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Abstract

Motor systems are highly adaptive. Both birds and humans compensate for synthetically

induced shifts in the pitch (fundamental frequency) of auditory feedback stemming from

their vocalizations. Pitch-shift compensation is partial in the sense that large shifts lead to

smaller relative compensatory adjustments of vocal pitch than small shifts. Also, compensa-

tion is larger in subjects with high motor variability. To formulate a mechanistic description of

these findings, we adapt a Bayesian model of error relevance. We assume that vocal-audi-

tory feedback loops in the brain cope optimally with known sensory and motor variability.

Based on measurements of motor variability, optimal compensatory responses in our model

provide accurate fits to published experimental data. Optimal compensation correctly pre-

dicts sensory acuity, which has been estimated in psychophysical experiments as just-

noticeable pitch differences. Our model extends the utility of Bayesian approaches to adap-

tive vocal behaviors.

Introduction

Humans and animals can quickly adapt their behaviors to changes in the environment. For

example, running barefoot or in shoes through a forest or on sand, all require different gait

patterns that are effortlessly recruited when needed. Whether to adapt or not to an unexpected

sensory event often depends on whether the latter is self-caused or not. For example, is the

cracking sound of a piece of wood caused by one’s own foot step or that of a predator? In the

latter case, running away may be a good option whereas in the former case doing nothing

might be better. Optimal motor adaptation seems to suggest that the brain must determine the

cause of sensory input [1] and the degree to which the input is commensurate with one’s own

motor actions.

The problem of estimating self-caused sensory feedback becomes challenging when sensors

are noisy, are subject to damage (e.g. hearing loss due to a ruptured eardrum), or undergo age-

related degradation (e.g. presbyopia of the human eye). In order to deal with inaccurate sen-

sory information during possibly imprecise movements, the brain must optimally integrate

sensory information with motor plans by weighing the reliability of a given source of
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information, in a fashion similar to statistically optimal cue combination [2] or “causal infer-

ence” models in Bayesian cognitive psychology [1,3].

A nontrivial relationship between sensory error and motor compensation occurs in the

visuo-motor domain: When humans perform arm reaching movements in the presence of

force fields (proprioceptive error) or under visual rotations (visual error) that shift the trajec-

tory of the hand away from the straight-line target, subjects partially compensate for the

induced errors by selectively adapting the target reaches: large errors induce smaller relative

compensation than small errors [3–8].

Another prominent example of partially compensated errors occurs during vocal control

by auditory feedback. It has been shown that acoustic feedback has a strong influence on the

adaptive control of human voice fundamental frequency: When fundamental frequency (or

pitch) of vowels in speaking subjects is slowly shifted without their awareness (using earphones

and bone oscillators), subjects compensate partly for the shift within tens of trials [9,10]. This

compensation suggests that subjects interpreted the perceived shift to have occurred partially

as the result of a production error that requires correction. As documented by a large body of

literature, the percent compensation applied by subjects in such experiments declines mono-

tonically with increasing shift in fundamental frequency [11–13].

Humans are not the only ones who compensate partially in such pitch-shift experiments.

When pitch feedback into the ears of singing Bengalese finches is shifted using miniature head-

phones, birds compensate only partially for the shift, and the larger the shift the lesser the

birds compensate [14]. All these experiments demonstrating a reduced compensation to large

errors raise the possibility of a universal explanatory mechanism.

Two candidate arguments have been proposed to elucidate why both singing birds and

humans compensate only partially for perturbed pitch. Liu & Larson argue that failure to cor-

rect for large-magnitude errors evidences a self-protection mechanism that prevents environ-

mental sounds from exerting aberrant influence on vocal output [11]. Accordingly, humans

subconsciously may interpret the perceived shift as resulting from a change in the environment

that is not caused by them and thus needs no correction. Sober and Brainard [14] propose a

somewhat different line of reasoning based on their finding that the amount of compensation

is proportional to the overlap between the distributions of produced pitch and perceived pitch.

They argue that sensory errors drive learning best when these fall within the range of produc-

tion variability, explaining why large shifts outside the production range are ineffective in driv-

ing adaptation. Thus, the former explanation relates partial compensation to inferred external

causes of the shift, and the latter relates it to constraints inherent to vocal learning. These expla-

nations qualitatively differ in that the former argues for optimality of the adaptive behavior

(there is no need to adapt to external causes), whereas the latter emphasizes a limitation of the

adaptive system (constraint of learning). Our aim is to formalize the Liu and Larson’s proposal

into a set of equations that can be used to fit data, similarly to Sober and Brainard’s model.

Computational models accounting for partial motor compensation have been previously

proposed. Commonly, sensorimotor adaptation is explained using forward models [4,15].

Briefly, the idea is that the brain possesses an internal model of the system dynamics (e.g. hand

position in a reaching task or fundamental frequency in a vocalization task) called the “forward

model”. The forward model is able to generate an estimate of future sensory feedback based on

a current motor command, hence the use of the term “forward”. If there are unexpected devia-

tions between the estimate and the feedback, then motor commands are corrected dynamically

in proportion to the perceived error [16,17]. Recently, [3] and [4] have extended this approach

to account for the decreased compensation under large sensory errors by explicitly modeling

the gain associated with integrating any particular sensory error as a decreasing function of the

error (specifically, this appears through a sub-quadratic loss function).

Bayesian Motor Adaptation
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We are taking a more principled approach to partial compensation in which we estimate

the produced motor output (pitch in our case) based on a statistically optimal linear combina-
tion of expected and actual feedback which is then used (after non-linear weighting) to gener-

ate a “sensory error” for subsequent motor adaptation. The derived motor adaptation rule is

quite similar to the Kalman filter, except that the gain term for the sensory error is obtained

from a more principled perspective than in [4]. To test whether partial compensation is con-

gruent with optimal behavioral strategies, we investigate a simple theoretical framework

inspired by Bayesian theories of motor adaptation [8]. We show that published data in both

humans and birds can be fit by a simple Bayesian decision model based on the idea that sub-

jects respond optimally to the conflicting feedback, i.e., they adapt pitch up to an extent com-

mensurate with known (or estimated) reliability of sensors and actuators. Our results suggest

that both humans and birds behave optimally given knowledge of sensory, motor, and neural

imperfections. And, in principle, given sufficient experimental data, the magnitude of these

imperfections can be estimated from the data.

Results

We present our work in the nomenclature of birdsong, which is our primary expertise. In a

typical experiment, the impinging pitch p0 at the bird’s ears is the sum of the produced pitch

p and the artificially applied pitch shift pΔ:

pear ¼ pþ pD;

where pitch is reported in logarithmic coordinates of cents, p = 1200 log2 (F) − κ, with F the

pitch (or fundamental frequency) in Hz and κ an arbitrary constant. Note that if birds do not

wear pitch-shifting earphones then the impinging pitch pear at the ears equals the produced

pitch p.

It is well known that the produced pitch p of a song syllable is not constant but it fluctuates

from one rendition of the syllable to another. We approximate the distribution of produced

pitch p across syllable renditions by a Gaussian with mean (produced pitch) μm and variance

(of produced pitch) s2
m:

PðpÞ ¼ Nðmm; s
2

mÞ;

where P(p) is the probability of measuring the produced pitch p using a microphone in such

an experiment and where N(μ, σ2) denotes a Gaussian distribution with mean μ and variance

σ2. For the motor standard deviation of bengalese finch song syllables we take σm = 46 cents.

We obtained this value by multiplying the median absolute deviation (MAD) of pitch distribu-

tions reported in [18] by 1.4826, which is the known factor that relates MAD and Gaussian

standard deviation, i.e., σm = 31 � 1.4826 = 46 cents.

In the subsequent treatment, μm has the role of the bird’s current motor plan which together

with the (constant) motor variability s2
m is relayed to a sensory area as priors used for pitch

estimation (we assume the sensory area has no information about the actual produced pitch p,

only about its plan μm, the sensory feedback pf, and the typical motor and sensory noise vari-

ances s2
m and s2

f ; respectively). In other words, we assume their perceptual system receives an

internal expectation of pitch, which is not available when another bird sings. Evidence for such

forward models (not of pitch per se, but of auditory input in more general terms) in both

mammals and songbirds is provided by neurons in auditory brain areas that respond almost

exclusively to feedback distortions [19,20]. We thus model pitch self-perception as the result of

combined input from two separate sources, one being an internally expected feedback stem-

ming from a forward model of the vocal organ and the other auditory feedback.

Bayesian Motor Adaptation
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Given there must be noise in cochlear and neural processing of pitch, we assume the audi-

tory pitch feedback pf encoded in the brain’s auditory processing stream to be a Gaussian dis-

tributed random variable with mean pear and variance (of pitch feedback) s2
f :

Pðpf jpearÞ ¼ Nðpear; s2

f Þ

where P(pf|pear) is the probability of observing pitch feedback pf given impinging pitch at the

ears pear. Unfortunately, the current birdsong literature documents no attempts of measuring

the variance of pitch feedback s2
f , which is why s2

f is an unknown parameter in our model that

we estimate through a simple fitting procedure described in Table 1. Given the two sources of

noise, on average, birds try to reproduce a pitch target μ� they have acquired from a tutor dur-

ing a sensory song learning phase [21]. When birds are not subjected to pitch-shifted feedback

(pΔ = 0), birds simply achieve a good copy of tutor song when the mean produced pitch equals

the target, i.e., when μm = μ�. However, under pitch-shifted feedback (pΔ 6¼ 0), the mean pro-

duced pitch μm deviates from the target by an amount �:

mm ¼ m� þ �:

That amount, the corrective pitch bias � is our quantity of interest. For a given fixed pith

shift pΔ applied across many syllable renditions, we compute the equilibrium pitch bias h�i

based on optimality criteria, as detailed in the following paragraphs.

One goal of the perceptual system is to decide whether the feedback pf is within the expected

range (within the known motor variance s2
m) of the expected value μm. The larger the sensory

noise (the larger s2
f ), the more likely will an imposed shift pΔ be interpreted as being self-

caused. By contrast, when the feedback pf differs greatly from the expectation μm, then such a

difference cannot be reconciled and the perceptual system decides that feedback is contami-

nated with another bird’s vocalization or with some other environmental disturbance.

Thus, the critical problem is to estimate whether the feedback pf is self-caused or not. The

Bayes optimal approach is to compute the posterior probability of the source of a sensory

event conditioned on the sensory input. Essentially, we can consider the source (S) of an event

to be a Bernoulli random variable taking on one of two values S � {s, e} denoting ‘self’ and

‘external’, with prior probabilities that satisfy P(s) + P(e) = 1. In this approach P(s|pf) is the

Table 1. Stochastic algorithm for finding the motor bias � in response to a given pitch shift pΔ and for

identifying optimal model parameters σ2
f and k by fitting motor bias (compensation) data.

1. Pick a pitch target μ* and choose model parameters s2
f and k characterizing the bird’s sensory noise

and perceptual priors

2. Choose a feedback shift pΔ (in cents), set the corrective bias to zero initially, � = 0

3. Draw a set of n (e.g., n = 200) random pitch samples p according to Nðmm;s
2
mÞ and associated random

auditory feedback signals pf according to Nðpþ pD; s2
f Þ (assume the bird produces n renditions of the

target syllable)

4. Compute the one-source posteriors P(s|pf) and the pitch deviations Δp (Eq 4) of these n renditions

5. Change the corrective bias according to �! � − 0.001hΔpin and return to Step 3 until convergence.

6. Compute the percent compensation as c = 100|h�in|/pΔ, where the running average h�in runs over the

last set of renditions

7. Go to Step 2 and pick a new feedback shift pΔ.

8. Evaluate the goodness of fit (compute the average fitting residual as a function of pΔ, as in Fig 2a and

2b). If the average residual is larger than in the previous fit, reject the latest parameter choices and

proceed to Step 1 to pick new parameters s2
f and k (randomly deviating from the current best choice by

up to one order of magnitude).

doi:10.1371/journal.pone.0169795.t001
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posterior probability that the perceived pitch is ‘self’ generated and P(e|pf) that it is externally

generated.

These posterior probabilities can be used to determine for example whether auditory input

during a particular vocalization is self-caused, which is the case if P(s|pf)> P(e|pf). For exam-

ple, a good adaptive strategy could be to retune the produced pitch when the auditory input is

self-caused, P(s|pf)> 1/2, and its pitch is off target (not close to μ�). However, in the following

treatment we will use Bayesian inference to retune pitch, based not on a decision about the

source but instead on pitch estimates weighted by their posterior source probabilities.

According to Bayes’ theorem, we can write the posterior source probability P(s|pf) in terms

of the likelihood P(pf|s) of observing the feedback pf given it is produced by the bird, as follows:

Pðsjpf Þ ¼
Pðpf jsÞPðsÞ

Pðpf Þ
¼

Pðpf jsÞPðsÞ
Pðpf jsÞPðsÞ þ Pðpf jeÞPðeÞ

¼
Pðpf jsÞ

Pðpf jsÞ þ
Pðpf jeÞPðeÞ

PðsÞ

¼
Pðpf jsÞ

Pðpf jsÞ þ k

ð1Þ

where k is a free parameter that depends on two factors: i) the unknown ratio of prior probabil-

ities P(s) and P(e), and ii) the unknown pitch likelihood P(pf|e) given an external source. The

parameter k is motivated by the idea that birds may have an accurate forward model of their

own motor system but not of the world in general, which boils down to a uniform model and

thus a single scalar parameter.

The likelihood P(pf|s) of (non-shifted, pΔ = 0) pitch feedback can easily be computed assum-

ing independence of sensory and motor noise sources:

Pðpf jsÞ ¼
Z

Pðpf jq; sÞPðqÞdq

Pðpf jsÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðs2

f þs2
mÞ

p e
�

ðmf � mmÞ
2

2ðs2
f þs2

mÞ

ð2Þ

Where we made use of the definitions P pf jq; s
� �

¼ 1ffiffiffiffi
2p
p

sf
e
�
ðpf � qÞ2

2s2
f and P qð Þ ¼ 1ffiffiffiffi

2p
p

sm
e
�
ðmm � qÞ2

2s2
m as

previously introduced. The integral in Eq 2 arises from the fact that birds do not have access to

the true produced pitch p but can only optimally infer its consequences by summing over all

possibilities weighted by their probabilities. By inserting Eq 2 into Eq 1 we obtain a closed

expression for the posterior probability P(s|pf).

To estimate the pitch discrepancy perceived by birds, we first consider the special case in

which birds inferred the feedback stemming from one source, e.g. P(s|pf) = 1. In this case, the

(optimally) combined pitch popt given the noisy measurement pf and the prior μm is given by

the 1-step iteration of a Kalman filter:

popt ¼ argmaxp½Pðpf jp; sÞPðpÞ� ¼
s2

f mmþs2
mpf

s2
f þs2

m
ð3Þ

This formula also corresponds to the optimal combination of two noisy sensory cues, see

e.g. [2]. As expected, the combined pitch po always lies somewhere in between pf and μm. The

inferred pitch discrepancy is Δp = popt − μ�. Naively, the adaptation strategy could be to apply a

Bayesian Motor Adaptation
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pitch change � such that the new combined pitch popt coincides with the target μ�. However,

such strategy would be optimal only if birds were certain about the feedback being self-caused,

which we assume is not the case. To take into consideration the posterior probabilities of self-

versus external sources, we perform Bayesian inference [22] according to which the least-

square pitch estimator is the conditional mean pitch, which provides us with the following

expression for the perceived pitch deviation of a given syllable rendition:

Dp ¼ Pðsjpf Þpopt þ Pðejpf Þmm � m� ¼ �þ ðpf � mmÞPðsjpf Þ
s2

m

s2
f þs2

m
ð4Þ

The remaining idea is that birds compute a motor bias � such that on average (across sylla-

ble renditions), the pitch deviation vanishes, hΔpi = 0. Unfortunately, because we cannot iso-

late � in Eq 4 algebraically, it is not possible to provide a closed-form solution for the motor

bias �. To find this bias in practice, we iteratively change the corrective pitch bias � (in small

steps) with each set n of syllable renditions as follows:

�! � � ZhDpin;

where η is a small constant, e.g. 0.001. Using this procedure, for a fixed pitch shift pΔ, the run-

ning average of pitch deviation hΔpin converges to zero and the running average h�i converges

to the corrective motor response we are interested in. A schematic of the entire model is pre-

sented in Fig 1 and the algorithm for finding the motor bias � is described in Table 1.

The model comprising two parameters s2
f and k summarized in Table 1 provides very good

fits to Bengalese finch data that we manually digitized from [14], Fig 2.

Fig 1. Model of optimal pitch adaptation. Motor areas in the brain generate a motor plan μm by integrating a desired pitch μ* and pitch adaptation �.

The produced pitch suffers from motor noise. Auditory areas optimally combine the motor plan with corrupted feedback pf, then reweight the estimate

by the probability of feedback being self-caused P(s|pf) to produce a final pitch deviation Δp relative to the desired pitch μ*. The two free parameters

highlighted in red are estimated by fitting pitch compensation data from Bengalese finches and humans (Fig 2).

doi:10.1371/journal.pone.0169795.g001
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To test whether the model is also able to reproduce pitch adaptation in humans, we digi-

tized the pitch-shift compensation curves in [11] and produced model fits using parameters

k, σf, and σm (motor variability was not reported in [11]). We found that model fits were

good but not excellent, Fig 3a. We speculated that the main source of discrepancy between

model and data could be the manner in which Liu and Larson quantified the motor response

as the transient peak compensation (assessed relative to pitch traces in non-shifted control

trials). Because of spontaneous pitch fluctuations, the peak transient compensation must be

biased (any non-constant function exhibits local maxima that deviate from the mean), we

argued, prompting us to introduce an additional bias parameter �0 in model fits (�0 is simply

a constant bias added to �). Indeed, including this additional parameter, model fits looked

excellent, Fig 3a.

Humans and birds that produce more pitch baseline variability also compensate more to

pitch-shifted feedback [18,23], an effect that we probed in our model. To investigate the precise

dependence of compensation � on pitch variability s2
m, we digitized the pitch-shift compensa-

tion curves as a function of pitch variability reported in [23] and fitted these curves using

model parameters k and σf. We found rough numerical agreement only in the range in which

the parameter k was negligibly small, (Fig 3) implying that the model imposes an uncondi-

tional self-source interpretation, P(s|pf)’ 1. Perhaps not surprisingly, a self-source interpreta-

tion might have been enforced in [23] by telling participants to match a target note despite

possible feedback alterations, which implies to reject the external-source interpretation, which

in our model means to clamp the self-source posterior probability to one. Indeed, when we

hard-coded P(s|pf) = 1 into the model, the equal fit resulted, Fig 3b (red dashed line).

Interestingly, the model fits to [11] and [23], despite both applying to human data, differed

in terms of their inferred sensory variability (σf = 0 cents vs σf = 7.5 cents). These numbers,

however, were close enough and almost equally good fits resulted when we fitted [11] with

σf = 7.5 cents inferred from [23]. Note that by contrast, the converse was not true and σf = 0

cents provided a poor account of the data [23]. Thus, overall we estimate σf in the range of

Fig 2. Model fits (black lines) to Bengalese finch data (crosses) digitized from [14]. Best fits to compensation data (a) and to overlap-fraction data (b)

are achieved for σf = 23, k = 1.5 * 10−4. For comparison, the dashed line in (b) is the fit to the data provided by the overlap model in [14]. (c) The learning time

constant (in days) was estimated as τ = qhP(e|pf)i/hP(s|pf)i, i.e. as the ratio of the self-versus external-source posterior probabilities (learning occurs mainly

during inferred self-produced syllable renditions), q is a parameter estimated using a least-squared error fit.

doi:10.1371/journal.pone.0169795.g002
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5–10 cents to provide a decent estimate of human perceptual pitch noise. A nontrivial predic-

tion derived from our model is a non-monotonic dependence of the corrective motor bias as a

function of sensory noise σf, shown in Fig 4. Intuitively, the decreased motor compensation for

large sensory noise σf arises from the disregard of noisy sensors by causal inference. By con-

trast, the decreased compensation for small noise σf is a result of trial-to-trial motor variability:

Syllable renditions with pitch closer to the expected value μm have a larger posterior source

probability than renditions with pitch further away from the expected value. Hence, when

Fig 3. Model fits (lines) to human pitch compensation data (black crosses) digitized from [11]. (a) The model fit (black line) reveals only qualitative

agreement but no precise match; k = 5.2 * 10−4, σf = 0 cents, σm = 32 cents. After introducing an additional offset parameter �0 to account for a read-out

bias, the model fit (red line) becomes excellent; k = 1.4 * 10−3, σf = 0 cents, σm = 14 cents, �o = 31 cents. (b) Fits (black line) through data points (crosses)

extracted from the linear regression in [23]. k = 10−320 (essentially k = 0), σf = 7.5 cents. The same fit results (red dashed line) when enforcing a self-source

interpretation, P(s|pf) 1. σf = 7.5. cents.

doi:10.1371/journal.pone.0169795.g003
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averaging over many syllable renditions, deviant renditions are more often ‘rejected’ from

being self-caused than close ones; this rejection of outliers by causal inference is very promi-

nent when sensory feedback is reliable.

Discussion

We presented a normative model of vocal adaptation in birds and humans. The model con-

tains only a small set of parameters, yet it reproduces the widely found decrease in motor com-

pensation with increasing distortion of sensory feedback, and it also reproduces the recently

demonstrated positive correlation between motor variability and motor compensation. We

did not identify any serious disagreement with published data; any possible disagreement

would be interesting, as it would introduce a requirement for model revisions.

Fig 4. Non-monotonic dependence of percent compensation as a function of sensory noise. For both small and large pitch shifts pΔ
(superimposed full and dashed lines), the percent pitch compensation is a non-monotonic function that peaks at an intermediate level of sensory

noise. Model simulations were performed with best-fit parameters for the human data in Fig 3: σm = 32 cents, k = 0. The red line marks the upper

limit of our inferred pitch variability in humans (σf = 7.5 cents).

doi:10.1371/journal.pone.0169795.g004
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Computationally, our model can be seen as a generalization of forgetting models of incom-

plete adaptation [24]: Namely, by replacing the term P sjpf

� �
s2

m
s2

f þs2
m

in Eq (4) by a constant term

α, we find that the level of adaptation is set by two terms among which the target pitch μ� has

the role of driving a forgetting term. Our nonlinear model is more general than simple for-

getting-retention models in the sense that it correctly explains zero adaptation for highly mag-

nified errors (Fig 2a) and that adaptation time constants are not fixed but depend on posterior

evidence.

One of our aims was to include a model component for sensory processing, to support the

possibility that motor adaptation might be constrained by the ability to perceive sensory feed-

back. No sensory component exists in overlap models of adaptive vocal behavior [18]. The

model we studied includes sensory noise through the parameter σf. The predicted compensa-

tion decreases with increasing sensory noise, and the model correctly produces zero adaptation

(� = 0 in Eq 4) in deaf birds (σf =1).

The pitch perception noise inferred in our model (σf = 1 to 7 cents) agrees well with reports

in the literature. Human pitch perception studies report just-noticeable differences of 5–10 Hz

for fundamental frequencies of complex harmonics [25] and of tonal speech [26]. If we assume

a cumulative Gaussian function to underlie the measured psychometric functions, we obtain

an estimated standard deviation σf of sensory noise of about 3–7 cents, agreeing well with our

fit of the Scheerer and Jones (2012) data.

One way forward of using our modeling approach in further studies is to separately esti-

mate perceptual pitch noise σf to further constrain the model down to essentially a single

degree of freedom represented by the parameter k. In birds, for example, it would be interest-

ing to probe the pitch discrimination ability using a go/no-go auditory discrimination para-

digm [27] and to relate the perceptual precision of birds to their compensation magnitudes.

In principle, the dependence of motor compensation on sensory noise is non-trivial, Fig 4.

Our model predicts that the compensation first increases as a function of sensory noise σf until

it reaches a local maximum after which it decreases because the internal model becomes more

reliable than the noisy auditory system. Unfortunately, this predicted non-monotonic relation-

ship will not be simple to test in experiments, mainly for two reasons. First, it is not straightfor-

ward to model pitch noise. Second, even if it were possible to model pitch noise, our estimate

of sensory variability σf = 7.5 cents in humans (Fig 3) coincides with the peak compensation in

Fig 4. Because it is impossible to cancel out noise in the brains’ auditory processing streams,

the low-noise region of the model seems to be inaccessible to experiments. Nevertheless, pro-

vided that our modeling approach applies to adaptation in other sensory systems such as

vision, it may be possible to find behavioral paradigms in which highly precise sensors reside

on the left of the non-monotonic compensation curve in Fig 4.

Regarding the speed of compensation there seems to be a discrepancy between humans and

birds: in humans larger pitch shifts led generally to shorter adaptation latencies [11], which

contrasts with birds in which large shifts are compensated more slowly than small shifts [14].

In humans, the speed of learning depends on many factors including environmental consis-

tency [28]. Overall, given these discrepancies there is currently little hope to identify a unified

principle underlying the speed of adaptation. For this reason we have excluded the time con-

stant of compensation (Fig 2c) in the fitting procedure used to identify model parameters s2
f

and k.

It may be possible to further specify the role of model parameters from diverse reports in

the literature. These are that singers compensate more than speakers [29] but good singers

compensate less than untrained singers [30]. In the context of our model, singers compensat-

ing less than untrained singers might be explainable through σm being smaller in singers. By
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contrast, the same explanation via σm is unlikely to explain differences between singing and

speaking. Rather, we would predict that the model parameter k is smaller during singing than

during speaking, ksing < kspeak, possibly arising from increased attention to auditory feedback

during singing (increase in P(s)). In summary, as suggested by our findings in Fig 3, we believe

the model parameter k can account for instruction effects [31] according to which the com-

pensation magnitude depends on the precise instructions given.

With regards to the parameter k, we have here assumed it to be a fixed constant combining

self and external source priors P(s) and P(e), and the uniform distribution of other-produced

pitch, P(pf|e). Had the fits presented in Fig 2 not looked convincing, we would have assumed

that birds estimate the source priors as well as the pitch likelihoods and posteriors, for example

via equalities P(s) =
R

P(s|pf)dpf and P(e) = 1 − P(s). When we played around with this possibil-

ity and iteratively estimated P(s) and P(e) in this way while estimating the fixed likelihood

P(pf|e) as a free model parameter or even as a Gaussian function, we found that compensation

curves (Fig 2a) looked much steeper than in reality, providing little preliminary support for

such more extended models.

Motor adaptation is sensitive to the characteristics of the input modality. In humans, high

fundamental frequencies of vocalizations are associated with lesser pitch compensation [11].

Whether these observations can be related deterministically to frequency-dependence of

motor variability and sensory noise remains to be seen. Our approach could be used to model

compensatory responses also with respect to other modalities such as sound amplitude. For

example, [32] reported that for loudness-altered voice feedback, a compensatory gain close

to 1 was only reported when subjects attempted to maintain a relatively quiet voice, but not

when they produced louder vocalizations. In general, the Bayesian framework is powerful

enough to be extended through the same normative principles to additional behavioral and

sensory modalities.
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