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Abstract

Background

Many biomarkers have been shown to be associated with the efficacy of cancer therapy.

Estimation of personalized maximum tolerated doses (pMTDs) is a critical step toward per-

sonalized medicine, which aims to maximize the therapeutic effect of a treatment for individ-

ual patients. In this study, we have established a Bayesian adaptive Phase I design which

can estimate pMTDs by utilizing patient biomarkers that can predict susceptibility to specific

adverse events and response as covariates.

Methods

Based on a cutting-edge cancer Phase I clinical trial design called escalation with overdose

control using normalized equivalent toxicity score (EWOC-NETS), which fully utilizes all tox-

icities, we propose new models to incorporate patient biomarker information in the estima-

tion of pMTDs for novel cancer therapeutic agents. The methodology is fully elaborated and

the design operating characteristics are evaluated with extensive simulations.

Results

Simulation studies demonstrate that the utilization of biomarkers in EWOC-NETS can esti-

mate pMTDs while maintaining the original merits of this Phase I trial design, such as ethical

constraint of overdose control and full utilization of all toxicity information, to improve the

accuracy and efficiency of the pMTD estimation.
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Conclusions

Our novel cancer Phase I designs with inclusion of covariate(s) in the EWOC-NETS model

are useful to estimate a personalized MTD and have substantial potential to improve the

therapeutic effect of drug treatment.

Introduction

It is common for a group of patients with the same cancer type to receive the same treatment.

However, some patients will experience substantially better therapeutic effects than others,

and some anticancer therapies may benefit only a subset of treated patients. Several reasons

account for the heterogeneous therapeutic effect observed at the same dose level of the same

drug. Patients have different genetic and environmental profiles, including demographic char-

acteristics, concomitant diseases, concomitant drugs, biomarkers, SNP copy number, etc.

[1,2,3]. Genetic and environmental factors interactively affect the therapeutic effect of a treat-

ment intervention. Tumor heterogeneity is another significant reason for the heterogeneity of

the toxicity and therapeutic effects of a drug. Tumors of a primary site in many cases represent

a heterogeneous collection of diseases that differ with regard to the mutations that cause them

and drive their invasion, thus are heterogeneous with regard to natural history and response to

treatment. Personalized medicine has evolved recently as an advanced approach to achieve

optimal medical effect in the context of a patient’s genetic, environmental, and tumor profiles

[1,2,3,4,5].

The first critical step toward personalized medicine is the estimation of personalized maxi-

mum tolerated dose (MTD) in a Phase I clinical trial, which is the first trial of a new drug in

humans after animal studies, with the main purpose to determine the MTD of a new drug

under safe administration. In a Phase I clinical trial, there is substantial heterogeneity in dose

limiting toxicity (DLT) response at the same dose level of the same drug among different

patients because of different genetic and environmental profiles and tumor heterogeneity.

Some known factors include the vulnerability to an exaggerated pharmaco-dynamic effect

(potentially mediated by receptor differences), differences in genetic susceptibility (e.g. bio-

marker, G6PD deficiency), and drug–drug interactions [6,7]. Ignoring the potential heteroge-

neity may lead to serious bias in MTD estimation for different groups of patients [7,8], and as

a result, the therapeutic effect is substantially decreased. Hence, in order to achieve the optimal

therapeutic effect of a drug for every patient, estimating a personalized MTD offers greater

potential than estimating an overall MTD across different patients [8].

The main goal of this study is to develop a practical and leading Phase I design that can

facilitate the estimation of personalized MTD for the implementation of personalized medi-

cine. Currently available Phase I designs can be classified as rule-based or model-based. Rule-

based (or non-parametric) Phase I designs fail to estimate MTDs while adjusting for covariates

due to their simple up and down algorithms. Therefore, a parametric or semi-parametric

model-based design is desired so that covariates, especially genomic profiles, can be included

into the dose response curve. Among several parametric Phase I designs available in the litera-

ture, Escalation With Overdose Control (EWOC), proposed by Babb, et al. [9], can control the

probability of exceeding the MTD during the dose escalation phase and has been used in trials

at Emory University, Fox Chase Cancer Center, Miami University, Novartis, and other institu-

tions. EWOC can detect the true MTD with high accuracy, compared with traditional 3+3

designs. Nevertheless, EWOC only considers the worst toxicity event that a patient experi-

ences. A binary outcome is used to denote whether the worst toxicity event that occurs has
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DLT status. Therefore, EWOC design is limited by its binary outcome when investigators

want to consider not only DLT events but also non-DLT events. In a real clinical trial, patients

often experience multiple toxicities with event grades varying from 0 (no toxicity of that type)

to 5 (death). Some patients may experience multiple DLTs. In addition, the toxicity events are

not equally severe. For example, a grade 4 renal toxicity of severe and possibly irreversible may

be more severe than a grade 3 reversible toxicity of another type, such as grade 3 neutropenia.

Moreover, some, but not all, low-grade non-DLT events that occur at a lower dose may be a

sign of the occurrence of the same toxicity of a higher grade at a higher dose. Different toxicity

events often occur together, such as fatigue and nausea/vomiting, myelosuppression and fever,

etc. Considering both DLT and non-DLT events will allow the more accurate evaluation of the

toxicity of a new drug [10,11,12,13].

We previously proposed a novel toxicity scoring system to overcome the above limitations

by incorporating multiple toxicity responses as a quasi-continuous variable and thus, fully uti-

lize all toxicity information [14]. The novel toxicity scoring system has two major components:

Normalized Equivalent Toxicity Score (NETS) and Target NETS (TNETS). It has been suc-

cessfully combined with the non-parametric Isotonic Design, to create a new semi-parametric

design named ID-NETS. In Chen et al. [15], we further proposed to replace the binary out-

come with NETS in the EWOC design so that the extended method (EWOC-NETS) can be

used to evaluate the MTD by considering both DLT and non-DLT events. In this study, in

order to estimate a personalized MTD, we propose to include baseline covariates that represent

personal tumor, genetic, and environmental factors into the EWOC-NETS model. The

selected baseline covariates must be biomarkers or classifiers with strong biological evidence

that they may have some kind of linear relationship with the dose and drug effect, or that their

categorical status can successfully predict the possibility of patient benefit from the agent. The

varying MTD estimated in the novel method is the personalized MTD according to a patient’s

tumor, genomic and environmental profile, instead of an overall MTD. In the remainder of

this manuscript, we will describe in Section 2 details of the NETS system, EWOC-NETS, and

the new model including the covariate. In Section 3, extensive simulations will be presented to

examine the performance of EWOC-NETS after considering the covariate. In Section 4, we

will discuss the limitations and applications of the new method.

Methods

2.1. Major differences between EWOC and EWOC-NETS

EWOC-NETS was developed based on the framework of EWOC with two new concepts. The

first is to fully utilize all toxicity information by replacing the binary outcome with the NETS

(ranging from 0 to 1) which can be interpreted as the severity of a patient’s toxicity response. A

quasi-likelihood function is further introduced to update the posterior marginal distribution

of the MTD (γ). The second concept is that the MTD is re-defined as a dose corresponding to

a pre-specified TNETS, θ, ranging from 0 to 1 instead of a Target Tolerated Level (TTL). The

new definition satisfies

y ¼ TNETS ¼ ANETSDose¼g ð1Þ

where ANETS is the Average NETS of the dose level. TNETS, θ, is an analog to the Target Tox-

icity Level (TTL) when using a binary DLT in a traditional clinical trial design and is deter-

mined by the Target Toxicity Profile, which is a more detailed toxicity response of a patient

treated at MTD γ. EWOC-NETS assumes that the dose ANETS relationship follows a logistic

model and NETS can also be interpreted as the observed fractional events ranging from 0 to 1

(see Fig 1 of Chen et al. [12]).
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2.2. Quantitative measurement of toxicity response with NETS

Chen et al. [14] provide a detailed description of the method to derive NETS and determine

TNETS for a clinical trial. Suppose in a trial with K patients, the ith patient has a total of Ni tox-

icities. Toxicity events are assigned to adjusted grade according to 1 for grade 1 toxicity, 2 for

grade 2 toxicity, 3 for grade 3 non-DLT, 4 for grade 4 non- DLT, 5 for grade 3 DLT, and 6 for

grade 4 DLT (see Table 1 of Chen et al. [12]). Let Gi,j be the adjusted grade of the jth toxicity (1

� j� Ni) of the ith patient. The maximum adjusted grade, Gi,max, of the ith patient can be

obtained by Eq (2):

Gi;max ¼ maxðGi;j; j ¼ 1; . . . ; JiÞ ð2Þ

Let Si be the NETS of the ith patient. If the ith patient has no toxicity or only grade 1 toxicity

(adjusted grade = 1), the Si is arbitrarily assigned to 0 or 1/60, respectively. Otherwise, Si can be

derived by Eq (3).

Si ¼
1

6
Gi;max � 1þ

exp cþ b �
PJi

j¼1

ri;jGi;j
Gi;max
� 1

� �� �

1þ exp cþ b �
PJi

j¼1

ri;jGi;j
Gi;max
� 1

� �� �

2

4

3

5 ð3Þ

The parameter ri,j ranging from 0 to 1 is a weight for the correlation of the jth toxicity with

other toxicities of the ith patient. The weight decreases as the correlation increases. According

to Chen et al. [14], the parameters Gi,max and c are suggested to be fixed at 6 and -2, respec-

tively. The parameter β is the slope for the increasing rate of NETS controlling for toxicity

events. The higher the value of β that is chosen, the more conservative the clinician is. β is rec-

ommended to be a value ranging from 0.1 to 0.5, such as 0.25.

2.3. Determination of TNETS

TNETS, θ, is an analog to the Target Toxicity Level (TTL) when using a binary DLT in a tradi-

tional clinical trial design. It is determined by the Target Toxicity Profile, which is a more

detailed toxicity response of a patient treated at MTD. The calculation of TNETS, θ, is defined

by

y ¼
P6

l¼0
ml � pl ð4Þ

Here, pl is the probability that the worst toxicity event is an adjusted grade l event and ml is

the corresponding mid-range NETS value when the toxicity with an adjusted grade of l is the

“worst” toxicity for a patient with varying additional less severe toxicities in the target toxicity

profile and the maximum adjusted grade for the patient is l. The range of the parameter l is

from 0 to 6. In the above equation, m0 = 0, m1 = 0.092, m2 = 0.25, m3 = 0.417, m4 = 0.583, m5 =

0.75, and m6 = 0.917.

2.4. EWOC-NETS model including covariates

In an ideal situation, we need to fully consider all possible covariates and their interaction

effects in order to estimate a personalized MTD. The full model of the dose and toxicity

response relationship should include a constant, a vector of covariates including dosage,
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patients’ characteristics, other biomarkers, and the overall interaction terms as below.

S ¼ FðXbþ εÞ

Where Sn�1 ¼

S1

S2

:

:

:

Sn

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

; Xn�ðmþ2Þ ¼

1 X1�1 � � � X1�m X1�1 � X1�2 � � � � � X1�m

..

. ..
. . .

. ..
. ..

.

1 Xn�1 � � � Xn�m Xn�1 � Xn�2 � � � � � Xn�m

2

6
6
4

3

7
7
5,

bðmþ2Þ�1 ¼

b0

b1

:

:

:

bm

bmþ1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

; εn�1 ¼

ε1

ε2

:

:

:

εn

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

However, the small sample size of a Phase I trial makes it inadvisable to use an overly com-

plicated model with too many covariates. Therefore, in the models proposed in this study, we

limit to one covariate that is either discrete or continuous and have omitted the interaction

term.

2.4.1 Discrete covariate. Let Xmin and Xmax denote the minimum and maximum dose lev-

els pre-specified by the clinician. Suppose a discrete covariate C with a value 1 means that the

patient is in group A and a value 0 means that the patient is in group B. According to the pre-

clinical trial, we know that group B generally has higher MTDs in males than in females. Let

γmax denote the MTD for group B and γ0 denote the MTD for group A. Therefore, the relation-

ship

Xmin � g0 � gmax � Xmax ð5Þ

would be satisfied.

The dose assigned to the first patient is Xmin and we shall select only dose levels between the

interval of Xmin and Xmax. Let Xi denote the dose assigned to the ith patient, i = 1, 2, . . ., K, then

x1 = Xmin and xi 2 [Xmin,Xmax], 8i = 1,. . .,k. We model the relationship between dose and

ANETS by

mSi jXi
¼ Fðb0 þ b1xi þ dciÞ ð6Þ

where F is a pre-specified distribution function, called a tolerance distribution, and β0 and β1

are unknown. We assume that β1 > 0 and δ< 0 so that the ANETS monotonically increases

when the dose level increases, adjusting for the covariate, ci. The MTD is the dose level,

denoted by γ, such that the TNETS is θ. It follows from Eq 6 that

y ¼ Fðb0 þ b1gmax þ dÞ ð7Þ

where F is a logistic regression model here. We can further simplify Eq (7) to obtain Eq (8).

logit ðyÞ ¼ b0 þ b1gmax þ d ð8Þ

Adaptive Estimation of pMTD with EWOC-NETS
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Let ρ1 denote the ANETS at the starting dose x1 = Xmin for group A and ρ2 the ANETS at

the starting dose x1 = Xmin for group B.

logit ðr2Þ ¼ b0 þ b1Xmin þ d ð9Þ

logit ðr1Þ ¼ b0 þ b1Xmin ð10Þ

Solving Eqs (8)–(10), we can re-parameterize the (β0, β1, δ) in terms of (γmax, ρ1, ρ2) by

b1 ¼
logitðyÞ � logitðr2Þ

gmax � Xmin
ð11Þ

d ¼ logitðr2Þ � logitðr1Þ ð12Þ

b0 ¼ logit r1ð Þ �
logitðyÞ � logitðr2Þ

gmax � Xmin
Xmin ð13Þ

(γmax, ρ1, ρ2) are interpretable to both clinicians and investigators. We can easily specify the

non-informative uniform prior for (γmax, ρ1, ρ2) based on the pre-clinical trial. ρ1 and ρ2 are

assumed to follow uniform distributions (0,θ). γmax is assumed to follow uniform (Xmin, Xmax).
2.4.2 Continuous covariate. The basic method to include a continuous covariate into the

EWOC-NETS model is the same as the method to include a discrete covariate. However, the

re-parameterization in Eq (13) is different. Let Z denote a continuous variable where the MTD

increases when z increases, conditional on the same dose level. Then Eqs (8)–(10) should be

changed by the new dose response relationship. Let zmin denote the smallest value of Z and

zmax be the maximum of Z in the Phase I clinical trial. After considering age, the dose-response

curve satisfies

logit ðyÞ ¼ b0 þ b1gmax þ dzmax ð14Þ

logit ðr2Þ ¼ b0 þ b1Xmin þ dzmax ð15Þ

logit ðr1Þ ¼ b0 þ b1Xmin þ dzmin: ð16Þ

A different re-parameterization for δ and β0 is derived by solving Eqs (14)–(16).

d ¼
logitðr2Þ � logitðr1Þ

zmax � zmin
ð17Þ

b0 ¼ logit r2ð Þ �
logitðyÞ � logitðr2Þ

gmax � Xmin
Xmin �

logitðr2Þ � logitðr1Þ

zmax � zmin
zmax ð18Þ

2.5. Quasi-Bernoulli likelihood

Frequentist quasi-likelihood methods are designed to model overdispersion observed in bino-

mial or Poisson data. When the “quasi” distributions belong to linear exponential families

such as the binomial family, Quasi Maximum Likelihood Estimates (QMLEs) obtained by

maximizing the quasi-Bernoulli likelihood function are strongly consistent [10,16,17,18].

Recently, the quasi-likelihood approach has been successfully combined with Bayesian gener-

alized linear models [18] and the continual reassessment method (CRM) [10].

NETS can be viewed as fractional events. So, we assume that the variance structure of NETS

(S) is mSi jXi
ð1 � mSi jXi

Þ conditional on dose level Xi for the ith patient where S1,. . .,SN are assumed

Adaptive Estimation of pMTD with EWOC-NETS
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to be mutually independent in a clinical trial with N patients. The quasi-Bernoulli likelihood

can be applied to update the posterior distribution of (γmax, ρ1, ρ2) under these assumptions.

If we want to include a continuous variable in our model, the data after observation of k
patients can be expressed as Dk = {(xi, zi, si), i = 1, 2, . . ., k}. Dk would include the dose assigned

(xi), the NETS observed (si), and the continuous covariate (zi) of each previously treated

patient. The quasi-Bernoulli likelihood of (γmax, ρ1, ρ2) given Dk is

Lðgmax; r1; r2jDkÞ ¼
QN

i¼1
m
si
Si jXi
ð1 � mSi jXi

Þ
1� si ð19Þ

Obviously, the true distribution in NETS is unknown so we try to make inferences based on

the known variance structure and the corresponding quasi-likelihood. According to the quasi-

Bayesian theory, the quasi-likelihood function can be interpreted as the “limited information

likelihood” and it is the best approximation of the true likelihood. After plugging in the corre-

sponding dose ANETS curve, the likelihood function can be written as

Lðgmax; r1; r2jDNÞ ¼
QN

i¼1
Fðb0 þ b1xi þ dziÞ

sið1 � Fðb0 þ b1xi þ dziÞÞ
1� si ð20Þ

2.6. Overdose control in EWOC-NETS

The traditional Bayesian decision theory makes inferences of the posterior mean, median or

mode so that the corresponding expected loss function can be minimized. In order to control

the overdose rate, we do not choose the posterior median of EWOC-NETS as an estimator of

MTD at the beginning of the clinical trial. Instead, the αth percentile of the posterior marginal

distribution is chosen. As a result, the marginal posterior overdosing probability is equal to α
for the next patient. α was referred to as the feasibility bound by Babb, et al [9]. Here, we gener-

ally present how to extend overdose control after including a continuous covariate Z.

The posterior distribution after the observation of k patients can be derived by

pkðgmax; r1; r2jDkÞ / Lðgmax; r1; r2Þ � pðgmax; r1; r2Þ / Lðgmax; r1; r2Þ ð21Þ

where p(γmax, ρ1, ρ2) is the joint prior of the new parameter (γmax, ρ1, ρ2). We assume that the

priors for γmax, ρ1, ρ2 are mutually independent and follow uniform distributions. The poste-

rior joint distribution of (γmax, ρ1, ρ2) is dominated by the observed data.

The MTD of the (k+1)th patient adjusting for zk+1 can be re-parameterized as gzkþ1
¼ gmaxþ

d

b1
zmax � zkþ1

� �
. The posterior distribution of gzkþ1

can be updated by the joint posterior

distribution of (γmax, ρ1, ρ2). We denote the cumulative density function (CDF) for gzkþ1
as

pk;zkþ1
ð�jDkÞ: pk;zkþ1

ð�jDkÞ. It is not only related to the cumulative data Dk, but also related to the

next patient’s covariate zk+1. In order to ensure the ethical constraint of overdose control, the

selected dose xk+1 for the new patient must satisfy equation:

pk;Zkþ1
ðxkþ1jDkÞ ¼ a: ð22Þ

At the end of the trial, the personalized MTD is the posterior median of the corresponding

posterior marginal distribution adjusting for the covariate.

During the implementation of Bayesian procedures, the posterior distributions are esti-

mated using the Markov Chain Monte Carlo (MCMC) method. The MCMC method has been

widely used in Bayesian frameworks to sample posterior distributions with high dimensional

parameters [19]. The Metropolis–Hastings algorithm is used to obtain a sequence of random

samples). In the EWOC-NETS design, the burn-in period is 1000 iterations with another 1000

iterations conducted to sample the posterior distribution. Tighiouart et al. [20] reported a suc-

cessful example of using MCMC to study a large class of prior distributions in EWOC.

Adaptive Estimation of pMTD with EWOC-NETS
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2.7. Additional advantages of EWOC-NETS

Simulation studies and their application to real clinical trial data demonstrate that EWOC-

NETS maintains the advantages of EWOC. In addition, it provides new advantages: 1) treats

toxicity response as a quasi-continuous variable; 2) improves the MTD accuracy by differenti-

ating beyond the DLT; 3) increases trial efficiency by fully utilizing all toxicities [15].

Results

3.1 Models incorporating patient characteristics and biomarkers

In this manuscript, we use EWOC-NETS as a framework to incorporate patient characteristics

and biomarkers. The original EWOC-NETS without considering any covariates is used as a

baseline model for comparison. Therefore, a total of 3 models is considered: 1) Model 1 is the

original EWOC-NETS model not including any covariates (baseline model); 2) Model 2 is the

EWOC-NETS model considering only a binary covariate C (0 or 1); 3) Model 3 is the EWOC--

NETS model considering only a continuous covariate Z (0 ~ 1). The logistic model of the rela-

tionship between NETS and dose x for each of the 3 models is summarized below:

Model 1 : logit mSijXi
¼ b0 þ b1Xi

Model 2 : logit mSijXi ;Ci
¼ b0 þ b1Xi þ b2Ci

Model 3 : logit mSijXi ;Zi
¼ b0 þ b1Xi þ b2Zi

The corresponding parameters are re-parameterized as (γmax, ρ1, ρ2) as mentioned in Section

2. In order to evaluate the additional advantages in the performance of EWOC-NETS after con-

sidering covariates, model 2 and model 3 are compared to the baseline model 1 using bias, stan-

dard error (SE) and mean square error (MSE), respectively, under different scenarios.

3.2 Simulation settings

In order to compare the performance of the extended methods and the original method, mod-

els 2 and 3 are evaluated mainly under four scenarios each. The γmax is defined as the true

MTD for the group with C = 1 and γ0 is defined as the true MTD for the group with C = 0

when the covariate is discrete or continuous. The simulation set up under the 8 scenarios (S1

to S8) is summarized in Table 1. The first 4 scenarios (S1 to S4) are for discrete covariates and

the other 4 scenarios (S5 to S8) are for continuous covariates. The covariates considered actu-

ally have true effects on MTDs under S1, S2, S3 for discrete covariates and under S5, S6, S7 for

Table 1. Simulation set-up in each scenario and simulation results from model 1 (EWOC-NETS considering no covariate) under different

scenarios.

Simulation set-up in each scenario Estimation from Model 1 considering no covariate

Scenario True value of γmax True value of γ0 MTD Mean SE γmax γ0

Bias MSE Bias MSE

S1 0.5 0.27 0.356 0.020 -0.144 0.021 0.079 0.007

S2 0.5 0.38 0.436 0.027 -0.064 0.005 0.068 0.005

S3 0.5 0.44 0.493 0.034 -0.007 0.001 0.055 0.004

S4 0.5 0.5 0.542 0.040 0.042 0.003 0.042 0.003

S5 0.5 0.27 0.407 0.034 -0.093 0.010 0.130 0.018

S6 0.5 0.38 0.463 0.035 -0.037 0.003 0.095 0.010

S7 0.5 0.44 0.506 0.037 0.006 0.001 0.069 0.006

S8 0.5 0.5 0.543 0.041 0.043 0.004 0.043 0.004

doi:10.1371/journal.pone.0170187.t001
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continuous covariates. The γmax is set to 0.5 and γ0 values are, respectively, 0.27, 0.38, 0.44

under scenario S1, S2 and S3 for model 2. The same γ0 values are assigned under S5, S6, and S7

for model 3. There are no true effects on MTD under S4 for discrete covariates and under S8

for continuous covariates, respectively, so that γmax and γ0 are both set to 0.5 under both sce-

narios. In order to obtain comparable results, the dose X is standardized within the range from

0 to 1; the continuous covariate Z is also standardized within the range from 0 to 1; and the

binary covariate C is either 0 or 1. The ANETS is generated by the true tolerated function.

The NETS is generated by a truncated normal distribution with the mean, ANETS, and the

assumed variance structure. Under S1, S2, S3 and S4, we enroll 15 cohorts with covariates of

value 1 (C = 1) and 15 cohorts with covariate of value 0 (C = 0). The group with C = 1 is treated

first because we assume that their MTD is higher and it is safer to treat them first. Under S5 to

S8, the continuous covariate values are generated from a uniform distribution (0, 1).

The comparisons of the performances of the different models are based on: 1) whether the

estimated MTD is a personalized MTD; 2) the amount of bias of the final estimation of ĝmax,

defined as
Pn

i¼1
ðĝmax � gmaxÞ=n, where n is the total number of simulations; 3) the mean square

error (MSE) of the final estimation of ĝmax where a smaller MSE yields better performance of

the models; and 4) the standard error (SE) of the estimator ĝmax where the lower the standard

error the more stable is the estimator.

In each simulated trial, the TNETS level is set to 0.476, which is calculated based on a target

toxicity level of 33% DLT with a target toxicity profile consisting of equal probability for each

non-DLT or DLT toxicity, respectively. The sample size is set to 30 in each simulated trial. The

feasibility bound, α, is set to start at 0.25 for every model. α is increased with an increment unit of

0.05 when we assign the dose to the next cohort. The maximum of the feasibility bound is 0.5.

The trial starts with the lowest dose level and the recommended dose level for the next cohort is

the αth percentile of the posterior marginal distribution of the MTD adjusting for its covariate.

Each scenario is simulated 1,000 times. We define the limiting NETS status (LNETS) as 1 if the

observed NETS exceeds 0.476, and 0 otherwise. Meanwhile, since we choose a dose level based on

a continuous scale, we assume a tolerance, 0.05, for both overdosing and limiting NETS status.

γmax, ρ1 and ρ2 are respectively assumed to follow mutually independent priors: uniform

distribution (0, 1), uniform distribution (0, 0.476), and uniform distribution (0, 0.476), respec-

tively. The posterior sample of (γmax, ρ1, ρ2) is directly sampled by the Metropolis-Hastings

algorithm implemented by JAGS, an efficient software for sampling the MCMC chain. The

burn-in period is 1000 iterations. We use an additional 1000 iterations as the posterior sample

of (γmax, ρ1, ρ2). Trace plots and histograms are used to diagnose whether the MCMC chain

has converged. The histogram and trace plot for the parameter of primary interest, γmax have

shown that after 2000 iterations, the MCMC chain is stable and becomes a unimodal curve so

that the posterior sample can provide more evidence to infer the parameter of interest γmax by

the posterior median.

3.3 Inclusion of a discrete covariate

Comparison of the accuracy of the estimated parameters between model 1 and 2 is summa-

rized in Tables 1 and 2. The advantage of model 2 is obvious when there is a huge difference

between two groups (C = 0 and C = 1) in S1. Model 2 successfully detects a different MTD for

the two groups when the true MTD for the C = 0 group increases from 0.27 to 0.5. In contrast,

model 1 always estimates only one MTD for both groups although these two groups should

have two different MTDs (Table 1 and 2). The bias for the MTD estimation using model 2 is

the smallest in S1, respectively, 0.058 and -0.013 (Table 2). The standard error and MSE are

also the smallest in this scenario (Table 2). The bias, standard error and MSE increase when
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the difference between the MTD of the two groups decreases from S1 to S4 (Table 2). The

results show that the MTD estimation for the two groups using model 2 will be more precise

when the covariate effect on ANETS is larger (Table 2). Under the worst scenario S4, model 2

estimates γmax as 0.6 and γ0 as 0.487, both of which are close to their true values (0.5), suggest-

ing the robustness of model 2 when the covariate considered has no true effect. On the other

hand, the bias, standard error and MSE for model 1, which only estimates a mean MTD for

two groups, tends to decrease as the covariate effect on the toxicity outcome in terms of

ANETS decreases from S1 to S4 (Table 1). Therefore, the MTD estimation for model 1 will be

more precise when the covariate effect on ANETS diminishes (Table 1). More patients are

required when the covariate effect on ANETS is small.

Compared with model 2, MTD estimation is a pooled estimate of the two groups of

patients. As a result, the bias of the pooled estimator for the two groups is larger when the

covariate effect on ANETS increases. Because of the small sample size in each group in the

trial, the standard error of the MTD estimation is larger in model 2. The patient distributions

among different dose levels under model 1 and model 2 are shown by the box plots in Fig 1

and Fig 2, respectively. Patients in different groups are treated at dose levels concentrated

around their personalized MTD under model 2 (Fig 2). By contrast, patients are concentrated

around the pooled estimation of MTD under model 1 (Fig 1). Since a dose level near the MTD

is more effective and safer, the therapeutic effect for patients is better under model 2 than

under model 1. The comparison of operating characteristics between model 1 and model 2 in

terms of the overdosing rate, as measured by MTD+ percentage and LNETS percentage, is

summarized in Table 3. The rates for patients being treated at dose levels higher than the

MTDs (MTD+%) in all scenarios are smaller under model 2 than under model 1. Similarly,

the rates for dosing above the limiting NETS status (LNETS+%) are lower under model 2 than

model 1 among all scenarios. The difference between the overdosing rates of model 2 and

model 1 increases as the difference in MTDs of the two groups increases when stratified by a

discrete covariate. For example, the LNETS+ rate in scenario S1 is decreased by 22% under

model 2 (39%) compared to the rate under model 1 (61.6%). The inclusion of the discrete

covariate not only makes the final MTD recommendation more precise but also increases the

therapeutic effect, and is also more ethical for patients.

3.4 Inclusion of a continuous covariate

Comparison of the accuracy of the estimated parameters between model 3 and model 1 under

the 4 scenarios (S5 to S8) is summarized in Tables 1 and 2. Under the ideal scenarios (S5, S6,

and S7) in which the continuous covariate considered has a true effect on the MTD, model 3

can estimate a personalized MTD depending on the value of the continuous covariate of a

Table 2. Simulation results from model 2 (EWOC-NETS considering a discrete covariate) and 3 (EWOC-NETS considering a continuous covariate)

under different scenarios.

Models Consider a Covariate Scenario γmax γ0

Mean Bias SE MSE Mean Bias SE MSE

Model 2 (Discrete covariate) S1 0.558 0.058 0.041 0.005 0.263 -0.013 0.034 0.001

S2 0.584 0.084 0.046 0.009 0.355 -0.014 0.044 0.002

S3 0.593 0.093 0.050 0.011 0.426 -0.011 0.057 0.003

S4 0.600 0.100 0.051 0.013 0.487 -0.013 0.064 0.004

Model 3 (Continuous covariate) S5 0.532 0.032 0.045 0.009 0.268 -0.009 0.044 0.006

S6 0.562 0.062 0.050 0.019 0.349 -0.019 0.056 0.011

S7 0.580 0.080 0.049 0.026 0.408 -0.029 0.066 0.016

S8 0.593 0.093 0.052 0.034 0.468 -0.032 0.077 0.021

doi:10.1371/journal.pone.0170187.t002
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patient (Z). The baseline EWOC-NETS without considering any covariate (model 1) fails to

estimate a personalized MTD as it can only estimate the marginal MTD for all patients with

different covariate values. The bias, standard error and MSE of the MTD estimation become

smaller under model 3 when the continuous covariate effect on ANETS is larger (Table 2).

However, the bias, standard error, and MSE for model 1 decrease when the true effect of the

continuous covariate decreases from S5 to S8 (Table 2). Under the worst scenario S8, model 3

estimates γmax as 0.593 and γ0 as 0.468, both of which are close to their true values (0.5)

(Table 2). This demonstrates the robustness of model 3 under all scenarios.

Fig 1. Patient distribution box plots for model 1, which does not consider a discrete covariate.

doi:10.1371/journal.pone.0170187.g001
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Comparisons of the overdosing rates between model 3 and model 1 are summarized in

Table 3. Under scenario S5, consideration of a continuous covariate in EWOC-NETS (model

3) can reduce the MTD+ rate from 37% to 30% and the LNETS rate from 48% to 43%, result-

ing in better therapeutic effect for the participating patients in the Phase I trial (Table 3).

When the considered continuous covariate actually has no true effect in MTD (S8), the MTD+

rate and LNETS rate of model 3 are still lower than the corresponding rates under model 1.

This suggests that we will lose little when we consider a continuous covariate without a true

effect on the MTD.

Fig 2. Patient distribution box plots for model 2, which considers a discrete covariate.

doi:10.1371/journal.pone.0170187.g002
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3.5 Sample size and number of covariates

From Sections 3.3 and 3.4, we can see that covariates should be included in the model when

they have a true effect and that considering non-effective covariates has little loss under the

worst scenario. The sample size of each covariate value is important when we consider the

inclusion of the covariate because a small sample size of each covariate value makes the poste-

rior estimation unstable in 1000 simulations. In order to estimate the MTD more precisely,

more patients with the same covariate value are needed in a real clinical trial.

3.6 Applications

The above simulations are hypothetical/computer-generated in order to demonstrate the oper-

ating characteristics of the novel designs. The designs could be applied to available Phase I

data/covariates to confirm their utility. For example, using the designs, three Phase I clinical

trials have been designed to incorporate patient characteristics and biomarkers to estimate

pMTDs for head and neck cancer patients at the Winship Cancer Institute of Emory Univer-

sity: 1) To estimate pMTDs for panitumumab according to each patient’s binary status of

human papilloma virus (HPV) (positive vs negative); 2) To estimate pMTDs for folate-dex-

tran-paclitaxel (FDT) according to each patient’s folate receptor level (continuous); 3) To esti-

mate pMTDs for luteolin according to each patient’s specific type of head and neck cancer

(categorical).

Discussion

The concept of personalized medicine was introduced as early as the 1970s. Byar et al. origi-

nally proposed to select optimal treatment in clinical trials using covariate information [21].

Substantial advances have been made in this century due to progress in modern sequencing

technologies, the development of new therapeutics, and the significant contribution of clinical

trial methodologies. Personalized medicine has become a crucial component of contemporary

cancer medicine. Examples of successful personalized medicines include several that target the

epidermal growth factor receptor (EGFR). Imatinib (Gleevec), a tyrosine-kinase inhibitor of

EGFR, was initially invented in the late 1990s by a biochemist, Nicholas Lyndon, and then

approved by the FDA in 2001 for the treatment of multiple cancers, most notably Philadelphia

chromosome-positive (Ph+) chronic myelogenous leukemia (CML)[22]. Imatinib has benefit-

ted thousands of patients with CML and gastrointestinal stromal tumors (GIST). Cetuximab,

an EGFR antibody, has been approved by the FDA for the treatment of colon cancer with

wild-type KRAS, but not those with a KRAS mutation [23], and for the treatment of certain

Table 3. Comparison of overdosing rates in 1000 simulations.

Scenario MTD+ (%) LNETS (%)

Model 2 Model 1 Model 2 Model 1

S1 24.4 63.8 39.0 61. 6

S2 24.1 58.4 36.9 52.5

S3 23.5 49.8 35.7 46.3

S4 22.8 38.0 35.5 41.1

Model 3 Model 1 Model 3 Model 1

S5 30 37 43 48

S6 33 40 41 46

S7 35 40 40 44

S8 35 39 38 41

doi:10.1371/journal.pone.0170187.t003
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stages of head and neck cancer. Panitumumab, a fully human monoclonal antibody specific to

the EGFR, has been approved by the FDA for the treatment of EGFR-expressing metastatic

colorectal cancer with disease progression [24]. In 2012, the FDA approved a real time PCR

companion diagnostic test for KRAS, Therascreen KRAS test, which is the first genetic test

to guide the treatment of cancer. Recent advances in biotechnology have resulted in a shift

toward molecularly targeted anticancer agents, which are likely to benefit only a subset of

the patients with a given cancer. Due to the molecular heterogeneity of most human cancers,

only a subset of treated patients benefit from a given therapy. This is particularly relevant

for the new generation of anticancer agents that target specific molecular pathways. When

biomarkers to identify patients who are likely to benefit from a given therapy are available, tar-

geted clinical trials that restrict eligibility to sensitive patients can be conducted. The identifica-

tion of the appropriate “sensitive” population requires definitive testing of specific biomarkers.

Ideally, such diagnostic tests should be developed and validated before designing the trial. New

biotechnologies such as microarrays can be used as powerful tools to measure biomarkers or a

genetic signature and identify patients that are most likely to benefit from anticancer therapies.

For example, Derin et al. reported that a lower level of MAPK expression is associated with

anthracycline resistance and decreased survival in patients with hormone receptor negative

breast cancer [25]. Fan et al. summarized the concordance among gene expression-based pre-

dictors for breast cancer [26]. Rapid advances in biotechnology have made it possible to obtain

quantitative information regarding biomarkers and differentiate patient subsets according to

sensitivity to agents. For example, EGFR is a target for molecularly targeted agents in lung can-

cer therapy. EGFR expression is first measured immunohistochemically on a continuous or

graded scale, and is later used to categorize patients into several distinct categories for clinical

management or dichotomize with various cut points, such as in the DAKO kit [27].

Personalized medicine has thus become a significant and valuable new approach in the field

of medicine and the estimation of a personalized MTD according to a patient’s environmental

and genetic profile is a critical step toward personalizing their treatment. The goal of this study

is to propose an extended Phase I design which can fully utilize all toxicity information and

patient’s characteristics to estimate personalized MTDs for precision medicine. Through simu-

lation studies, we demonstrate the advantages and potential loss of estimating the conditional

MTD given covariates using the EWOC-NETS design proposed by Chen et al. [15]. From the

simulations, we can conclude that the extended EWOC-NETS incorporating patient charac-

teristics and biomarkers can: 1) estimate a personalized MTD; 2) reduce the probability of

patients being overdosed; 3) increase the accuracy of the treated dose, thus improving the ther-

apeutic effect; and 4) have little loss when covariates being considered have no effect.

Some other methodologies have been proposed to estimate personalized MTDs in Phase I

clinical trials. For example, O’Quigley et al. proposed to estimate different MTDs for two

groups or ordinal groups of patients stratified by binary or ordinal covariates based on the

CRM design [28,29]. Based on EWOC, Babb et al. proposed to include a continuous covariate

in the dose toxicity relationship model and estimate patient specific dosing in a cancer phase I

clinical trial [30]. Tighiouart et al. further used the EWOC design to incorporate patient’s

dichotomous characteristics and estimate patient specific MTD [31]. Our method is based on

EWOC-NETS which is an extension of EWOC that uses NETS instead of the probability of

DLT. The comparison of performance between EWOC and EWOC-NETS has been elaborated

in previous publications [14,15,32,33]. Our results based on EWOC-NETS are consistent with

the findings of O’Quigley et al. [28,29], Babb et al [30], and Tighiouart et al [31]. Besides the

Phase I clinical trial methodologies developed to determine personalized MTD, other novel

approaches have been proposed to use biomarkers or genomic signatures for personalized

medicine in Phase II/III clinical trials in oncology and other diseases [1,2,3,4,5]. For example,
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Freidlin and Simon proposed an adaptive signature design to generate and prospectively test a

gene expression signature for sensitive patients [5]. Jiang et al. further developed a biomarker-

adaptive threshold design for evaluating treatment with a possible biomarker-defined subset

effect [1]. Freidlin et al. recently extended their adaptive signature design and developed a

cross validated adaptive signature design which has considerable improvement in performance

[2].

Our extended EWOC-NETS design can be applied to estimate the personalized MTD of a

new agent according to the status of specific biomarkers of the targeted cancer. When planning

a Phase I trial, we need to decide whether or not to include patient covariates and which covar-

iates to include in the MTD estimation during the trial. Some well-known biomarkers and

their related diseases are summarized in Table 4. Each of these biomarkers as well as other

patient characteristics can be treated as binary or continuous covariates and incorporated into

the corresponding models. The Phase I clinical trial is typically a small study with a small sam-

ple size and as such we cannot attempt to estimate too many parameters. Therefore, when mul-

tiple biomarkers need to be considered, we can estimate their combined effect as a single score

by using an additive linear model and incorporating the score into the model as a continuous

or binary variable. We should not consider any covariates that are known to have no effect on

the MTD. From a statistical point of view, we stand to lose little in terms of the accuracy of the

MTD and therapeutic effect for participants when covariates taken into account in the model

are actually not predictive of the severity of patients’ toxicity response. However, it is a sub-

stantial monetary cost to quantify covariates, especially when patients need to be genotyped

and certain biomarker expressions need to be determined. Therefore, careful consideration

must be given to the balance of these pros and cons.

Subsequent Phase II and III trials should further test the efficacy of personalized MTD

among biomarker-stratified patients instead of testing an average effect among an unselected

population. In an enrichment design, all patients will be homogeneous regarding a specific

binary biomarker, so that the dose recommended to all participants will be the personalized

MTD according to the status of the biomarker. In a biomarker-stratified design, patients of

each stratum will be treated with a specific pMTD according to the level of the categorical bio-

marker the patient has in the stratum. In more complicated settings, where no natural cut-

point of the biomarker is known in advance, or there are multiple biomarkers and high dimen-

sional genomic tumor characterization, patients will be treated with pMTD according to the

value of a continuous biomarker or a composite score summarizing their overall effect.

There are also some limitations in the real practice of the design. For example, the required

genomic or demographic data from incoming patients may need to be retrieved from different

sources and be integrated together for pMTD determination. Different data are not always

available immediately and sometimes may be inconsistent. Therefore, reliability, validation,

and standardization of data from different sources are critical during the data processing, stor-

age, analysis, and interpretation to make real-time personalized assessments. Most previous

Table 4. Some well-known biomarkers and associated diseases.

Cancer/disease type Biomarker

Non-small cell lung cancer HER2, EGFR, KRAS, UGT1A1, etc.

Head and neck cancer EGF, VEGF, Cox2, G-CSF, GM-CSF, ErbB2, EGFR, etc.

Breast cancer BRCA1/2, Her-2/neu receptor

Colorectal cancer EGFR, KRAS, ERCC, RRM1, etc.

Acute myeloid leukemia Cd33, FLT3, inv16

Non-Hodgkin’s lymphoma CD20, MALT

HIV HLA-B*5701, CCR5

doi:10.1371/journal.pone.0170187.t004
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studies have been conducted based on an individual study level. Patient privacy during the shar-

ing of data is another consideration. Fortunately, increasing computation capability, rapidly

expanding databases, and powerful safe networks enable the immediate retrieval and integra-

tion of bioinformatics and clinical data to deliver real-time information for pMTD estimation

and generate a highly personalized outcome while protecting patient privacy. Further database

development is highly recommended for the estimation of pMTD and implementation of per-

sonalized medicine, but the application of our Phase I design for pMTD should not be limited

by the availability of related databases. Biomarkers have played significant roles in the adaptive

randomization, group stratification, and patient enrichment of Phase II and III clinical trials.

The pMTD estimated from a Phase I trial should be utilized to treat different groups of patients

with personalized doses according to their genomic and clinical characteristics, thus optimizing

the efficacy of precision medicine and maximizing therapeutic effects. Given the potential bene-

fits of personalized therapy, the estimation of pMTD as the first step toward this goal should be

pursued whenever at least some genomic and clinical data are available.

In summary, our study has shown that the inclusion of covariate(s) in the EWOC-NETS

model is useful to estimate a personalized MTD and has substantial potential to improve the

therapeutic effect of drug treatment.
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