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Abstract

There are a number of overarching questions and debate in the scientific community con-

cerning the importance of biotic interactions in species distribution models at large spatial

scales. In this paper, we present a framework for revising the potential distribution of tree

species native to the Western Ecoregion of Nova Scotia, Canada, by integrating the long-

term effects of interspecific competition into an existing abiotic-factor-based definition of

potential species distribution (PSD). The PSD model is developed by combining spatially

explicit data of individualistic species’ response to normalized incident photosynthetically

active radiation, soil water content, and growing degree days. A revised PSD model adds

biomass output simulated over a 100-year timeframe with a robust forest gap model and

scaled up to the landscape using a forestland classification technique. To demonstrate the

method, we applied the calculation to the natural range of 16 target tree species as found

in 1,240 provincial forest-inventory plots. The revised PSD model, with the long-term effects

of interspecific competition accounted for, predicted that eastern hemlock (Tsuga canaden-

sis), American beech (Fagus grandifolia), white birch (Betula papyrifera), red oak (Quercus

rubra), sugar maple (Acer saccharum), and trembling aspen (Populus tremuloides) would

experience a significant decline in their original distribution compared with balsam fir (Abies

balsamea), black spruce (Picea mariana), red spruce (Picea rubens), red maple (Acer

rubrum L.), and yellow birch (Betula alleghaniensis). True model accuracy improved from

64.2% with original PSD evaluations to 81.7% with revised PSD. Kappa statistics slightly

increased from 0.26 (fair) to 0.41 (moderate) for original and revised PSDs, respectively.

Introduction

Predicting the natural distribution of species across the landscapes has often focused on abi-

otic-centric species distribution models. These models often ignore biotic interactions and

assume that such biotic factors at the scale of the forest stand or patch apparently averaged out,
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remain constant, or play a nominal role in regulating species distributions at the much larger

scale of the landscape [1,2]. Evidence exists, however, that suggests that interaction between

species can strongly impact how climate affects geographic range of species [3–7]. Species nat-

ural range may shrink in the presence of another species with similar environmental require-

ments, making predictive errors inevitable if biotic interactions are not incorporated into the

species distribution model. Although Woodward and Beerling [8] suggest abiotic-centric spe-

cies distribution models should be disregarded and replaced by dynamic vegetation models,

Bourque and Hassan [9] and Hassan and Bourque [10] suggest there could be a substantial

improvement in a model’s predictive accuracy if biotic interactions are integrated into existing

abiotic-centric species distribution models.

The extension of abiotic-centric species distribution models by incorporating biotic interac-

tions into the modeling framework is often difficult to achieve. Many researchers use modeling

approaches that require information that is usually not available for most species or rely on

additional model parameterization that obscures aspects of plant behavior [11]. Another

concern is that modelers, either consciously or subconsciously, tend to choose permissible

parameter values to describe biotic interactions that enhance model performance [12]. Such

parameterization usually results in a loss of information and conceals species features that are

known to impact their ability to compete with other species. Model prediction of species distri-

bution may well be biased by this parameterization process.

The fingerprint of how biotic interactions, such as interspecific competition, affect species

distribution is associated with the direction of forest succession over the long term [13]. In indi-

vidual-based forest succession models, such as JABOWA [14–16], the differences in species’

physiological tolerances to the various climatic factors determine the intensity of interspecific

competition and the direction of forest succession. The roles of climatic factors in regulating spe-

cies composition and dynamics play out across time, and what is left is a reasonable estimate of

the relative competitive ability of different species given different environmental conditions. In a

series of research undertakings, Clark et al. [17] suggested that gap models represent competition

better than most global dynamic vegetation models (GDVM; e.g., [18]), because competition is

modeled at the level of individual plants instead of plant groupings based on functional types.

Results from gap models, scaled up from shifting-gap mosaics to the landscape, could be

combined to existing SDMs [19–22]. Such combination is possible for models whose modular

form makes the approach adaptable including the potential species distribution (PSD) model

by Bourque and Hassan [9]. The final results can provide a rigorous connection between com-

plex mechanistic models of species interaction and species distribution models [23]. However,

it remains uncertain whether scaling up results from all types of forest gap models, and incor-

porating the results into existing abiotic-factor-based species distribution model can help

enhance the predictive performance of species distribution model.

In this study, we describe a simple but practical approach to identifying how interspecific

competition shapes current large-scale potential distributions of 16 tree species native to the

Western Ecoregion of Nova Scotia, Canada. Furthermore, we aim to enhance the PSD model-

ing approach described in [9–10, 24] to account for long-term interspecific competition

among species by including biomass data from forest succession simulated with a robust for-

est-gap model (i.e., JABOWA-III). Normalized values of differential species performance

within forestland types were generated from JABOWA-III simulations of forest succession

scaled up to the landscape using a hybrid unsupervised–supervised forestland classification

scheme, described in [24]. In contrast to previous studies that investigate the impact of inter-

specific competition on species distribution at local scales (e.g., [25–26]), our discussion

focuses on the more overlooked phenomenon of tree species distribution at regional scales at

spatial resolutions suitable for land-management planning (<100 m).

Modeling tree species distribution
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Materials and methods

Study area

The Acadian Forest Region of eastern Canada [27] includes the three Canadian Maritime

Provinces: Nova Scotia (NS; excluding the Cape Breton Highlands; [28–29]), Prince Edward

Island, and all but the northwestern corner of New Brunswick. This investigation uses the

Western Ecoregion of NS as primary study area. Ecoregions are ecological land classification

units that delineate macroclimatic differences at a provincial scale [30]. The Western Ecore-

gion extends from Yarmouth to Windsor, including the Halifax peninsula. Geographically, the

area is located between 43˚ 27’ to 44˚ 56’ North latitude and 64˚ 02’ to 65˚ 47’ West longitude,

with a total land area of 16,904 km2, representing about 31% of the total provincial land base.

Regional variation in climate is largely influenced by the area’s proximity to the Bay of Fundy

in the north and the Atlantic Ocean from the northeast–southwest. The region’s climate is

characterized by cold winters and warm springs and summers.

Regional forests are home to about 32 tree species and remain a diverse mix of both conifer

and broadleaf species [28, 31]. However, as a demonstration of the procedure, we apply the cal-

culations to 16 target tree species from the 32 common species. These target species are suffi-

ciently abundant to be modeled (>200 observations) and include eight conifer species (i.e.,

balsam fir (Abies balsamea (L.) Mill.), black spruce (Picea mariana (Mill.) B.S.P), eastern hemlock

(Tsuga canadensis (L.) Carr.), eastern larch (Larix laricina (Du Roi) K. Koch), eastern white pine

(Pinus strobus L.), red pine (Pinus resinosa Ait.), red spruce (Picea rubens Sarg.), white spruce

(Picea glauca (Moench) Voss)) and eight broadleaf species (i.e., American beech (Fagus grandifo-
lia Ehrh.), red maple (Acer rubrum L.), red oak (Quercus rubra L.), sugar maple (Acer saccharum
Marsh.), trembling aspen (Populus tremuloides Michx.), white ash (Fraxinus americana L.), white

birch (Betula papyrifera Marsh.), and yellow birch (Betula alleghaniensis Britton)).

Data to generate maps of PSD

Data required to generate maps of PSD, include (i) a Digital Elevation Model (DEM) of the

Western Ecoregion of Nova Scotia, (ii) precipitation surface, (iii) spatial variability of PAR and

SWC generated from the Landscape Distribution of Soil moisture, Energy, and Temperature

(LanDSET) model [9, 10], and (iv) remote sensing-based calculations of growing degree days

(GDD) [32]. Precipitation data were obtained from 25 Environment Canada climate stations

in the Western Ecoregion of Nova Scotia [31]. The DEM was generated from 3-arc second

resolution point-data (~70 m at 45˚ N latitude) acquired from the NASA Shuttle Radar Topog-

raphy Mission. Net incoming shortwave radiation served as input to the calculation of photo-

synthetically active radiation (PAR); estimate of net shortwave radiation was generated by the

solar radiation-module of LanDSET. The soil water content (SWC) was generated by the soil

water balance module in LanDSET; the algorithm includes a decreasing soil moisture availabil-

ity function (including evapotranspiration, percolation, and surface runoff) and provisions for

the accumulations (precipitation, water flow from upslope region).

A GDD map from thermal remote sensing data was developed for the area based on the

standard definition of GDD [32], i.e.,

GDD ¼
Xi¼n

i¼1

maxð0; Tavg � TbaseÞ; ½1�

where Tavg is the average daily temperature, Tbase is a base temperature threshold set at 5˚C,

and i = 1. . . n, where 1 and n represent the start and end day of the growing season. Remote

sensing data used in the development of an enhanced GDD-surface (at 30-m resolution,

Modeling tree species distribution
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resampled to 70 m) included: (i) Landsat-7 ETM+ surface reflectance data to provide a one-

time estimate of EVI at 30-m resolution; (ii) Moderate Resolution Imaging Spectroradiometer

(MODIS)-based 8-day composites of surface temperature (at 1-km resolution) and 16-day

composites of enhanced vegetation index (EVI; at 250-m resolution) for the April–October

period of 2003–2005; (iii) tower-based 30-min emitted infrared (thermal) radiation to estimate

surface temperature; and (iv) point estimates of 30-year averages of GDD (1971–2000) from

climate stations within the Western Ecoregion for GDD-surface calibration.

Species-specific response function and PSD calculation

Curves describing the relationships between species occurrence probabilities and abiotic

predictor variables of PAR, SWC, and GDD are based on generic functions scaling species

response values between 0 and 1, where 0 represents highly unfavorable growing conditions

and 1, optimal growing conditions. Species-specific responses to PAR, SWC, and GDD

assumed the following forms, respectively:

RPAR ¼ c1 � f1 � exp½� c2ðnPAR � cpÞ�g ½2�

where c1 is a scaling factor, c2 is the slope of the light response curve, cp is the light compensa-

tion point or PAR at which the amount of carbon dioxide released in respiration equals the

amount used in photosynthesis and the amount of oxygen released in photosynthesis equals

the amount used in respiration [Table 1].

RSWC ¼ max½0;kx
a
ð1 � xÞ

1=a
�; ½3�

with

x ¼
SWC � SWCmin

SWCmax � SWCmin
; ½4�

w ¼
c � SWCmin

SWCmax � SWCmin
; ½5�

k ¼
1

wa � ð1 � wÞ
1=a
; and ½6�

a ¼

ffiffiffiffiffiffiffiffiffiffiffi
w

1 � w

r

½7�

[33], where SWCmin, SWCmax, and ѱ (optimal SWC; with SWCmin < ѱ< SWCmax) denote

species functional parameters that define the shape of the soil-water response curve.

RGDD ¼
4ðGDD � GDDminÞ � ðGDDmax � GDDÞ

ðGDDmax � GDDminÞ
2

½8�

[34], where GDDmin and GDDmax are the minimum and maximum GDDs and represent the

northern and southern limits of species tolerance for GDDs. The abiotic-centric PSD (i.e.,

PSDoriginal) was expressed as multiplicative interaction of species environmental response [9],

i.e.,

PSDoriginal ¼ RnPAR � RSWC � RGDD: ½9�

Modeling tree species distribution
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The PSD values range between 0–1, where 0 represents unfavorable site conditions (and,

thus, potentially low probability of species occurrence), and 1, superior site conditions (and

potentially high probability of species occurrence).

Incorporating interspecific competition into original PSD. Cumulative effects of simu-

lated interspecific competition over a 100-year simulation period with JABOWA-III provided

the best possible estimate of species composition and aboveground productivity at the end of

the simulation period. It is this information that we use to construct expressions of species-

specific competitive ratings with Eq 10. Before scaling up JABOWA-III simulations of inter-

species competition to the level of the landscape, we first classified the area into 12 forestland

types (distinct combinations of tree species a particular site can carry) using surfaces of species

distribution patterns generated with the abiotic-centric PSD model (i.e., eq. [9–10,35]). A clas-

sification of the area was needed to determine the actual range of forest growing conditions

present and also reduce the number of JABOWA-III simulations. The methods employed in

the classification and validations of the forestland types are more fully described in [24].

We initialized the JABOWA-III model with tree and environmental data from forest inven-

tory plots located in each forestland type; all inventory plot data were in GIS format, courtesy

of the Nova Scotia Department of Natural Resources (NS DNR). Individual tree growth, estab-

lishment, and mortality were simulated in JABOWA-III taking into account inter-tree compe-

tition, and growth-related physical variables such as sunlight, accumulated GDD, and soil

water and nutrient content (http://dx.doi.org/10.5061/dryad.tf7f7). As in Eq (9) and LanDSET

Table 1. Parameter values for individualistic species-response functions for photosynthetically active radiation (PAR), soil water content (SWC),

and growing degree days (GDD) in Eqs (2–8).

Species

Shade classa nPARb GDDc SWCd

c1 c2 cp GDDmin GDDmax SWCmin SWCmax Ѱ
Balsam fir 4 1.046 3.290 0.06 563 2011 0.087 0.999 0.50

Black spruce 3 1.125 2.439 0.09 350 2200 0.087 0.999 0.80

Eastern hemlock 5 1.020 4.165 0.03 1300 2900 0.27 0.60 0.50

Eastern larch 1 1.578 1.188 0.15 400 2500 0.20 0.999 0.71

Red pine 1 1.578 1.188 0.15 1400 2300 0.50 0.95 0.70

Red spruce 4 1.046 3.290 0.06 800 2900 0.20 0.80 0.60

White spruce 2 1.259 1.785 0.12 500 2100 0.20 0.90 0.55

Eastern white pine 2 1.259 1.785 0.12 1100 3400 0.20 0.75 0.53

American beech 5 1.020 4.165 0.03 1300 3500 0.18 0.70 0.58

Red maple 3 1.125 2.439 0.09 550 7250 0.01 0.95 0.50

Red oak 2 1.259 1.785 0.12 1525 3878 0.08 0.95 0.75

Sugar maple 4 1.046 3.290 0.06 800 2900 0.58 0.67 0.38

Trembling aspen 1 1.578 1.188 0.15 800 3000 0 0.92 0.75

White ash 2 1.259 1.785 0.12 1275 5600 0.01 0.999 0.66

White birch 1 1.578 1.188 0.15 400 2400 0.55 0.87 0.40

Yellow birch 3 1.125 2.439 0.09 1100 2900 0.085 0.80 0.52

a 1 represents least shade tolerant, and 5 the most shade tolerant
b Values are derived from the literature, e.g., from [16,34], c1 is a scaling factor, c2 is the slope of the light response curve, and cp is the light compensation

point
c GDDmin and GDDmax are the minimum and maximum tolerance limits of species, based on a review of the scientific literature (e.g., [34]) and references

from the internet—the same parameters are used in JABOWA-III
d 0 and 1 represent the soil’s permanent wilting point and field capacity, respectively [33]

ѱ denotes a species functional parameter that defines the shape of the soil-water response curve.

doi:10.1371/journal.pone.0171487.t001
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simulations, mean monthly precipitation and mean monthly temperatures are based on data

acquired from Environment Canada climate stations within the study area. Thus, all elements,

but the soil conditions and tree-growth-related elements of JABOWA-III are addressed within

Eq (9) (abiotic-only model) but at different temporal resolutions. Replicate simulations of the

same forest patch (50 replicates) up to 100 years each yielded averaged tree production and

composition trajectories. Competitive species ratings was defined by the total aboveground

biomass of target species in cohorts consisting of other species, as a proportion of the maxi-

mum aboveground biomass of that particular species under optimum growing conditions on a

plot. Values of species’ competitive ratings were then rescaled to derive relative competitive

ratings (Pk
100

) according to the following:

P
100
j
k
‘
¼

AGBk
‘X

AGBk
‘

� max
AGBk

‘X
AGBk

‘

 !( )� 1

; ½10�

where k and ‘ represent functional dependence on species k (whereby k = 1, 2, 3. . .. m) and

forestland type ‘ (‘ = 1, 2, 3,. . .., n), respectively. Species-specific competitive ability by forest-

land type was then used to weigh original PSDs (by way of Eqs (9) and (10)) and give revised

PSDs as follows:

PSDrevised ¼ P100j
k
‘
� PSDoriginalj

k
‘

½11�

where 0:0 � PSDk
‘
� 1:0.

Model accuracy assessment

The study area has a system of randomly placed forest-inventory plots. The network of plots

provides a nearly continuous forest inventory dating back to the 1960s, incorporating field

observations of species composition, growth, and mortality. Observed distributions of tree spe-

cies in over 1,240 forest-inventory plots across the study sites were used to investigate the

degree to which original and revised PSD values reflected actual species occurrence. All inven-

tory plot data were also in GIS format, courtesy of NS DNR. For purposes of assessment, one

assumption was that raster cells (i.e., 70 m x 70 m) representing the landscape were considered

to have the biophysical attributes needed for species occurrence, where original and revised

PSD values were greater than 0.25. The analysis summarizes relative frequency of each of the

four possible outcomes as follows: (i) predicted vs. observed species occurrence (this outcome

demonstrates positive agreement between predicted species occurrence and plot observation);

(ii) predicted vs. observed species absence (this outcome demonstrates positive agreement

between predicted species absence and plot observation); (iii) predicted occurrence vs. ob-

served species absence (this outcome is indeterminate with respect to model predictions, as

species absence from plots may be the result of other forest-forming factors not addressed in

the current definition of PSD, e.g., as a result of species migration, disturbance, and forest

conversion); and (iv) predicted absence vs. observed species occurrence (the outcome demon-

strates potential inaccuracies in modeled biophysical factors and/or associated species envi-

ronmental response). Analysis of model accuracy was based on two metrics, namely overall

accuracy and kappa statistic [36, 37]. The overall accuracy is the proportion of correctly pre-

dicted observations of species’ presence and absence, whereas the kappa statistic corrects the

overall accuracy of model predictions by the accuracy expected to occur by chance. The kappa

statistics range from zero (very poor model accuracy) to one (perfect fit between predictions

and observations).

Modeling tree species distribution
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Results

Species competitive ratings by forestland type

Simulated values of relative competitive rating (Pk
100

) by species and forestland types are sum-

marized in Table 2. During the 100-year successional period, species projected to possess the

greatest competitive ability within a given forestland type have Pk
100

-values = 1, whereas those

expected to be eliminated from the community have Pk
100

-values = 0. Final stages of stand

development in all forestland types were dominated by relatively shade-tolerant, long-lived

species, such as sugar maple, American beech, eastern hemlock, red spruce, and balsam fir,

with significant components of eastern white pine, black spruce, and yellow birch. In the

absence of large-scale catastrophic disturbance, as is assumed in our study, final species associ-

ations in most forestland types resemble a few of the old-growth forest types remaining on the

NS mainland [29].

Original vs. revised PSD model

The original PSD model (i.e., Eq (9)) predicted four conifer (balsam fir, black spruce, eastern

larch, and red pine; Fig 1) and two broadleaf (trembling aspen and yellow birch; Fig 2) species

to possess the greatest potential to occur across the area. This predicted species occurrence is

indicated by the abundance of high-quality sites (represented by yellow and brown colors;

accounting for >70% of the land base) in their respective PSD maps.

Four conifer (red pine, red spruce, white spruce, eastern white pine; not shown) and two

broadleaf (American beech and red maple; Fig 2) species were predicted to possess intermedi-

ate potential to occur in the landscape, as indicated by the abundance moderately high quality

sites (i.e., green colors; accounting for >50% of the land base) in the corresponding PSD maps.

The original PSD for one conifer (eastern hemlock; not shown) and four broadleaf (red maple,

red oak, sugar maple, and white birch; not shown) species revealed that they may not fare as

well as other species, because of a narrow response function to the prevailing abiotic factors

used in the calculation of potential distribution. This is demonstrated by the abundance of low

Table 2. Value of relative competitive rating representing species’ performance by forestland type.

Forestland type Relative competitive ratings (Pk
100

)

bF1 bS eLa tA rP rS wP ewP wA yB eH rM rO sM wB Be

bS 0.82 1.0 0 0 0 0.80 0 0 0 0 0.52 0.35 0 0 0.43 0

Bs-eLa-Rs 1.0 0.3 0 0.2 0 0.3 0.34 0 0 0 0.80 0.23 0 0 0.34 0

bF-bS 0.81 1.0 0.10 0 0 0 0.22 0.36 0.36 0 0.4 0.50 0.18 0.72 0.09 0.14

rS-wP-eH 0.80 0 0 0 0.72 1.0 0 0.96 0 0.16 0.52 0 0.08 0.20 0.12 0.24

bF 1.0 0.08 0 0.07 0 0 0.52 0 0 0 0 0.05 0 0 0.67 0

rS-bF-wP 0.50 0 0 0 0 0 0.23 0.14 0.81 1.0 0.74 0.22 0.41 0.77 0.10 0.36

bS-wS 0.07 0.27 0 0 0.14 0 0.02 0 0 1.0 0.9 0 0 0.33 0 0

eH-rS 0.08 0 0 0.13 0.23 0.15 0 0.02 0 0 1.0 0 0.15 0.32 0.02 0.04

bF-rM 0.23 0 0 0 0 0 0.27 0 0.17 1.0 0 0.50 0.47 0 0.46 0.03

tA-wB-rO 0 0 0.67 1.0 0 0 0 0.78 0 0.72 0.11 0.11 0.56 0.94 0.32 0

rM-wB-rO 0.05 0 0.22 0 0 0 0.02 0 0 1.0 0 0.23 0.35 0 0.02 0

sM-Be-yB 0.44 0 0 0 0.68 0 0.20 0.24 0.23 0.75 0.08 0.32 0.32 1.0 0.08 0.54

1Species code: bF = Balsam fir, bS = Black spruce, eLa = Eastern larch, tA = Trembling aspen, rP = red pine, rS = Red spruce, wP = White pine,

ewP = Eastern white pine, wA = white ash, yB = Yellow birch, eH = Eastern hemlock, rM = Red maple, rO = Red oak, sM = Sugar maple, wB = White birch,

Be = American beech.

doi:10.1371/journal.pone.0171487.t002
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quality sites (indicated by dark blue color; accounting for >70% of the land base) in their PSD

map.

Incorporating a competition model into the original PSD model (by way of Eq (10)) low-

ered the potential distribution of all species. However, the extent of downgrading varies

among species based on individual competitive success within forestland type. The revised

PSD map suggested three conifer (balsam fir, black spruce (Fig 1), red spruce (not shown))

and two broadleaf (yellow birch (Fig 2), sugar maple (not shown)) species experienced nomi-

nal decline relative to their original distribution. Potential distribution for one conifer (eastern

hemlock; Fig 1) and five broadleaf (trembling aspen and American beech, red maple (Fig 2),

white birch, red oak (not shown)) species were projected to experience the largest reduction

in PSD with the introduction of interspecific competition. For these species, most sites origi-

nally described high-to-moderate-quality diminished to low-quality sites, yielding over 86%

increase in sites subjected to low levels of interspecific competition. Among all the 16 species

studied, eastern larch (Fig 1) and trembling aspen (Fig 2) recorded the greatest reduction in

high-quality sites to low-quality sites after adding a competition model to the original PSD

model. However, pockets of moderate-quality sites (represented by green colors; Figs 1 and 2)

existing across their respective revised PSDs indicate areas where eastern larch and aspen are

expected to do well, competitively.

Fig 1. Spatial distribution of modeled PSD surfaces (original vs. revised) for balsam fir, black spruce,

eastern larch, and red pine. Original PSD represents species’ potential distribution in responses to

photosynthetically active radiation (PAR), soil water content (SWC), and growing degree days (GDD); revised

PSD (right) indicates distribution in response to PAR, SWC, GDD, and species competitive ability simulated

with JABOWA-III forest gap model. Dark blue colors represent least favorable growing conditions and

potential absence of species (legend), whereas brown and yellow represent the most favorable conditions

and probable presence of the species; green represents intermediate growing conditions and associated

species presence.

doi:10.1371/journal.pone.0171487.g001

Modeling tree species distribution
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Model accuracy assessments. Both the original and revised PSD models (Eqs (9) and

(11), respectively) recorded a very high overall accuracy on average (Tables 3 and 4). Addition

of interspecific competition improved overall model accuracy from 64.2 to 81.7%. The analysis

based on the kappa statistic indicates that there is a greater degree of correspondence between

actual species distribution in sample plots and revised PSD, than there is with original PSD

(Tables 3 and 4). The kappa statistics increased from 0.26 (fair) with original PSDs to 0.41

(moderate) with revised PSDs.

Discussion

The original PSD model integrated modeled species-specific response to largely modeled bio-

physical variables of incident solar radiation (and PAR), SWC, and GDD; the model had been

used extensively in eastern Canada to assess tree species habitat suitability [9–10, 38], as well as

classify the landscapes into forestland type [24]. However, the impacts of other forest-forming

factors beyond the three biophysical variables used in the original definition of PSD were quite

large, causing model inaccuracies to be as high as 73% in some areas [9]. We demonstrate a

simple procedure for combining results from competition-based forest gap models to the cur-

rent definition of PSD at the landscape level, without additional parameterization of the origi-

nal model (i.e., Eq (9)). The critical question is whether scaling up output of gap models, in

general, would be useful in explaining plant species distribution.

Fig 2. Spatial distribution of modeled PSD surfaces (original vs. revised) for trembling aspen,

American beech, yellow birch, and red maple. Original PSD represents species’ potential distribution in

responses to photosynthetically active radiation (PAR), soil water content (SWC), and growing degree days

(GDD); revised PSD (right) indicates distribution in response to PAR, SWC, GDD, and species competitive

ability simulated with JABOWA-III forest gap model. Dark blue colors represent least favorable growing

conditions and potential absence of species (legend), whereas brown and yellow represent the most

favorable conditions and probable presence of the species; green represents intermediate growing conditions

and associated species presence.

doi:10.1371/journal.pone.0171487.g002
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Results show that accounting for competition effects in the original PSD model provides a

better prediction of species distribution, as suggested before [39]. The decline in potential dis-

tribution for all tree species in the revised PSD model suggests that tree species cannot be

expected to occupy all area of the climatic space that they can tolerate, due to the impact of

other factors associated with forest development processes, including intraspecific and inter-

specific competition [3–7]. We found that mid- to late-successional tree species, such as bal-

sam fir, black spruce, red spruce, yellow birch, and sugar maple, will be least affected by the

incorporation of some measure of competition effect into the original PSD model. This effect

is confirmed by the nominal decline in moderate- and high-quality sites in their respective

revised PSD model. Many of these species are shade tolerant and are unlikely outcompeted for

sunlight and thus may occur in many abiotically suitable sites [23,40].

Impacts of adding gap-model-based outputs of competition to tree species distribution

were much greater when early successional and shade-intolerant species were considered. For

example, eastern larch or trembling aspen, according to the original PSD, can occupy about

86% of the entire area as climatic space that they can tolerate. Incorporating their ability to

compete for resources in cohorts consisting of other species reveals that they may not fare as

well as initially predicted. As stand-alone species, they grow on a great variety of soil condi-

tions and have the widest distribution of any native tree species in North America [41–43].

Although eastern larch and trembling aspen have potential to tolerate a wide range of environ-

mental conditions, realistically, they are present in low abundance and contribute only 3.3% to

the total tree volume in the area [44], contrary to what was predicted. Lower real abundance

compared with predicted abundance can be attributed in part to low shade tolerance and

Table 3. Results of an accuracy assessment between original PSD (Eq (9)) values and plot observations. Class limits for the assessment scale are

based on Monserud and Leemans [28], namely <0.20 (poor), 0.20–0.40 (fair), 0.40–0.50 (moderate), 0.50–0.70 (good), 0.70–0.80 (very good), and >0.80

(excellent).

Predicted Predicted

Occurrence Absence

Species Plots vs. vs. Overall Kappa Assessment

No. Plot Plot Agreement Statistics

Occurrence Occurrence (%)

Absence Absence

Balsam fir 281 64 12 62 143 73.6 0.45 moderate

Black spruce 158 14 4 38 102 73.4 0.29 fair

Eastern larch 76 21 0 36 19 52.6 0.23 fair

Aspen 48 1 0 36 11 25.0 0.01 poor

Red pine 13 1 0 2 10 84.6 0.45 moderate

Red spruce 304 63 42 15 184 81.3 0.56 moderate

White spruce 72 6 2 48 16 30.6 0 poor

White pine 162 42 6 66 48 55.5 0.22 fair

White birch 25 1 1 10 13 56.0 0.02 poor

Yellow birch 53 16 1 21 15 59.5 0.3 fair

Hemlock 47 0 1 1 45 95.5 0.02 poor

Red maple 85 13 4 20 48 71.8 0.34 fair

Red oak 58 0 1 29 28 42.3 0 poor

Sugar maple 27 5 0 4 18 85.2 0.63 good

White ash 136 3 3 48 82 61.4 0.03 poor

Beech 33 8 0 7 18 78.9 0.55 moderate

Overall 64.2 0.26 fair

doi:10.1371/journal.pone.0171487.t003
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shorter life spans, rendering them less successful in association with other species over a

100-year period. Apart from low competitive ability, other factors that could cause their actual

distribution to be lower include increased fire frequency, intensive harvesting, clearing for

agriculture, insects, and diseases [41–44].

We did not use the disturbance option of the JABOWA-III model, other than canopy gap-

forming and self-thinning processes. However, there are some residual effects of disturbance

captured in the abiotic surfaces, in particular in the expression of temperature and GDDs.

Long-term GDD surface is based on 3 years of MODIS images of temperature that we subse-

quently calibrated with GDDs calculated at climate stations. In general, surface temperatures

measured from space or at climate stations, for that matter, possess characteristics representa-

tive of the underlying surface. For example, air above forested surfaces, because of high evapo-

transpiration, tends to be cooler than the air above cutovers, grass surfaces, or airport runways

during the day. These temperature differences would clearly become part of the overall expres-

sion of GDD, and in that sense would incorporate the effect of disturbance to some extent,

introducing a level of noise in the prediction of PSD. Because SWC is based on a water balance

calculation and surface temperature (used in the calculation of evapotranspiration, a compo-

nent of the water balance), the impact of disturbance is also present. However, since SWC is

mostly a function of landscape position and flow routing (redistribution of surface and shallow

subsurface water; [9]), the effect of disturbance through surface temperature is expected to be

considerably smaller. As JABOWA models forest succession based on initializations with tree

data from forest inventory plots, the results from JABOWA could also indirectly account for

Table 4. Results of an accuracy assessment between revised PSD (Eq (11)) values and plot observations. Class limits for the assessment scale are

based on Monserud and Leemans [28], namely <0.20 (poor), 0.20–0.40 (fair), 0.40–0.50 (moderate), 0.50–0.70 (good), 0.70–0.80 (very good), and >0.80

(excellent).

Predicted Predicted

Occurrence Absence

Species Plots vs. vs. Overall Kappa Assessment

No. Plot Plot Agreement Statistics

Occurrence Occurrence (%)

Absence Absence

Balsam fir 281 64 12 32 204 84.3 0.63 good

Black spruce 158 14 4 22 118 83.5 0.43 moderate

Eastern larch 76 21 0 10 35 84.9 0.69 good

Aspen 48 1 0 14 33 66.7 0.08 poor

Red pine 13 1 0 2 10 84.6 0.44 moderate

Red spruce 304 63 42 5 194 84.5 0.63 good

White spruce 72 6 2 20 46 70.3 0.23 fair

White pine 162 42 6 46 88 71.4 0.42 moderate

White birch 25 1 1 5 19 76.9 0.16 poor

Yellow birch 53 16 1 5 31 88.7 0.75 very good

Hemlock 47 0 1 1 45 95.7 0.02 poor

Red maple 85 13 4 16 52 76.5 0.42 moderate

Red oak 58 0 1 9 48 82.8 0 poor

Sugar maple 27 5 0 2 20 92.6 0.78 very good

White ash 136 3 3 35 94 72.4 0.08 poor

Beech 33 8 0 3 22 90.9 0.78 very good

Overall 81.7 0.41 moderate

doi:10.1371/journal.pone.0171487.t004
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the effects of disturbance. In this study, JABOWA-III takes these disturbances as initial condi-

tions and projects these into the future without additional disturbance.

Despite differences in timescales between Eq (9) and JABOWA, merging information from

both models (by way of Eq (9)) does not lead to inconsistencies as they are used to describe a

different aspect of PSD, i.e., spatial variation in species habitat (site) suitability vs. a onetime

assessment of species aboveground biomass based on 100 years of cumulative effects of inter-

species competition and changes in forest composition. However, the JABOWA model also

includes a number of abiotic parameters that are not available in the original PSD model. Sev-

eral site-specific factors addressed in JABOWA (e.g., soil texture, nutrient content, etc.) were

not included in the development of the original PSD model at the landscape level. It is implicit

that a model with more predictor variables is likely to have better performance [8]. However,

over a 100-year simulation period with JABOWA, the role of these abiotic factors in changing

species composition plays out across time, and what is left at the end of the simulation period

is the relative competitive ability of the different species.

Furthermore, these additional factors were treated as random errors in the original PSD. By

including these factors we could have potentially increased model accuracy; however, values

for these variables at the landscape level are not readily available. On the other hand, if plot

data could have been used to generate these same species’ competitive ratings, naturally the

expression of interspecific competition and their accumulation on model output would have

been much more exact. Once the above challenges have been addressed, individual-based sim-

ulation models are likely to provide outstanding tools for overcoming past limitations and will

provide the means to make reliable and robust predictions of the potential distribution of spe-

cies at the scale of landscapes [6].

Conclusions

In this paper, we approach the problem of integrating biotic interactions, such as interspecific

competition, into an abiotic-centric species distribution model by conducting an upward scal-

ing of results generated with a forest-gap model (i.e., JABOWA-III) from shifting-gap mosaics

to the landscape level, by way of Eqs (10) and (11). The results of the revised species distribu-

tion analysis indicate that, at the spatial scale of this study, the potential distribution of 16 com-

mon trees species in the area is largely a reflection of species’ individualistic response to

climatic factors and interspecific competition. Overall, the impact of incorporating some mea-

sure of interspecific competition into species’ potential distribution across the landscape was

relatively low for late-successional species with high shade tolerance that are dominant across

the landscape (e.g., balsam fir, black spruce, red spruce, sugar maple, yellow birch) compared

with early successional and shade-intolerant species (e.g., eastern hemlock, American beech,

white birch, red oak, red maple, and trembling aspen).

The revised PSD model with interspecific competition (Eq (11)) includes a number of abi-

otic parameters that are not implicitly addressed in the original PSD model (Eq (9)). Differ-

ences between the abiotic-centric and the competition models may, in part, be due to the

different input variables used. In future work, the original PSD model will be coupled with

those abiotic variables absent in the model (e.g., soil texture, nutrient content).
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4. Araújo MB, Williams PH (2000) Selecting areas for species persistence using occurrence data. Biol.

Cons. 96: 331–345.

5. Clark JS, Bell DM, Hersh MH, Nichols L (2011) Climate change vulnerability of forest biodiversity: cli-

mate and competition tracking of demographic rates. Glob. Change Biol. 17: 1834–1849.

6. Afkhami ME, McIntyre PJ, Strauss SY (2014) Mutualist-mediated effects on species’ range limits across

large geographic scales. Ecol. Lett. 17: 1265–1273. doi: 10.1111/ele.12332 PMID: 25052023

7. Svenning J-C, Gravel D, Holt RD, Schurr FM, Thuiller W, Münkemüller T et al (2014) The influence of

interspecific interactions on species range expansion rates. Ecography 37: 1198–1209.

8. Woodward F I, Beerling DJ (1997). The dynamics of vegetation change: health warnings for equilibrium

’dodo’ models. Glob. Ecol. Biogeogr. Lett. 413–418.

9. Bourque CP-A, Hassan QK (2008) Projected impacts of climate change on species distribution in the

Acadian forest region of eastern Nova Scotia. For. Chron. 84: 553–557.

10. Hassan QK, Bourque CP-A (2009) Potential species distribution of balsam fir based on the integration

of biophysical variables derived with remote sensing and processed-based methods. Rem. Sens. 1:

393–407.

11. Meier ES, Kienast F, Pearman PB, Svenning JC, Thuiller W, Araújo MB, Guisan A, Niklaus E, Zimmer-
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