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Abstract

Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for

their survival. In this regard, microsporidia are obligate intracellular fungal parasites with

extremely reduced genomes and hence, they are strongly dependent on their host for

energy and resources. To date, there are few studies into host cell manipulation by micro-

sporidia, most of which have focused on morphological aspects. The microsporidia Nosema

apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular

epithelial cells. In this work, quantitative gene expression and histology were studied to

investigate how these two parasites manipulate their host’s cells at the molecular level. Both

these microsporidia provoke infection-induced regulation of genes involved in apoptosis and

the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5

(belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding

light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, dif-

ferent routes related to cell cycle were modified after infection by each microsporidia. In the

case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was

up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the

first report describing molecular pathways related to parasite-host interactions that are prob-

ably intended to ensure the parasite’s survival within the cell.

Introduction

Parasitism is a type of biological interaction between organisms of different species whereby

the parasite benefits at the expense of the host. Host cells have developed a defense machinery

to resist pathogen invasion and replication. In order to limit pathogen growth, these systems

include mechanism such as the fusion of phagolysosomals, the production of reactive oxygen

and reactive nitrogen intermediates, nutrient sequestration or cell suicide (apoptosis) in order
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to limit pathogen growth [1]. As a counterpoint, obligate parasites have to exploit their host to

complete the processes critical for their survival. It is interesting how some intracellular para-

sites can reprogram their host’s cells to create a safe haven, utilizing the cellular machinery to

acquire the necessary resources [2]. The implementation of these defence systems and the abil-

ity of successful pathogens to mitigate their effects are ultimately mediated by changes in both

the levels and activities of key proteins.

Apoptosis is one mechanism the host uses to control pathogen dissemination, and it is a

morphologically and biochemically distinct form of programmed cell death. Apoptosis plays a

major role in the removal of damaged or unwanted cells during development, in maintaining

tissue homeostasis and it is involved in the aging of multicellular organisms. It is also recog-

nized as an important defense mechanism of defence against viral, bacterial and parasitic path-

ogens during innate and adaptive immunity [3]. However some intracellular parasites can

modulate apoptosis by either inducing or inhibiting the process thereby allowing the parasite

to successfully reproduce [3, 4, 5, 6, 7].

Intracellular pathogens may also have other effects on infected cells. For example, Toxo-
plasma cruzi induces broad modulations of the host’s cellular machinery, altering the expres-

sion of up to 353 murine genes. This modification provides insight into how the parasite

survives, replicates, and persists in the infected host, and ultimately it defines the clinical out-

come of infection [8]. In addition, the host cell’s proteome responds in a dramatic way to

Toxoplasma gondii infection, causing changes in protein expression and modifications to key

metabolic pathways, including glycolysis, lipid and sterol metabolism, mitosis, apoptosis, and

structural-protein expression. These changes suggest that the parasite provokes global repro-

gramming of the cell’s metabolism, revealing a complex molecular relationship between the

host and parasite [1].

Microsporidia are eukaryotes, obligate intracellular fungal parasites that infect a wide range

of vertebrates and invertebrates, and cause economically important losses in animal species.

Microsporidian genomics and cell biology are the consequence of an extreme reduction driven

by an intimate relationship with the host cell. During their life cycle, they have an extracellular

spore (called environmental spore) but apart from this form, all the remaining stages develop

during the infection of the host, maintaining direct contact with the host throughout the life

cycle, from entry to egress.

Although microsporidial infection has often been linked to immunocompromised individ-

uals in vertebrate hosts, there is no such prerequisite for the infection of insects. Indeed, micro-

sporidia can cause serious disease in economically relevant insects like silkworm and crop

pollinators. In this regard, Apis mellifera bees are recognized as a model system to study social

interactions, immunity and disease in social insects [9]. Specifically, honey bees infection by

microsporidia has been associated with significant colony losses [10]. To date, two microspori-

dian species are known to infect A. mellifera worldwide: Nosema apis [11] and N. ceranae [12].

Both infect the epithelial cells of the honey bee ventriculus (digestive tract) but the pathogenic

events in the target tissue have not been described in detail.

Until recently there were only few studies of how microsporidia manipulated host cells and

most of these were focused on morphology. In the last few years, it has become clear that some

microsporidia produce more specific changes to gene expression in the infected host than

other pathogens [13]. Nowadays, this large group of organisms is described as highly exploit-

ative intracellular parasites of the host cell environment [14]. In terms of honey bee microspor-

idia, previous studies have shown that N. ceranae reduces apoptosis in the bee ventriculi which

is the target tissue [15, 16] and induced an effect on genes involved in the homeostasis and

renewal of intestinal tissues [17]. However, how this parasite affects other processes in host’s

cells that serve to protect them against infection remains unclear.
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Here we explore how intracellular parasites manipulate their host cell environment at the

molecular level by studying quantitative gene expression in tissues following infection of

honey bees with the both Nosema species. Our aim was to study the modifications that infec-

tion by these parasites produces in the process of host cell cycle and in the apoptosis by deter-

mining the expression of genes involved in the pathways related with these events. In parallel,

we used TUNEL (Terminal deoxynucleotide transferase mediated X-dUTP nick end labelling)

to assess the rate of apoptosis in these infected tissues after induction.

Materials and methods

Experimental infection

Honey bees used in this work were collected from experimental colonies located at “Centro de

Investigación Apı́cola y Agroambiental- IRIAF”. No permits for the use of bees were required

and the field studies did not involve endangered or protected species. A frame with capped

brood of A. mellifera iberiensis worker bees was taken from a Nosema-free colony and main-

tained in an incubator at 35˚C until the bees emerged [18, 19]. Newly emerged worker bees

were carefully removed from the frame, confined to cages and kept in a different incubator for

five days at 33˚C. Individual bees were infected as described previously [18], using 2 μl of

water containing 100,000 N. ceranae or N. apis spores. Spores were Percoll-purified and con-

firmed as single species by PCR [20]. Uninfected control bees were fed with 2 μl of water

alone. In total, 25 bees were included in each group (N. apis, N. ceranae and Control). Ten

days after infection 15 bees per group were treated with 2 μl of 2% cycloheximide solution

(Sigma C7698; 94% purity), as an apoptosis inducer by death receptors [21], while the remain-

ing 10 bees for each group were not treated with cycloheximide. The full experimental design

is shown in Table 1. In this way, a total of 6 experimental groups were established as follows:

A-group experimentally infected with N. apis; AH- group experimentally infected with N. apis
and treated with cycloheximide; C-group experimentally infected with N. ceranae; CH-group

experimentally infected with N. ceranae and treated with cycloheximide; T- Control, bees not

infected with Nosema sp.; TH—Control, bees not infected with Nosema sp. but treated with

cycloheximide.

Gene expression study

The bees studied (Table 1) were killed by freezing in liquid nitrogen on day 11 post infection

and they were stored at -80˚C until use. The ventriculus (infection target tissue) and rectal

ampoule (rectum) were individually separated by dissection of each bee and stored in different

tubes. Ventriculi were used to study the gene expression and they were stored in RNAlater

(Qiagen 76106). The ampoules were used to confirm Nosema infection in each bee or the unin-

fected state of the control bees.

The RNA from each ventriculus was extracted individually using the RNeasy Tissue Kit

(Qiagen) following the Purification of Total RNA from Animal Tissues protocol with on-col-

umn DNase digestion (DNase, Qiagen GmbH). Reverse transcription of RNA to cDNA was

performed using the QuantiTect RT Kit (Qiagen GmbH).

The candidate genes related with A. mellifera homeostasis (cell cycle, mitochondria activity,

apoptosis and hormones; S1 Table) and the house-keeping (HK) genes were selected from the

sequences available at GeneBank (http://www.ncbi.nlm.nih.gov/nuccore). Specific primers

and TaqMan1 probes were designed using the Primer express (Applied Biosystems) software

and the theoretical specificity was checked using the Basic Local Alignment Search Tool

(BLAST) at GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The efficiency of each reaction

to study the gene regulation was determined by analyzing serial cDNA dilutions.

Microsporidia effects on host cell cycle
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Selection of housekeeping genes. Four A. mellifera HK genes (GAPDH, EF, β-Actin and

18S; S1 Table) were evaluated to select the most appropriate ones for analysis [22]. To deter-

mine the stability of expression (M) of the selected reference genes in the honeybee tissues

studied (ventriculi), the four HK genes were analyzed in duplicate in all the samples and the Ct

values were subsequently determined with the geNorm software [23]. The two most stable

genes (lowest M value) were EF and β-Actin and they were selected as the HK genes for the

subsequent analysis of expression.

The relative expression for each gene was calculated using the Relative Expression Software

Tools: REST MCS-version 2 (http://www.gene-quantification.de/download.html) and REST

2009-version 2.0.13 (Qiagen GmbH), which use the pair wise fixed reallocation randomization

test [24, 25]. All the groups infected with either N. apis or N. ceranae (irrespective of the treat-

ment with cycloheximide) were compared with the uninfected control groups using this soft-

ware and the efficiency of every reaction was taken into account as recommended elsewhere

[24]. The level of significance for determining the up or down regulation for each gene was

also determined using this software.

Real-time quantitative PCR. All real-time quantitative PCR reactions were performed

using the 7900 HT Sequence Detection System (Applied Biosystems). To assay expression,

each 25 μl reaction contained 0.625 U of Taq (TaqMan Gold/Buffer A Pack, cod. 4304441,

Applied Biosystems), 10 μl of diluted cDNA (1/100), 300 nM of each primer and 100 nM of

each TaqMan probe. The PCR program involved an initial 2 minute incubation at 50˚C, a 10

minute denaturation step at 95˚C and 40 cycles of 15 seconds at 95˚C and a 1 minute of

annealing at 60˚C. All the cDNA samples obtained after extraction from each bee were run in

duplicate. Negative controls for DNA extraction, reverse-transcription and real-time PCR

steps were also included. The Ct values were recorded for each gene studied in every sample

and the average of the two replicates was calculated.

Nosema spp. infection checking. The success of Nosema infection was determined using

real-time PCR in honey bee rectal ampoules, given that this part of the bee gut stores the micro-

sporidia spores until their exit in the faeces. DNA was extracted from the ampoules that had

been separated from the ventriculi using the DNeasy tissue protocol (Qiagen GmbH) and it was

collected individually in microcentrifuge tubes (one bee per tube) before analyzing it by real-

time PCR and TaqMan1 chemistry. The primers and probe sequences are shown in S2 Table.

Virus detection. In order to check the exposure of the bees to other naturally acquired

and relevant pathogens, the presence of virus was also analysed in the cDNA (5 μL) from each

bee in every group (A, AH, C, CH, T and TH). For each group, 10 μL of the mixture was ana-

lysed in duplicate for the presence of Kashmir bee virus (KBV), acute bee paralysis virus

(ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), Deformed wing

virus (DWV) and Israeli acute paralysis virus (IAPV) in duplicate. When a virus was detected

Table 1. Experimental design. A. mellifera iberiensis bees were infected with N. apis or N. ceranae or non-infected.

N. apis

N = 25

N. ceranae

N = 25

Uninfected

N = 25

Cell cycle, mitochondria & hormone expression Group A

n = 10

Group C

n = 10

Group T

n = 10

Apoptosis expression* Group AH

n = 10

Group CH

n = 10

Group TH

n = 10

Apoptotic index* Group AH

n = 5

Group CH

n = 5

Group TH

n = 5

(*) Groups treated with cycloheximide on day 10 post infection.

doi:10.1371/journal.pone.0170183.t001
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in any group, all the bees from that group were individually analysed. The sequences of the

primers and probes used are shown in S2 Table.

Histology (TUNEL assay)

Five Bees from the cycloheximide treated groups (AH, CH and TH) were analysed histologically,

to evaluate the effect of microsporidia infection in bees exposed to this strong inducer of apopto-

sis. The alimentary canal and other tissues (ventriculum with the Malpighian tubules attached,

the small intestine and the rectum) were removed from the bees, divided into sections and fixed

in 10% buffered formalin before they were paraffin embedded. The TUNEL (Terminal deoxynu-

cleotide transferase mediated X-dUTP nick end labelling) assay was performed on 5 μm thick

sections to quantify apoptosis, as described previously [26, 15]. Briefly, tissue sections were

deparaffinised and rehydrated through an ethanol series before rinsing in phosphate buffered

saline (PBS). The tissues were then treated with Proteinase K (20 μg ml–1, 15 min, room temper-

ature) and then with 0.1% (w:v) Triton X-100 in PBS (10 min). Subsequently, the sections were

incubated for 1 h at 37˚C in the dark, using a humid chamber and the In situ Cell Death Detec-

tion Kit (Roche) according to the manufacturers’ instructions. The sections were then washed

with PBS and mounted in Vectashield (Vector Labs) containing DAPI (Sigma) at a final concen-

tration of 1 μg/ml, to label all the cell nuclei (blue). The sections were examined on an Olympus

BX61 epifluorescence microscope equipped with filter sets for fluorescence microscopy: ultravi-

olet (UV, 365 nm, exciting filter UG-1). Photographs were obtained with a digital camera Olym-

pus DP50 and processed using the Adobe PhotoShop 7.0 software (Adobe Systems). Uninfected

bees and no treated with cycloheximide were used to determine the basal apoptosis (Basal con-

trol) just to show the natural apoptosis in the tissue. Cells undergoing apoptosis were scored

(fluorescing green under blue excitation light) and the ventricular cells of three bees per group

were counted to determine the number with apoptotic nuclei and the proportion of cells under-

going apoptosis (No. of apoptotic cells x 100 / total No. of cells) as described previously [15].

Approximately 100 cells were examined in representative areas of each ventricular sample (10

areas per sample, approximately 1,000 cells per ventriculum and bee).

Results

The success of Nosema infection (checked in the bee ampoules) was reflected by the detection

of spores in each group. Consequently, all the bees were successfully infected by either N. cera-
nae or N. apis, while no cross-infection between groups was detected and there was no infec-

tion in the uninfected groups. However, one sample from the group A and another bee from

the group CH showed a very low level of infection (Ct value > 36 in Nosema infection analysis;

see above) and they were not considered for the gene expression analysis.

In none of the samples were CBPV, ABPV, KBV, IAPV or DWV detected. Yet, as all the

groups tested positive for BQCV, an additional analysis was carried out to determine the pres-

ence of the virus in individual bees. Since more than the 80% of the bees were positive for

BQCV in all the groups, viral infection was not considered a significant factor and was not

included in the subsequent analyses.

Gene expression

The list of genes selected for study, and the primers and probes used are shown in S3 Table. All

the primer pairs tested produced positive amplification with the exception of Cyclin H and

BRUCE, thus these genes were not tested further.

Selection of reference HK genes. The ranking of the four candidate reference genes in

the honey bee ventriculi according to their average expression stability (M value) was: β-Actin

Microsporidia effects on host cell cycle
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(0.060) <EF (0.066) <GAPDH (0.067) <18S (0.097), from the most stable (lowest M-value) to

the least stable (highest M value). All the values were very low and they were much lower than

the threshold limit of 1.5 recommended by GeNorm software, reflecting very stable expression.

The pairwise variation (V) between the two or three normalization factors was 0 [22], indicat-

ing that the use of β-Actin and EF as HK were enough to perform all the subsequent analysis.

Apoptosis related genes. The expression of genes related to apoptosis (Fig 1) was ana-

lyzed in the honey bees infected either N. apis (AH; Fig 1A) or N. ceranae (CH, Fig 1B) and it

was compared with that in the uninfected control group (TH), all of them treated with cyclo-

heximide. The results showed the up-regulation of Buffy and BIRC5 in both the AH and CH

groups for the (P<0.05; Table 2) and the down-regulation of IAPASSO and TNF3 in the AH

group alone, that was close to the level of significance (P = 0.055 and P = 0.057, respectively).

Finally, the E2F and Dacapo genes were up-regulated in the AH group (P<0.05).

Cell cycle, mitochondrial activity and hormone related genes. The expression of the

genes related to the cell cycle, mitochondrial activity and hormones (Fig 2) was studied in

groups A (N. apis infected bees; Fig 2A) and C (N. ceranae infected bees, Fig 2B) and they were

compared with those in group T (uninfected bees). Only Cyclin B1 was up-regulated in group

A (P<0.05; Table 2) while in the case of group C, one gene related to mitochondrial activity

(L16) was up-regulated (P<0.05; Table 2) and another one (CYTOX) was very close to the level

of significance for up-regulation (Fig 3A and 3B). Regarding cell cycle related genes (Fig 2),

RING was down-regulated in group C while Cyclin E was up-regulated (both P<0.05; Table 2).

No significant changes in the expression of VG or JH (Fig 3C and 3D) were observed in any of

microsporidia infected bees, although it is important to note the up-regulation for VG close to

the level of significance in group C.

Fig 1. Relative expression ratio plots for apoptosis related genes. Analysis of groups treated with

cycloheximide and infected with N. apis (A) or N. ceranae (B) relative to uninfected bees. (*) significant

differences.

doi:10.1371/journal.pone.0170183.g001
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PLOS ONE | DOI:10.1371/journal.pone.0170183 February 2, 2017 6 / 17



Table 2. Expression of studied target genes.

N. apis N. ceranae

Gene short

ID

Reaction

Efficiency

Expression Std. Error 95% C.I. P(H1) Result Expression Std. Error 95% C.I. P(H1) Result

EF 0.969

Actin 0.922

CYTOX 0.921 0.829 0.557–

1.253

0.420–

1.828

0.174 1.208 0.905–

1.629

0.715–

2.094

0.059

TU-MITO 0.773 0.860 0.594–

1.307

0.447–

1.878

0.262 1.096 0.788–

1.455

0.610–

1.789

0.375

S-12 1.0 0.798 0.517–

1.224

0.382–

1.852

0.149 1.056 0.768–

1.468

0.605–

1.832

0.582

L16 0.998 1.041 0.768–

1.494

0.565–

1.878

0.722 1.212 0.952–

1.520

0.755–

1.833

0.022 UP

LSU 0.917 0.778 0.458–

1.326

0.279–

2.860

0.219 1.145 0.878–

1.524

0.670–

1.805

0.155

M-PHASE 0.8405 0.857 0.677–

1.023

0.467–

1.785

0.183 1.024 0.859–

1.202

0.764–

1.513

0.708

RING 0.9535 0.777 0.437–

1.349

0.358–

2.752

0.221 0.580 0.342–

1.005

0.282–

1.803

0.007 DOWN

B1 CYCLIN 0.8715 1.393 1.071–

1.871

0.856–

2.324

0.001 UP 0.900 0.684–

1.146

0.551–

1.521

0.249

B3 CYCLIN 0.9425 1.032 0.690–

1.523

0.421–

2.422

0.820 1.043 0.697–

1.508

0.471–

1.898

0.754

K CYCLIN 0.804 0.92 0.685–

1.230

0.541–

1.629

0.434 1.011 0.795–

1.288

0.646–

1.595

0.896

E CYCLIN 0.977 0.831 0.651–

1.481

0.078–

2.086

0.752 1.192 0.935–

1.502

0.718–

1.758

0.047 UP

JH 1.0 1.154 0.768–

1.805

0.499–

2.580

0.325 1.112 0.756–

1.678

0.657–

2.424

0.406

VG 0.905 0.611 0.249–

1.559

0.101–

2.543

0.112 1.727 0.756–

4.300

0.355–

7.929

0.064

GAPDH 0.9855 0.795 0.550–

1.278

0.217–

1.814

0.230 0.928 0.591–

1.382

0.302–

1.832

0.668

18S 1.0 1.147 0.688–

1.953

0.495–

3.187

0.448 0.723 0.308–

1.276

0.220–

2.422

0.149

Buffy 0.9175 1.422 1.052–

1.945

0.783–

2.495

0.007 UP 1.407 0.962–

2.101

0.776–

2.701

0.034 UP

IAPASSO 0.977 0.529 0.230–

0.932

0.128–

3.738

0.055 1.202 0.729–

1.939

0.398–

6.889

0.578

CASP-10 0.994 0.951 0.572–

1.677

0.348–

2.439

0.800 1.256 0.779–

2.109

0.434–

3.180

0.264

BIRC5 0.99 2.022 1.423–

2.793

1.014–

3.981

0.000 UP 1.834 1.273–

2.704

0.842–

3.375

0.004 UP

SERINE 0.9575 0.953 0.817–

1.152

0.604–

1.462

0.539 1.238 0.777–

1.901

0.599–

2.439

0.211

E2F2 0.911 1.340 0.920–

1.944

0.730–

2.423

0.040 UP 1.158 0.836–

1.502

0.648–

2.823

0.337

TNF3 0.867 0.840 0.648–

1.040

0.469–

1.201

0.057 1.041 0.607–

1.667

0.522–

2.259

0.806

DRICE 0.946 1.041 0.787–

1.354

0.530–

1.867

0.721 1.102 0.804–

1.454

0.699–

2.035

0.382

BCL2 0.988 0.790 0.471–

1.207

0.320–

1.417

0.174 0.881 0.587–

1.522

0.324–

2.468

0.529

(Continued )
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Histology (TUNEL assay)

Our study showed that cycloheximide induced apoptosis in bees (Table 3; Fig 4) with the con-

trol bees (TH) showing a high level of cell death (69, 95% ± 14.35). Apoptosis appeared to be

Table 2. (Continued)

N. apis N. ceranae

Gene short

ID

Reaction

Efficiency

Expression Std. Error 95% C.I. P(H1) Result Expression Std. Error 95% C.I. P(H1) Result

Dacapo 0.9545 1.229 0.976–

1.523

0.775–

1.815

0.026 UP 0.957 0.718–

1.380

0.604–

1.677

0.694

EF and βActin were used as reference genes (2000 iterations). UP = up-regulation; DOWN = down-regulation. P(H1) = Probability of an alternate

hypothesis that the difference between sample and control groups is due only to chance.

doi:10.1371/journal.pone.0170183.t002

Fig 2. Relative expression ratio plots for genes related to the cell cycle. Analysis of the groups infected with N. apis (A) or N. ceranae

(B) relative to the uninfected bees. (*) significant differences.

doi:10.1371/journal.pone.0170183.g002
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Fig 3. Relative expression ratio plots for genes related to mitochondrial and hormone activity.

Analysis of groups infected with N. apis or N. ceranae relative to the uninfected bees. (*) significant

differences. A) Mitochondrial activity in N. apis infected bees. B) Mitochondrial activity in N. ceranae infected

bees. The expression for GAPDH and 18S (not used as housekeeping genes) is also represented here. C)

Hormone activity in N. apis infected bees. D) Hormone activity in N. ceranae infected bees.

doi:10.1371/journal.pone.0170183.g003
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reduced in the microsporidia infected tissues although this was no significant (ANOVA,

F = 1.109; P>0.05). This reduction in apoptosis was higher in N. apis infected ventriculi

(27.86% reduction) than in the N. ceranae infected ventriculi (13.82% reduction). Apoptotic

TUNEL positive cells (green stained) were detected along the epithelium in the ventriculi

Table 3. Percentage of ventricular cell nuclei undergoing apoptosis in cycloheximide treated bees.

Average Std. deviation % Reduction in Apoptosis

Controls (uninfected) TH 69.95 14.35 -

Infected with N. apis AH 50.46 11.70 27.86%

Infected with N. ceranae CH 60.27 13.72 13.82%

doi:10.1371/journal.pone.0170183.t003

Fig 4. TUNEL assay. Representative TUNEL / DAPI stained and merged microscopic images of transverse

sections from the ventriculum of A: uninfected (controls TH) B: infected with N. apis (AH) or C: N. ceranae (CH)

honey bees and treated with cycloheximide. D: Basal apoptosis in uninfected bees and no treated with

cycloheximide (Basal control) was very low. The ventriculum cells were counterstained with DAPI (blue). Scale

bar = 100 μm. The ventricular lumen is indicated by an asterisk and spores inside ventricular cells are indicated

with red arrows.

doi:10.1371/journal.pone.0170183.g004

Microsporidia effects on host cell cycle

PLOS ONE | DOI:10.1371/journal.pone.0170183 February 2, 2017 10 / 17



(Fig 4A, 4B and 4C). The amount of positive apoptotic cells were higher in the positive controls

(TH, uninfected bees treated with cycloheximide; Fig 4A), compared to ventriculi of basal con-

trols (uninfected, no cycloheximide treated bees, Fig 4D). Ventriculi from infected bees either

infected by N. apis (Fig 4B) or N. ceranae (Fig 4C) showed a lower amount of TUNEL positive

cells compared to ventriculi from TH group bees (Fig 4A).

Discussion

The natural response of an infected cell is to undergo apoptosis in order to prevent the multi-

plication and dissemination of the invader. Conversely, the invader must find ways to evade

this to be able to reproduce [6]. In this work, microsporidia have been shown to successfully

manipulate the host cell’s metabolism to progress along the parasite’s life cycle, not only modi-

fying the expression of apoptotic genes but also other important routes implicated in the host’s

cell cycle. These responses seem to offer an important advantage, because similar conclusions

have been reported for many intracellular parasites [3–7, 14].

To investigate the expression of some genes related to apoptosis, a potent intrinsic inducer

of apoptosis was used (cycloheximide, a protein synthesis inhibitor that halts translational

elongation [27]). Studies of the apoptotic index derived when using the TUNEL assay and cas-

pase-3 staining suggested that N. ceranae could prevent the epithelial cells of infected honey

bee tissue (ventriculi) from undergoing apoptosis [15]. For that reason, in this work a high

level of apoptosis was induced in a group of bees in order to determine if N. ceranae or N. apis
infection blocked the effect of this strong apoptosis inducer. The tissue of uninfected-bees

treated with cycloheximide exhibited more apoptosis than that infected by microsporidia, with

a clear reduction in the apoptotic index evident in TUNEL assays. Indeed, this is the first study

to confirm this effect in N. apis infected tissues. As such, microsporidia infection clearly inhib-

its cycloheximide-induced apoptosis (intrinsic route) as described in Leishmania donovani
infected macrophages [28].

This inhibition of apoptosis is consistent with the observed modifications in the expression

of the apoptosis related genes studied. Infection with both microsporidia species up-regulates

buffy and BIRC5, two genes with important function in programmed cell death (Fig 5). The

BIRC5 (baculoviral IAP repeat-containing 5; also called Survivin) is a member of the inhibitor

of apoptosis (IAP) family and it encodes a protein that inhibits caspase activation, thereby neg-

atively regulating apoptosis [29–31]. On the other hand, buffy was identified in Drosophila mel-
anogaster and it encodes a Bcl-2-like pro-survival protein [32]. The Bcl-2 (B cell lymphoma-2)

protein family plays a central role in the intrinsic apoptotic pathway, controlling the integrity

of the outer mitochondrial membrane. Consequently, in honey bees the up-regulation of

BIRC5 and buffy is associated with a reduction in the number of cells that finally enter apopto-

sis in the infected tissues. These results agree with a previous work where inhibitors of apopto-

sis proteins were seen to be up-regulated after N. ceranae infection in sensitive bees while

caspase 10 gene expression was not modified [16]. Consequently, IAP family seems to play a

key role in the inhibition of these processes. Additionally, this is the first report of such

changes in N. apis infected bees, confirming that the inhibition of apoptosis is a common

response of the host to the benefit of this group of intracellular parasitic fungi.

We also note that IAPASSO (viral IAP-associated factor; VIAF) and TNF3 (Tumor Necrosis

Factor receptor-associated factor 3 interacting protein 1) displayed a tendency towards down-

regulation (P = 0.055 and p = 0.057, respectively) in N. apis infected bees. IAPASSO is a con-

served inhibitor of apoptosis interacting factor that modulates caspase activation during apo-

ptosis [33] and TNF3 is a member of the TNF superfamily proteins involved in complex

pathways that regulate cellular survival, proliferation, differentiation and apoptosis [34, 35].
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Consequently, the tendency to down-regulate both these genes in conjunction with buffy and

BIRC5 overexpression fits into the theory that apoptosis is inhibited by the microsporidium N.

apis.
Regarding the cell cycle, it has been suggested that the G1 phase is vital to decide if a cell

will go on to differentiate, multiply, apoptose or become quiescent or senescent [36]. A balance

between cell proliferation and apoptosis is essential for the development of the multicellular

organism [32]. In our study, a modification of cell cycle related genes was observed in an epi-

thelium (bee ventriculi) considered to be non-replicative beyond its basal germinative layer.

Curiously, while both microsporidia inhibit apoptosis through the same pathways (Buffy
and BIRC5), the modifications to cell cycle related genes differ. However, both Nosema species

caused the up-regulation of some cyclins in the infected cells: over expression of cyclin B1
(cycB1) by N. apis and cyclin E (cycE) by N. ceranae (Fig 5).

N. apis infected tissues also over expressed dacapo and E2F2, both of them closely related

with the progression of the G1-S phase. Dacapo is a cyclin dependent kinase inhibitor that

coordinates the rates of G1-S and G2-M progression, maintaining normal rates of proliferation

when cell cycle controls are perturbed [37]. Also, E2F2 (E2F Transcription Factor 2) is a tran-

scription factor maximally expressed late in G1 that plays a pivotal role in G1/S transition [38,

39]. Over expression of both these genes suggest that the infected cells undergo the G1-S phase

progression. However, the up-regulation of cyclin B1 (G2/Mitotic-specific Cyclin-B1) was ini-

tially unexpected since it codes for a regulatory protein involved in mitosis and it contributes

to all or none switch-like behavior of the cell in deciding to commit to mitosis. E2F2 was over-

expressed in rabbit corneal endothelial cells (arrested in G1-phase) and it coexisted with high

levels of cyclin B1 [40] and there was strong evidence of progression from the G1-phase

Fig 5. Scheme of the genes altered in N. ceranae and N. apis infection in honey bees and the effects

on host’s cell cycle, apoptosis and mitochondrial activity.

doi:10.1371/journal.pone.0170183.g005
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arrested state to at least the G2-phase in these tissues. Our data suggest a progression from G1

to S phase is being promoted in N. apis infected tissues (Fig 5).

In N. ceranae infected bees, significant changes were observed in the expression of cyclin E
(CycE) and RING (RING-finger protein 19 or Dorfin). A previous study of the transcriptome

of A. mellifera infected by N. ceranae identified mRNA for a number of cyclins (as cyclin E)

and other proteins closely related to cell cycle [41] although no data on expression were avail-

able. Our results show an up-regulation of CycE, which appears to be the most important

cyclin for the G1 to S transition [42, 43]. Consequently, and as in N. apis infection, G1-S phase

progression is apparently being stimulated in N. ceranae infected cells, albeit through this dif-

ferent pathway.

Additionally, down regulation of the RING gene (RING-finger protein 19 or Dorfin) was

observed after N. ceranae infection. This gene codes for the E3 ubiquitin-protein ligase

RNF19A which in Caenorhabditis elegans has been described as one of the three core compo-

nents of a complex that target toxins and intracellular pathogen proteins for degradation [44].

In general these RING finger E3 proteins can influence the balance between proliferation and

apoptosis. In response to apoptotic stimuli the E3 activity of IAPs leads to their auto-ubiquiti-

nation, degradation, and progression toward cell death [45]. Ubiquitin pathways have been

described as a specific mechanism of host defence against microsporidia infection [44].

Although RING was studied in bees from Group C here (cell cycle assay) its down-regulation

provides more information about apoptosis and corroborates the results obtained in group

CH (treated with cycloheximide). In fact, these data suggest another pathway to inhibit apo-

ptosis that may be activated by N. ceranae infection.

Microsporidia are obligate intracellular parasites with extremely reduced genomes and a

dependence on host-derived ATP. Honey bee cells infected with N. ceranae were enlarged

and the cytoplasm contained a larger number of host mitochondria and free ribosomes. Sev-

eral mitochondria were close to and surrounded the plasmalemma of meronts [18], similar

to sporulating Buxtehucdea scaniae [46], suggesting a energy supply external to the parasite.

For this reason, the regulation of five host mitochondrial related genes was also included in

this study. However only one of them (MRP L16) was seen to be up-regulated and only in N.

ceranae infected bees (Fig 5). MRP L16 is a nuclear gene that encodes for the mitochondrial

ribosomal protein L16. This polypeptide plays an important role in the assembly and struc-

ture of the peptidyl transferase centre of the ribosome, and it is crucial for the correct behav-

ior of mito-ribosomes in yeast [47]. MRP over expression depends mainly on glucose

repression and de-repression, which decreases or elevates MRP mRNA and protein levels,

respectively [40]. It is important to note that N. ceranae infection has been reported to pro-

duce a nutritional and energetic stress in bees that leads to a major ingestion of food that is

rich in glucose [48–50]. On the other hand, the stable accumulation of L16 depends on the

presence of mitochondrial rRNA [47], so changes in the integrity of mitochondrial activity

directly affect the levels of this protein too. The related genes studied in this work, CYTOX,

TU-MITO, S12 and LSU, suggest normal mitochondrial activity that would allow the accu-

mulation of L16 protein inside this organelle. In fact, the expression of Cytochrome C oxi-

dase subunit VI gene is remarkable high, at levels that are almost significant(p = 0.059),

which would fit into the theory of the mitochondria overworking during N. ceranae infec-

tion. Mitochondrial protein modulation by intracellular parasites has been reported

previously in Toxoplasma gondii infection [1]. The direct or indirect perturbation of mito-

chondria dynamics may play a crucial role in the sustained viability of host cells preserving

the pathogen’s replication niche or alternatively triggering the apoptotic process to circum-

vent immune effector cells. It will be crucial to identify the host’s molecular mechanisms

and the pathogenic factors involved in such control [7]. Finally, no significant results were
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observed in terms of mitochondrial activity in bees infected by N. apis. This again indicates

that both microsporidia affect the same host in a different manner.

Finally, the expression of vitellogenin and juvenile hormone were also assessed here. These

molecules have been related to the bees’ immune response and to other physiological activities

such as in behavioural development [51, 52], and some modifications to their expression were

previously reported in bees infected by Nosema spp. [53–55]. However, no significant modifi-

cation was detected here for either hormone, probably because the effects of infection were

only studied in the target tissue (ventricular cells) and the hormone secreting organs were not

assessed.

In multicellular organisms, cell proliferation and death must be regulated to maintain tissue

homeostasis. Many observations suggest that this regulation may be at least partially achieved

by coupling the process of cell cycle progression and programmed cell death through a set of

common factors. Evidence is accumulating that manipulation of the cell cycle may either pre-

vent or induce an apoptotic response arguing in favor of a link between the cell cycle and

apoptosis [56]. For bee microsporidia, this is the first report describing molecular pathways

related to parasite-host interactions that probably serve to promote their own survival within

the cell. New routes of apoptosis involving Buffy and BIRC5 were seen to be modified by both

microsporidia, while the effects of the microsporidia on the expression of genes related with

the cell cycle indicate that both Nosema species apparently promote the G1/S phase through

different pathways (cyclin B1/ dacapo/ E2F2 by N. apis, cyclin E byN. ceranae). Lastly, the

changes to mitochondrial markers appear to further support a distinct response to the two

Nosema species studied as only N. ceranae infection leads to higher mitochondrial activity. All

these evidences demonstrate the strong interaction between the host cells and this group of

parasites. These results increase further our knowledge on the specific pathways that these

microsporidia uses to survive and multiply in the host, shedding light on the pathogenic mech-

anism of A. mellifera microsporidia, and hence on the relationship between these insects and

their intracellular parasites.
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5. Heussler VT, Küenxi P, Rottenberg S. Inhibition of apoptosis by intracellular porotzoan parasites. Int J

Parasitol. 2001; 31: 1166–1176. PMID: 11563357

6. James ER, Green DR. Manipulation of apoptosis in the host-parasite interaction. Trends Parasitol.

2004; 20: 280–287. doi: 10.1016/j.pt.2004.04.004 PMID: 15147679

7. Rodrigues V, Cordeiro-da-Silva A, Laforge M, Ouaissi A, Silvestre R, Estaquier J. Modulation of Mam-

malian Apoptotic Pathways by Intracellular Protozoan Parasites. Cell Microbiol. 2012; 14(3): 325–333.

doi: 10.1111/j.1462-5822.2011.01737.x PMID: 22168464

8. Manque PA, Probst C, Pereira MCS, Rampazzo RCP, Ozaki LS, Pavoni DP, et al. Trypanosoma cruzi

Infection Induces a Global Host Cell Response in Cardiomyocytes. Infect Immunity 2011; 79: 1855–

1862.

9. Anonymous. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006;

443: 931–949. doi: 10.1038/nature05260 PMID: 17073008

10. Higes M, Martı́n-Hernández R, Meana A. Nosema ceranae in Europe: an emergent type C nosemosis.

Apidologie 2010; 41: 375–392.

11. Zander E. Tierische Parasiten als Krankheitserreger bei der Biene. Leipziger Bienenztg 1909; 24: 147–

150, 164–166.

12. Fries I, Feng F, da Silva A, Slemenda SB, Pieniazek NJ. Nosema ceranae n.sp. (Microspora, Nosemati-

dae), morphologycal and molecular characterization of a Microsporidian parasite of the Asian honey

bee Apis cerana (Hymenoptera, Apidae). Eurp J Protistol. 1996; 32: 356–365.

13. Szumowski SC, Troemel ER. Microsporidia-host interactions. Curr Opin Microbiol. 2015; 26: 10–16.

doi: 10.1016/j.mib.2015.03.006 PMID: 25847674

14. Williams BAP. Unique physiology of host-parasite interactions in microsporidia infections. Cell Micro-

biol. 2009; 11(11): 1551–1560. doi: 10.1111/j.1462-5822.2009.01362.x PMID: 19673893

Microsporidia effects on host cell cycle

PLOS ONE | DOI:10.1371/journal.pone.0170183 February 2, 2017 15 / 17

http://dx.doi.org/10.1128/IAI.01115-07
http://www.ncbi.nlm.nih.gov/pubmed/17967855
http://dx.doi.org/10.1016/j.mib.2005.06.011
http://www.ncbi.nlm.nih.gov/pubmed/15993644
http://www.ncbi.nlm.nih.gov/pubmed/11587962
http://dx.doi.org/10.1016/j.pt.2007.06.004
http://www.ncbi.nlm.nih.gov/pubmed/17588817
http://www.ncbi.nlm.nih.gov/pubmed/11563357
http://dx.doi.org/10.1016/j.pt.2004.04.004
http://www.ncbi.nlm.nih.gov/pubmed/15147679
http://dx.doi.org/10.1111/j.1462-5822.2011.01737.x
http://www.ncbi.nlm.nih.gov/pubmed/22168464
http://dx.doi.org/10.1038/nature05260
http://www.ncbi.nlm.nih.gov/pubmed/17073008
http://dx.doi.org/10.1016/j.mib.2015.03.006
http://www.ncbi.nlm.nih.gov/pubmed/25847674
http://dx.doi.org/10.1111/j.1462-5822.2009.01362.x
http://www.ncbi.nlm.nih.gov/pubmed/19673893


15. Higes M, Juarranz A, Dias-Almeida J, Lucena S, Botı́as C, Meana A, et al. Apoptosis in the pathogene-

sis of Nosema ceranae (Microsporidia: Nosematidae) in honey bees (Apis mellifera). Environ Microbiol

Rep. 2013; 5: 530–536. doi: 10.1111/1758-2229.12059 PMID: 23864567

16. Kurze C, Le Conte Y, Dussaubat C, Erler S, Kryger P, Lewkowski O, et al. Nosema tolerant honeybees

(Apis mellifera) escape parasitic manipulation of apoptosis. PLoS ONE 2015; 10(10): e0140174. doi:

10.1371/journal.pone.0140174 PMID: 26445372

17. Dussaubat C, Brunet JL, Higes M, Colbourne JK, Lopez J, Choi JH, et al. Gut pathology and responses

to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS ONE 2012; 7(5): e37017.

doi: 10.1371/journal.pone.0037017 PMID: 22623972

18. Higes M, Garcı́a-Palencia P, Martı́n-Hernández R, Meana A. Experimental infection of Apis mellifera

with Nosema ceranae (Microsporidia) J Invertebr Pathol. 2007; 94: 211–217. doi: 10.1016/j.jip.2006.11.

001 PMID: 17217954

19. Martı́n-Hernández R, Meana A, Garcı́a-Palencia P, Marı́n P, Botı́as C, Garrido-Bailón E, et al. Effect of

Temperature on the biotic potential of Honeybee Microsporidia. App Environ Microbiol. 2009; 75(8):

2554–2557.

20. Martı́n-Hernández R, Botı́as C, Bailón EG, Martı́nez-Salvador A, Prieto L, Meana A, et al. Microsporidia

infecting Apis mellifera: coexistence or competition. Is Nosema ceranae replacing Nosema apis? Envi-

ron Microbiol 2012; 14: 2127–2138. doi: 10.1111/j.1462-2920.2011.02645.x PMID: 22176602

21. Scanlon M, Leitch GJ, Shaw AP, Moura H, Visvesvara GS. Susceptibility to apoptosis is reduced in the

microsporidia infected host. J Eukaryot Microbiol. 1999; 46: 34S–35S. PMID: 10519237

22. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normaliza-

tion of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.

Genome Biol. 2002; 3: research0034.1–research0034.11.

23. Scharlaken B, de Graaf DC, Goossens K, Brunain M, Peelman LJ, Jacobs FJ. Reference gene selec-

tion for insect expression studies using quantitative real-time PCR: The honeybee, Apis mellifera, head

after a bacterial challenge. J Insect Sci. 2008; 8: 33.

24. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids

Res. 2001; 29:e45. PMID: 11328886

25. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise compari-

son and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002; 30

(9):e36. PMID: 11972351

26. Botı́as C, Martı́n-Hernández R, Dı́as J, Garcı́a-Palencia P, Matabuena M, Juarranz A., et al. The effect

of induced queen replacement on Nosema spp. infection in honey bee (Apis mellifera iberiensis) colo-

nies. Environ Microbiol. 2012; 14: 845–859. doi: 10.1111/j.1462-2920.2011.02647.x PMID: 22118366

27. Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, et al. Early redistribution of

plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stim-

ulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995; 182: 1545–1556. PMID: 7595224

28. Donovan MJ, Maciuba BZ, Mahan CE, McDowell MA. Leishmania infection inhibits cycloheximide-

induced macrophage apoptosis in a strain dependent manner. Exp Parasitol. 2009; 123, 58–64. doi: 10.

1016/j.exppara.2009.05.012 PMID: 19500578

29. Altieri DC. Molecular cloning of effector cell protease receptor-1, a novel cell surface receptor for the

protease factor Xa. J Biol Chem. 1994; 269: 3139–3142. PMID: 8106347

30. Altieri DC. Splicing of effector cell protease receptor-1 mRNA is modulated by an unusual retained

intron. Biochem. 1994; 33: 13848–13855.

31. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lym-

phoma. Nature Med. 1997; 3: 917–921. PMID: 9256286

32. Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, et al. Buffy, a Drosophila Bcl-2 protein, has

anti-apoptotic and cell cycle inhibitory functions. Eur Mol Biol Organ J. 2003; 22: 3568–3579.

33. Wilkinson JC, Richter BWM, Wilkinson AS, Burstein E, Rumble JM, Balliu B, et al. VIAF, a Conserved

Inhibitor of Apoptosis (IAP)-interacting Factor That Modulates Caspase Activation. J Biol Chem. 2004;

279: 51091–51099. doi: 10.1074/jbc.M409623200 PMID: 15371430

34. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian

biology. Cell 2001; 104: 487–501. PMID: 11239407

35. Bodmer J, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Bio-

chem Sci. 2002; 27(1): 19–26. PMID: 11796220

36. Neganova I, Lako M. G1 to S phase cell cycle transition in somatic and embryonic stem cells. J Anatomy

2008; 213: 30–44.

Microsporidia effects on host cell cycle

PLOS ONE | DOI:10.1371/journal.pone.0170183 February 2, 2017 16 / 17

http://dx.doi.org/10.1111/1758-2229.12059
http://www.ncbi.nlm.nih.gov/pubmed/23864567
http://dx.doi.org/10.1371/journal.pone.0140174
http://www.ncbi.nlm.nih.gov/pubmed/26445372
http://dx.doi.org/10.1371/journal.pone.0037017
http://www.ncbi.nlm.nih.gov/pubmed/22623972
http://dx.doi.org/10.1016/j.jip.2006.11.001
http://dx.doi.org/10.1016/j.jip.2006.11.001
http://www.ncbi.nlm.nih.gov/pubmed/17217954
http://dx.doi.org/10.1111/j.1462-2920.2011.02645.x
http://www.ncbi.nlm.nih.gov/pubmed/22176602
http://www.ncbi.nlm.nih.gov/pubmed/10519237
http://www.ncbi.nlm.nih.gov/pubmed/11328886
http://www.ncbi.nlm.nih.gov/pubmed/11972351
http://dx.doi.org/10.1111/j.1462-2920.2011.02647.x
http://www.ncbi.nlm.nih.gov/pubmed/22118366
http://www.ncbi.nlm.nih.gov/pubmed/7595224
http://dx.doi.org/10.1016/j.exppara.2009.05.012
http://dx.doi.org/10.1016/j.exppara.2009.05.012
http://www.ncbi.nlm.nih.gov/pubmed/19500578
http://www.ncbi.nlm.nih.gov/pubmed/8106347
http://www.ncbi.nlm.nih.gov/pubmed/9256286
http://dx.doi.org/10.1074/jbc.M409623200
http://www.ncbi.nlm.nih.gov/pubmed/15371430
http://www.ncbi.nlm.nih.gov/pubmed/11239407
http://www.ncbi.nlm.nih.gov/pubmed/11796220


37. Reis T, Edgar BA. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing.

Cell 2004; 117: 253–264. PMID: 15084262

38. Royzman I, Whittaker AJ, Orr-Weaver TL. Mutations in Drosophila DP and E2F distinguish G1-S pro-

gression from an associated transcriptional program. Genes Dev. 1997; 11: 1999–2011. PMID:

9271122

39. Duronio RJ, Bonnette PC, O’Farrell PH. Mutations of the Drosophila dDP, dE2F, and cyclin E genes

reveal distinct roles for the E2F-DP transcription factor and cyclin E during the G1-S transition. Mol Cell

Biol. 1998; 18:141–151. PMID: 9418862

40. Joyce NC, Harris DL, Mc Alister JC, Ali RR, Larkin DF. Effect of overexpressing the transcription factor

E2F2 on cell cycle progression in rabbit corneal endothelial cells. Invest Ophthalmol Vis Sci. 2004; 45:

1340–1348. PMID: 15111587

41. Aufauvre J, Misme-Aucouturier B, Viguès B, Texier C, Delbac F, et al. (2014) Transcriptome Analyses

of the Honeybee Response to Nosema ceranae and Insecticides. PLoS ONE 9(3): e91686. doi: 10.

1371/journal.pone.0091686 PMID: 24646894

42. Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehner CF. et al. Cyclin E controls S phase pro-

gression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell pro-

liferation. Cell 1994; 77: 107–120. PMID: 8156587

43. Richardson H, O’Keefe LV, Marty T, Saint R. Ectopic cyclin E expression induces premature entry into

S phase and disrupts pattern formation in the Drosophila eye imaginal disc. Development 1995;

121:3371–3379. PMID: 7588070

44. Bakowski MA, Desjardins CA, Smelkinson MG, Dunbar TA, Lopez-Moyado IF, Rifkin SA, et al. Ubiqui-

tin- mediated response to microsporidia and virus infection in C. elegans. PLoS Pathog. 2014; 10:

e1004200. doi: 10.1371/journal.ppat.1004200 PMID: 24945527

45. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin Protein Ligase Activity of IAPs and

their degradation in proteasomes in response to apoptotic stimuli. Science 2000; 288: 874–877. PMID:

10797013

46. Vavra J, Larsson JIR. Structure of the Microsporidia. In: Murray W., Louis M.W., editors. The Microspor-

idia and Microsporidiosis. Washington DC: American Society of Microbiology;1999. pp. 7–84.

47. Pan C, Mason TL. Identification of the yeast nuclear gene for the mitochondrial homologue of bacterial

ribosomal protein L16. Nucleic Acids Res. 1995; 23: 3673–3677. PMID: 7478995

48. Mayack C, Naug D. Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J

Invertebr Pathol. 2009; 100: 185–188. doi: 10.1016/j.jip.2008.12.001 PMID: 19135448

49. Aliferis KA, Copley T, Jabaji S. Gas chromatography-mass spectrometry metabolite profiling of worker

honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection. J Insect Physiol.

2012; 58: 1349–1359. doi: 10.1016/j.jinsphys.2012.07.010 PMID: 22841888

50. Vidau C, Panek J, Texier C, Biron DG, Belzunces lP, Le Gall M, et al. Differential proteomic analysis of

midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions. J Inver-

tebr Pathol. 2014; 121: 89–96. doi: 10.1016/j.jip.2014.07.002 PMID: 25038465

51. Robinson GE, Vargo EL. Juvenile hormone in adult eusocial Hymenoptera: gonadotropin and behav-

ioral pacemaker. Arch Insect Biochem Physiol. 1997; 35(4): 559–583. doi: 10.1002/(SICI)1520-6327

(1997)35:4<559::AID-ARCH13>3.0.CO;2-9 PMID: 9210289

52. Nelson CM, Ihle KE, Fondrk MK, Page RE, Amdam GV. The gene vitellogenin has multiple coordinating

effects on social organization. PLoS Biology. 2007; 5(3):e62. doi: 10.1371/journal.pbio.0050062 PMID:

17341131

53. Goblirsch M, Huang ZY, Spivak M. Physiological and behavioral changes in honey bees (Apis mellifera)

induced by Nosema ceranae infection. PLoS ONE 2013; 8(3): e58165. doi: 10.1371/journal.pone.

0058165 PMID: 23483987

54. Ares AM, Nozal MJ, Bernal JL, Martin-Hernandez R, Higes M, Bernal J. Liquid chromatography coupled

to ion trap-tandem mass spectrometry to evaluate juvenile hormone III levels in bee hemolymph from

Nosema spp. infected colonies. J Chromatogr B 2012; 899: 146–153.

55. Ma Z, Li C, Pan G, Li Z, Han B, Xu J, et al. Genome-Wide Transcriptional Response of Silkworm (Bom-

byx mori) to Infection by the Microsporidian Nosema bombycis. PLoS ONE 2013; 8(12): e84137. doi:

10.1371/journal.pone.0084137 PMID: 24386341

56. Pucci B, Kasten M, Giordano A. Cell Cycle and Apoptosis. Neoplasia 2000; 2: 291–299. PMID:

11005563

Microsporidia effects on host cell cycle

PLOS ONE | DOI:10.1371/journal.pone.0170183 February 2, 2017 17 / 17

http://www.ncbi.nlm.nih.gov/pubmed/15084262
http://www.ncbi.nlm.nih.gov/pubmed/9271122
http://www.ncbi.nlm.nih.gov/pubmed/9418862
http://www.ncbi.nlm.nih.gov/pubmed/15111587
http://dx.doi.org/10.1371/journal.pone.0091686
http://dx.doi.org/10.1371/journal.pone.0091686
http://www.ncbi.nlm.nih.gov/pubmed/24646894
http://www.ncbi.nlm.nih.gov/pubmed/8156587
http://www.ncbi.nlm.nih.gov/pubmed/7588070
http://dx.doi.org/10.1371/journal.ppat.1004200
http://www.ncbi.nlm.nih.gov/pubmed/24945527
http://www.ncbi.nlm.nih.gov/pubmed/10797013
http://www.ncbi.nlm.nih.gov/pubmed/7478995
http://dx.doi.org/10.1016/j.jip.2008.12.001
http://www.ncbi.nlm.nih.gov/pubmed/19135448
http://dx.doi.org/10.1016/j.jinsphys.2012.07.010
http://www.ncbi.nlm.nih.gov/pubmed/22841888
http://dx.doi.org/10.1016/j.jip.2014.07.002
http://www.ncbi.nlm.nih.gov/pubmed/25038465
http://dx.doi.org/10.1002/(SICI)1520-6327(1997)35:4&lt;559::AID-ARCH13&gt;3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1520-6327(1997)35:4&lt;559::AID-ARCH13&gt;3.0.CO;2-9
http://www.ncbi.nlm.nih.gov/pubmed/9210289
http://dx.doi.org/10.1371/journal.pbio.0050062
http://www.ncbi.nlm.nih.gov/pubmed/17341131
http://dx.doi.org/10.1371/journal.pone.0058165
http://dx.doi.org/10.1371/journal.pone.0058165
http://www.ncbi.nlm.nih.gov/pubmed/23483987
http://dx.doi.org/10.1371/journal.pone.0084137
http://www.ncbi.nlm.nih.gov/pubmed/24386341
http://www.ncbi.nlm.nih.gov/pubmed/11005563

