. paracasei-

L. rhamnosus

NAD+ intracellular Increase L. crispatus

Succinate intracellular Increase L. crispatus

Valine intracellular Increase L. gasseri

doi:10.1371/journal.pone.0172483.t002
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the metabolic traits can be more conserved among different species of the same bacterial

genus. Indeed, a high variability in term of metabolic activity was observed among different

strains of the same Lactobacillus species (i.e. lysine production by L. delbrueckii and the pyru-

vate production by L. acidophilus). This finding is in agreement with previous reports showing

that closely related species can present marked differences in their metabolic traits: several

metabolic pathways and molecules are associated with particular Lactobacillus species, while

others are strain-specific rather than species-specific [4, 54]. Due to the metabolite concentra-

tion overlapping between different Lactobacillus species and the high intra-species variability,

we cannot propose the metabolomic approach as an independent method for lactobacilli spe-

cies identification. Nevertheless, it could represent a promising tool to study correlations with

biological functions, allowing for example to predict the anti-microbial activity of Lactobacillus
strains and to better understand the related mechanisms.

In fact, our results underline the high metabolic activity of L. crispatus strains in term of

organic acids production and glucose consumption, compared to other Lactobacillus species.

This aspect could probably have a connection with the biological activity shown by this species

in vivo. Indeed, it is well known that L. crispatus strains possess a marked anti-microbial activ-

ity against several urogenital and sexually transmitted pathogens [28, 42, 59] and, recently, it

has been shown that glucose depletion induced by L. crispatus is directly associated with the

reduction of Chlamydia trachomatis infectivity [29].

We found that L. casei-L. paracasei-L. rhamnosus species were characterized by the highest

production of lactate. In agreement with this finding, it has been recently described that L.

casei is one of the dominant microbial species on different type of fruit residues and that it

could play an important role during silage fermentation as a strong producer of lactic acid

[60]. Moreover, the strong production of acetoin in L. casei-L. paracasei-L. rhamnosus species

and the high increase of pyruvate in L. acidophilus species extracellular metabolome are in line

with the results shown by Helland et al., regarding the growth and metabolism of selected

strains of probiotic bacteria in maize porridge with added malted barley [61].

We are fully aware that a metabolomic approach based on the identification of molecules

after bacterial cultivation, could be affected by the culture conditions (type of medium, incuba-

tion time, aerobic/anaerobic atmosphere). For that reason, a strict standardization of the cul-

ture parameters, as well as of the metabolite measurement, is mandatory.

Conclusions

In conclusion, our study suggests novel approaches for the taxonomic and metabolic charac-

terization of members of Lactobacillus. On one hand, as underlined by the excellent agreement

with the reference genotypic method, MALDI-TOF MS is an outstanding technique for taxo-

nomic purposes, thanks to its rapidity and simplicity. On the other hand, the metabolomic

approach based on 1H-NMR analysis cannot be proposed as a reliable and powerful tool for

the lactobacilli species identification. However, the 1H-NMR analysis led to identify a panel of

molecules whose variations were strictly associated with the taxonomy. For that reason, it

could be useful in correlating lactobacilli with biological properties, such as their anti-micro-

bial activity or fermentation capacity for food production.

Further studies, comprising a larger number of strains and a broader panel of species, are

needed to better elucidate the correlation between lactobacilli metabolome and taxonomy and

to better assess how an integrated ‘multi-omics’ approach could help in a more accurate and

predictive characterization of the Lactobacillus genus.
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