
RESEARCH ARTICLE

Limits to Causal Inference with State-Space

Reconstruction for Infectious Disease

Sarah Cobey*☯, Edward B. Baskerville☯

Ecology & Evolution, University of Chicago, Chicago, IL, United States of America

☯ These authors contributed equally to this work.

* cobey@uchicago.edu

Abstract

Infectious diseases are notorious for their complex dynamics, which make it difficult to fit

models to test hypotheses. Methods based on state-space reconstruction have been pro-

posed to infer causal interactions in noisy, nonlinear dynamical systems. These “model-

free” methods are collectively known as convergent cross-mapping (CCM). Although CCM

has theoretical support, natural systems routinely violate its assumptions. To identify the

practical limits of causal inference under CCM, we simulated the dynamics of two pathogen

strains with varying interaction strengths. The original method of CCM is extremely sensitive

to periodic fluctuations, inferring interactions between independent strains that oscillate with

similar frequencies. This sensitivity vanishes with alternative criteria for inferring causality.

However, CCM remains sensitive to high levels of process noise and changes to the deter-

ministic attractor. This sensitivity is problematic because it remains challenging to gauge

noise and dynamical changes in natural systems, including the quality of reconstructed

attractors that underlie cross-mapping. We illustrate these challenges by analyzing time

series of reportable childhood infections in New York City and Chicago during the pre-vac-

cine era. We comment on the statistical and conceptual challenges that currently limit the

use of state-space reconstruction in causal inference.

Introduction

Identifying the forces driving change in natural systems is a major goal in ecology. Because

experiments are often impractical and come at the cost of generalizability, a common approach

is to fit mechanistic models to observations. Testing hypotheses through mechanistic models

has a particularly strong tradition in infectious disease ecology [1–4]. Models that incorporate

both rainfall and host immunity, for example, better explain patterns of malaria than models

with only rainfall [5]; models with school terms fit the historic periodicity of measles in

England and Wales [6, 7]. The ability of fitted mechanistic models to predict observations out-

side the training data strongly suggests that biological insight can be gained. There is nonethe-

less a pervasive risk that predictive variables merely correlate with the true, hidden variables,

or that the model’s functional relationships create spurious resemblances to the true dynamics.

This structural uncertainty in the models themselves limits inference [8–12].
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An alternative approach to inferring causality is to examine the time series of potentially

interacting variables without invoking a model. These methods face a similar challenge: they

must distinguish correlated independent variables sharing a mutual driver from correlations

arising from direct or indirect interactions. Many of these methods, including Granger causal-

ity [13] and other related methods [14–16], infer interactions in terms of information flow in a

probabilistic framework and cannot detect bidirectional causality. A recent suite of methods

based on dynamical systems theory proposes to infer interactions, both unidirectional and

bidirectional, in systems that are nonlinear, noisy, and potentially high-dimensional [17–19].

The basic idea is that if X drives Y, information about X is embedded in the time series of Y.

Examining the relationships between delay-embeddings of the time series of X and Y can

reveal whether X drives Y, Y drives X, both, or neither. These approaches, which we refer to

collectively as convergent cross-mapping (CCM), have been offered as general tools to analyze

causation in nonlinear dynamical systems [17–20].

The mathematical foundations of CCM, and therefore its assumptions, lie in deterministic

nonlinear systems theory. After sufficient time, the states of a deterministic dynamical system

reach an attractor, which may be a point equilibrium, a limit cycle, or a higher-dimensional

chaotic attractor. By Takens’ theorem, a one-dimensional time series X(t) from the system can

be mapped perfectly to the attractor in the full state space in the system by constructing a

delay embedding, in which states of the full system are mapped to delay vectors, x(t) = {X(t),
X(t − τ1), X(t − τ2), . . ., X(t − τE−1}, for delays τi and an embedding dimension E, which must be

at least as large as the dimensionality of the attractor [21]. This mapping provides the basis for

causal inference under CCM: if Y drives (causes) X, then a newly observed x(t) can perfectly

reconstruct the corresponding Ŷ ðtÞ from past observations of the mapping x(t)! Y(t) (Fig

1A). As the number of observed delay vectors x(t) increases, the reconstruction converges to

small error, as observed points on the reconstructed attractor become close together [17].

With finite, noisy real data, the reconstruction is necessarily imperfect, and two operational

criteria have been used to detect causality. The first criterion (Fig 1B) is based simply on this

improvement in reconstruction quality with the number of observations. This approach is

known to produce false positives in the case of strongly driven variables, where the system

becomes synchronized to the driver [17, 22]. This failure is logically consistent with the theory:

the theory implies that, with perfect data, causal drivers will produce good reconstructions, but

not that non-causal drivers will not produce good reconstructions. The second criterion (Fig

1C) tries to correct this problem by additionally considering the directionality of information

flow in time [18]. If one variable drives another, the best predictions of current states of the

driven variable should come from past, not current or future, states of the driver.

Many ecological systems undergo synchronized diurnal or annual fluctuations and thus

raise doubts about the first criterion. Transient dynamics, demographic and environmental

noise, and observation error—all ubiquitous in nature—raise general concerns, since they vio-

late the theory’s assumption that variables are perfectly observed in a deterministic system.

Variations of CCM have nonetheless been applied to such systems to test hypotheses about

who interacts with whom [17–19, 23, 24].

We investigated whether the frequently periodic, noisy, and transient dynamics of ecologi-

cal systems are a current obstacle to causal inference based on state-space reconstruction.

These factors have been addressed to varying degrees in different contexts [17–19] but not sys-

tematically. Specifically, we examined whether the two criteria for causal inference are robust

to inevitable uncertainties about the dynamics underlying the data. With little prior knowledge

of a system’s complexity, including the influences of transient dynamics and noise, can we

reach statistically rigorous conclusions about who interacts with whom? Infectious diseases

Limits to Causal Inference with State-Space Reconstruction for Infectious Disease

PLOS ONE | DOI:10.1371/journal.pone.0169050 December 28, 2016 2 / 22

Competing Interests: The authors have declared

that no competing interests exist.



provide a useful test case because their dynamics have been extensively studied, long time

series are available, and pathogens display diverse immune-mediated interactions [25]. Their

dynamics are also influenced by seasonal variation in transmission rates, host population

structure, and pathogen evolution. The ability to test directly for the presence of interactions

would save considerable effort over fitting semi-mechanistic models that incorporate these

complexities. We find that although CCM appears to work beautifully in some instances, it

does not in others. Noise and transient dynamics contribute to poor outcomes, as do statistical

Fig 1. Summary of criteria for detecting causality. (A) Schematic of cross-map algorithm for testing Y! X. Delay vectors

in X, mapped to values in Y with lag ℓ, are bootstrap-sampled to construct a prediction library. For each delay vector in X,

reconstructed values Ŷ are calculated from a distance-weighted sum of Y values from nearest neighbors in the library. Many

sampled libraries yield a distribution of cross-map correlations between actual Y and reconstructed Ŷ . (B) Criterion 1 (cross-

map increase). Bootstrap distributions of cross-map correlation are calculated at minimum and maximum library sizes with ℓ =

0; causality is inferred if the correlation at Lmax is significantly greater than the correlation at Lmin. (C) Criterion 2 (negative

cross-map lag). Cross-map correlations are calculated across different values of ℓ. Causality is inferred if the highest cross-

map correlation for negative ℓ is positive and significantly greater than the highest value for nonnegative ℓ.

doi:10.1371/journal.pone.0169050.g001
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ambiguities in the methodology itself. We propose that except in extreme circumstances, the

current method cannot reliably reveal causality in natural systems.

Results

To assess the reliability of CCM, we began by simulating the dynamics of two strains with sto-

chastic, seasonally varying transmission rates (Methods). In large systems, many factors might

influence these rates. In low-dimensional models, these factors are typically represented as

process noise. We consequently varied the level of process noise in our simulations by chang-

ing its standard deviation, η. We also varied the strength of competition from strain 2 on strain

1 (σ12); strain 1, in contrast, never affected strain 2 (σ21 = 0). For each level of competition and

process noise, we simulated 100 replicates from random initial conditions to stochastic fluctu-

ations around a deterministic attractor. One thousand years of error-free monthly incidence

were output to give CCM the best chance to work. For each combination of parameters (com-

petition strength σ12 and process noise η), we examined whether strain interactions were cor-

rectly inferred. When σ12 > 0, strain 2 should be inferred to “drive” (influence) strain 1.

Because σ21 = 0, strain 1 should never be inferred to drive strain 2.

To detect interactions, for each individual time series, we identified the delay-embeddings

(Fig 1A) and applied one of two causality criteria using the reconstructed attractors (Fig 1B

and 1C and Methods). Both criteria are based on the cross-map correlation ρ, which is the cor-

relation between reconstructed values of Ŷ and actual values of Y, given the reconstructed

attractor of X. We use p< 0.05 to identify significant differences in these correlations because

we are interested in situations in which the null hypothesis of no change in correlation, and

thus no interaction, is rejected. Criterion 1 [17, 19] measures whether the cross-map correla-

tion increases as the number of observations of the putatively driven variable grows (Fig 1B).

We refer to this as the cross-map increase criterion. Criterion 2 [18] infers a causal interaction

if the maximum cross-correlation of the putative driver is positive and occurs in the past (i.e.,

at a negative temporal lag; Fig 1C). We refer to this as the negative cross-map lag criterion.

Sensitivity to periodicity

Criterion 1, which requires a significant increase in cross-map correlation ρ with observation

library size L, frequently detected interactions that did not exist. In all cases where strain 2 had

no effect on strain 1, CCM always incorrectly inferred an influence (Fig 2A). Although strain 1

never influenced strain 2, it was often predicted to (Fig 2A). Sample time series suggested a

strong correlation between synchronous oscillations and the appearance of bidirectional inter-

actions (Fig 2B). In contrast, when strain 2 appeared to drive strain 1 but not vice-versa (σ12 =

0 and η = 0.05), strain 1 often oscillated with a period that was an integer multiple of the other

strain’s (Fig 2C). Thus, as expected, strongly synchronized dynamics prevented separation of

the variables. Additionally, the resemblance of strain 2 to the seasonal driver led to false posi-

tives even when the strains were independent and strain 1 oscillated at a different frequency.

The sensitivity of the method to periodicity persisted despite transformations of the data

and changes to the driver. One possible solution to reducing seasonal effects, sampling annual

rather than monthly incidence, reduced the overall rate of false positives but also failed to

detect some interactions (S1A Fig). Furthermore, when the effects of strain 2 on 1 were stron-

gest, the reverse interaction was more often inferred. Sampling the prevalence at annual inter-

vals gave similar results (S1B Fig), and first-differencing the data did not qualitatively change

outcomes (S1C Fig). The method yielded incorrect results even without seasonal forcing (� =

0) because of noise-induced oscillations (S1D Fig). In all of these cases, the presence of shared
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Fig 2. Interactions detected as a function of process noise and the strength of interaction (C2! C1) and

representative time series. (A) Heat maps show the fraction of 100 replicates significant for each inferred interaction for

different parameter combinations. A significant increase in cross-map correlation ρwith library length L indicated a

causal interaction. The time series consisted of 1000 years of monthly data. (B) Representative 25-year sample of the

time series for which mutual interactions were inferred (σ12 = 0.25, η = 0.01). (C) Representative sample of the time

series for which C2 is inferred to drive C1 but not vice-versa (σ12 = 0.25, η = 0.05).

doi:10.1371/journal.pone.0169050.g002
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periods between the strains correlated strongly and significantly with the rate of detecting a

false interaction (Fig 3).

Because cross-map skill should depend on the quality of the reconstructed attractor, we

investigated performance under other methods of constructing the attractors of the two

strains (Methods). Nonuniform embedding methods allow the time delays to occur at irregu-

lar intervals, τ1, τ2, . . .τE−1, which may provide a more accurate reconstruction. Alternative

reconstruction methods, including nonuniform embedding [26, 27], random projection

[23], and maximizing the cross-map (rather than univariate) correlation failed to fix the

problem (S2 Fig).

We also tested a method that infers causality if the cross-map correlation is significantly

greater than a null correlation distribution from surrogate time series with randomized sea-

sonal anomalies [20]. This method resulted in a high false positive rate (S6 Fig). When surro-

gates were used for both the putative cause and the putative effect (S6A Fig), more true

positives (σ12 = 0.25) and false positives (σ12 = 0) were detected than when surrogates were

used only for the putative cause (S6B Fig).

Criterion 2, which infers that Y drives X if there is a positive cross-map correlation that is

maximized at a negative cross-map lag, performed relatively well (Fig 4). Fewer false posi-

tives were detected, although the method missed some weak extant interactions (σ12 = 0.25)

and interactions in noisy systems (η = 0.05, 0.1). Results for annual data were similar (S3A

Fig). Requiring that ρ be not only positive but also increasing barely affected performance

(S3B Fig).

Limits to identifiability

If two variables X and Y share the same driver but do not interact, if the driving is strong

enough, Xmay resemble the driver so closely that X appears to drive Y. In a similar vein, when

the two strains in our system have identical transmission rates (β1 = β2) and one strongly drives

the other (σ12 = 1), the direction of the interaction cannot be detected when the dynamics are

nearly deterministic (η = 10−6) (S3C Fig). Causal inference in such cases becomes difficult.

To investigate the limits to distinguishing strains that are ecologically similar and do not

interact, we varied the correlation of the strain-specific process noise while applying the more

conservative of the two criteria for inferring causality (Criterion 2), that the cross-map correla-

tion ρ be positive and peak at a negative lag [18]. Process noise can be thought of as a hidden

environmental driver that affects both strains simultaneously, and thus the strength of correla-

tion indicates the relative contribution of shared versus strain-specific noise. With two identi-

cal, independent strains, no seasonal forcing, and low process noise (η = 0.01), the false

positive rate depended on correlation strength and the quantity of data. When using 100 years

of monthly incidence, the false positive rate varied non-monotonically with correlation

strength, with a minimum (5%-6%) at a correlation of 0.75 and its highest values, near 24%, at

correlations of 0 and 1 (S4A Fig). Using 1000 years of annual incidence reduced false positive

rates to 5%-9% for imperfectly correlated noise (S4B Fig). The best performance occurred with

100-year monthly data when cross-map correlation was required to increase with library

length (S4C Fig). Thus, the independence of two strains will generally be detected as long as

they experience imperfectly correlated noise.

We next considered the problem of identifying two ecologically distinct strains (β1 6¼ β2)

when one strain strongly drives the other (σ12 = 1) and its dynamics resemble the seasonal

driver. In this case, even with perfectly correlated process noise, correct interactions are consis-

tently inferred (S5 Fig). Thus, we conclude that the presence of noise, even highly correlated

noise, can help distinguish causality between coupled, synchronized variables [14]. It is more
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difficult to distinguish non-interacting, dynamically equivalent variables. In the latter case,

noise has inconsistent effects on causal inference, although Criterion 2 may perform much bet-

ter than Criterion 1. These results at least hold for “modest” noise (η = 0.01): as shown earlier,

higher levels hurt performance (Fig 4).

Fig 4. Interactions detected as a function of process noise and the strength of interaction (C2!C1) and

representative time series. Heat maps show the fraction of 100 replicates significant for each inferred interaction for

different parameter combinations. A maximum, positive cross-map correlation ρ at a negative lag indicated a causal

interaction. Each replicate used 100 years of monthly incidence.

doi:10.1371/journal.pone.0169050.g004

Fig 3. Shared frequency spectra predict probability of inferred interaction. Points show the maximum cross-spectral

densities of strains 1 and 2 plotted against the p-values for C1! C2 for 1000 years of annual data. In all replicates, C1

never actually drives C2. Point color indicates the strength of C2! C1 (σ12), and point size indicates the standard deviation

of the process noise (η) on transmission rates.

doi:10.1371/journal.pone.0169050.g003
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Transient dynamics

CCM is optimized for dynamics that have converged to a deterministic attractor. Directional

parameter changes in time and large perturbations can prevent effective cross-mapping

because the method requires a consistent mapping between system states as well as sufficient

coverage of state space by the data. We evaluated the impact of both of these types of transient

dynamics on causal inference, using a simple example of each as proof of principle. We again

used very long time series to give the method the best chance to work.

In the first test, we identified two sets of parameter values where CCM was successful under

Criterion 2 (intermediate interaction strength, σ21 = 0.5; seasonal forcing, � = 0.1; process

noise, η = 0.01; and transmission rates β1 of 0.30 (Fig 5A) and 0.32 (Fig 5B)). We tested CCM

Fig 5. Incorrect inference with changing transmission rate. Example time series for testing transient dynamics. Each

time series contained 100 years of monthly incidence data. The transmission rate β1 for the driven strain C1 was fixed at β1

= 0.30 (A) and β1 = 0.32 (B), and varied linearly over time between the two values (C). The transient time series yields high

false positive and false negative rates under CCM. Interaction strength was σ21 = 0.5, process noise was η = 0.01, and

seasonal forcing was � = 0.

doi:10.1371/journal.pone.0169050.g005
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on simulations with the parameter values fixed and then with the transmission rate β1 varying

linearly over time betwen the two values. All three tests used 100 years of monthly incidence.

Of 100 replicates, with β1 fixed at 0.30, CCM failed to detect an interaction 5 times, and never

falsely detected an absent interaction. With β1 fixed at 0.32, there were 12 false negatives and 1

false positive. When β1 varied from 0.30 to 0.32, error rates increased: there were 29 false nega-

tives and 44 false positives. Transient dynamics due to a linear change in a system parameter

can thus lead to incorrect causal inference even when causal inference is successful before and

after the change.

In the second test, we began simulations at random initial conditions far from equilibrium

and applied CCM to the first 100 years of monthly incidence. When strain 2 weakly drives

strain 1 (σ12 = 0.5), causal inference is compromised, even when process noise is low (η = 0.01;

S7 Fig). In 100 simulations of this scenario, the correct interaction (strain 2 driving strain 1)

was always detected after transients had passed, but it was detected in only 19 of 100 simula-

tions that included transients. Furthermore, a reverse interaction (strain 1 driving 2) was

incorrectly detected in 21 of 100 simulations. The method thus performed worse than chance

in identifying interactions that were present, and it also regularly predicted nonexistent

interactions.

Application to childhood infections

Given the apparent success of CCM under Criterion 2 (negative cross-map lag) with two

strains, little noise near the attractor, and 1000 years of observations, we investigated whether

the method might shed light on the historic dynamics of childhood infections in the pre-vac-

cine era. Time series analyses have suggested that historically common childhood pathogens

may have competed with or facilitated one another [28, 29]. We obtained the weekly incidence

of six reportable infections in New York City from intermittent periods spanning 1906 to 1953

[30] (Fig 6A). Six of 30 pairwise interactions were significant at the p< 0.05 level, not correct-

ing for multiple tests (Fig 6C). Polio drove mumps and varicella, scarlet fever drove mumps

and polio, and varicella and pertussis drove measles. Typical cross-map lags occurred at one to

three years (S8 Fig). The inferred interactions were identical if we required that the cross-map

correlation ρ be increasing and not merely positive.

Although we specifically chose infectious diseases not subject to major public health inter-

ventions in the sampling period, it is possible that the New York data contain noise and tran-

sient dynamics. To the check robustness of the conclusions, we analyzed analogous time series

from Chicago from the same period (Fig 6B). Completely different interactions appeared (Fig

6C). Not correcting for multiple tests, pertussis drove scarlet fever and varicella; accepting

marginally significant negative lags (p = 0.055), polio drove measles. In these cases, the maxi-

mum cross-map correlation ρ was not only positive but also increased at negative lag. Requir-

ing that ρ only be positive at negative lag, polio also drove pertussis, measles drove mumps and

varicella, and mumps drove scarlet fever. Except in one case, all negative lags occurred at more

than one year (S9 Fig). Thus, no consistent interactions appeared in epidemiological time

series of two major, and possibly dynamically coupled, cities.

To investigate the possibility that our method of attractor reconstruction might be unduly

sensitive to noise and transient dynamics, we repeated the procedure with a method based on

random projections [23]. Once again, no interactions were common to both cities (Fig 6D).

Furthermore, only one of the original eight interactions from the first reconstruction method

reappeared with random projection (two of eight reappeared if disregarding the city), and two

interactions changed direction (three if disregarding the city). Both reconstruction methods

selected similar lags (S10 and S11 Figs).
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Fig 6. Historical childhood infections in New York City and Chicago and inferred interactions from two

reconstruction methods. Time series show weekly incidence of infections per 1000 inhabitants of New York City (A)

and Chicago (B). Delay-embeddings were constructed by maximizing the univariate correlation (C) or through a random

projection method (D) Arrows indicate the inferred interactions from the New York (blue) and Chicago (red) time series

under Criterion 2 (negative cross-map lag).

doi:10.1371/journal.pone.0169050.g006
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Discussion

CCM is, in theory, a computationally efficient alternative to mechanistic modeling for causal

inference in systems that are deterministic, unchanging, and perfectly observed. By evaluating

properties of reconstructed dynamics in state space, it sidesteps any need to formulate and fit

what are often inaccurate mathematical models. In current practice, CCM appears an unstable

basis for inference in natural systems. We simulated two interacting strains and found that the

original CCM (Criterion 1) can lead to erroneous conclusions whenever strains fluctuated at

similar frequencies. A related approach intended to control for periodic behavior also fared

poorly [20]. Applying a criterion for causality that considers the temporal lag at which the

cross-map correlation is maximized [18], rather than the change in the cross-map correlation

with time series length L [17], avoids this problem. Inference with Criterion 2 is somewhat

robust to process noise, which can improve performance in some cases. But the method has

two problems, even with perfect and unrealistically abundant observations. First, it remains

susceptible to deviations from its core dynamical assumptions. “High” process noise and tran-

sient dynamics each diminish performance, leading to false positives and negatives. Although

some observed systems may follow deterministic dynamics that do not themselves change in

time, this assumption is often dubious in ecology. Second, even when the dynamical assump-

tions are upheld, seemingly equally justifiable methods of attractor reconstruction yield differ-

ent results. If the aim is to test hypotheses statistically, these problems raise doubts about the

suitability of methods based on state-space reconstruction in ecology.

Oscillations are common in nature, especially in infectious diseases, and suggest that one of

the criteria for causal inference (Criterion 1), including a method that tries to control for peri-

odic behavior, could routinely mislead. Climatic and seasonal cycles, driven by such factors as

school terms, El Niño, and absolute humidity, pervade the dynamics of many pathogens and

influence the timing of epidemics [5, 6, 31–33]. Infectious diseases can also exhibit fluctuations

in the absence of external forcing. These fluctuations arise from transient damped oscillations

or from noise, which induces fluctuations on characteristic time scales and can interact with

seasonal drivers to generate complex patterns [34–37]. Consumer-resource interactions [38–

40] and patchy populations [41, 42] demonstrate similar behavior. In systems with synchro-

nized dynamics, the only demonstrated reliable criterion for causal inference is a negative

cross-map lag [18].

Assuming the stronger criterion for causality [18], under what conditions might we con-

sider this method “safe”? We have shown that departures from a fixed attractor are a problem.

These departures constitute different forms of transient dynamics. From a modeling perspec-

tive, we could describe them as arising from initial conditions, process noise, demographic sto-

chasticity, or a change in the underlying attractor due to a secular change in a parameter. In

our system, a�5% standard deviation in the transmission rate generated appreciable false pos-

itives. Is this high or low? In small populations, such variation could arise from the direct

effects of demographic stochasticity, and in large populations, it could arise indirectly from the

interaction of demographic stochasticity with nonlinear components [34, 43]. Although deter-

ministic skeletons can help estimate the amount of noise present, if the true skeleton is

unknown, estimates are sensitive to the approximating statistical functions [44]. More impor-

tantly, the existence of transient dynamics in a time series indicates insufficient observations.

There is furthermore no guarantee any natural system will reach an attractor before going

extinct or that the system’s dynamics themselves do not evolve [40].

If an ecologist were confident that observed dynamics reflected dynamics near a fixed,

deterministic attractor (e.g., in a simple, closed system), uncertainties in the methodology of

attractor reconstruction still suggest caution. We tested four different methods of selecting the
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lag-embedding. Even near an attractor, they gave different results (S2 Fig). Decades of research

on methods of attractor reconstruction show the continued difficulty of justifying a particular

approach [23, 26, 27, 45, 46]. Reconstructions from unknown systems thus currently run the

risk of being ad hoc and compromising causal inference. The statistics for evaluating cross-

map correlations also deserve attention. We bootstrapped and attempted to validate

approaches empirically with simulated data, but the methods are not rigorously grounded in a

probabilistic framework such as those common to mechanistic modeling [47]. Extending the

approach to explicitly link nonlinear dynamics with process and observation noise in a proba-

bilistic framework has the potential to put the method on a sounder footing.

Of the many factors that might explain the contrasting results for childhood infections in

two cities, biological explanations thus seem the least likely. Although there is evidence that

measles increases suceptibility to other pathogens [28], and that measles and pertussis compete

for susceptible hosts [29], the CCM analyses did not consistently support either hypothesis. It

is difficult to imagine a parsimonious mechanism by which the inferred interactions might be

plausible. Several of the putative “driving” pathogens in fact infected children at older ages

than the “driven” pathogens during this period (e.g., varicella and measles infected children

6–8 y old and 5–6 y old, respectively; polio and mumps infected children 12–17 y old and 6–7

y old, respectively) [48]. Different rates or modes of transmission for each disease in each city

might lead to varying patterns of infection in different subpopulations, which would affect

interactions. We know of no support for this hypothesis. In contrast, we cannot rule out tran-

sient dynamics, which could arise from changes in birth rates, mobility, and behavior during

this period [49]. Process noise, implying the omission of important state variables and poor

resolution of the underlying deterministic attractor, could also affect performance. Errors in

attractor reconstruction are another possibility. Except for pertussis, different delay-embed-

dings were selected for each pathogen in each city, and an alternative method of attractor

reconstruction yielded even more divergent results. Finally, we cannot account for the effects

of short time series and measurement error. We conclude that the inferred interactions are

untrustworthy.

Detecting causality remains challenging in the face of real data from a complex world. With

limited data and complex dynamics, mechanistic models are always misspecified to some

extent, and the use of other lines of evidence to motivate the choice of model structure is neces-

sary for good inference [8–12]. But even an accurate mechanistic model that reproduces

observed patterns well cannot prove causality. Controlled manipulative experiments, which

are notoriously hard to conduct in large complex systems, are necessary. Global systems can

never sustain this high standard, but randomization and replication are sometimes possible on

smaller scales [50–52]. With diseases like the ones we invesigate here, manipulations (e.g., vac-

cination) are seldom feasible. This has led epidemiologists and disease ecologists to resort to a

mishmash of heuristics, frequently based on observational data, for causal inference [53].

Prediction, in contrast, is epistemologically straightforward and useful without knowledge

of the true underlying system. It does not require deciding a priori what the best method is

(model-based, model-free, or hybrid): the proof is in the prediction. Model-free prediction

methods, including those based on state-space reconstruction [20, 54, 55], nonetheless share

limitations with CCM. The power of these methods is limited by the dynamical coverage of

the data. If past observations cover only a small part of state space (a subset of the attractor),

model-free methods have no way to anticipate qualitative changes in dynamics. Secular

changes in parameters that change the shape of the attractor pose a similar problem. These

situations might cause previously excellent predictive models to fail without warning. Good

mechanistic models, however, not only predict novel dynamics under these circumstances

but also use them to inform biology. Models that include immune boosting and waning, for
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instance, can extrapolate contrasting patterns of pertussis activity in different locations and

periods [56, 57]. Models that calculate the fraction of the population susceptible to measles can

explain seemingly sudden changes in disease dynamics from changes in birth rates [6] and per-

sistently chaotic dynamics, which paradoxically suggest intrinsic limitations to predictability

[43]. It will be interesting to see how well mechanistic models can infer correct interactions in

complex nonlinear dynamical systems, including our examples involving transient dynamics

and childhood infections in New York and Chicago. In theory, predictive and mechanistic

models can converge if the predictive factors mimic the hypothesized state variables over time

and the data include a large range of possible dynamics.

Beyond its statistical practicalities, the prospect of applying state-space reconstruction to

causal inference touches on unsettled questions in ecology. Are systems approximately deter-

ministic and settled on static attractors, and how can we tell? Although CCM does not require

that dynamics follow an identifiable model, it does require sufficient coverage of a fixed state-

space [58]. We propose that this position is justifiable only in systems that are already well-

understood (e.g., closed, non-evolving microcosms at steady state), but in these cases, causality

is typically known.

Methods

Dynamical model

We modeled the dynamics of two pathogen strains under variable amounts of competition

and process noise (Fig 7). The state variables in the system are the hosts’ statuses with respect

to each strain [59]. Hosts can be susceptible (Si), infected (Ii), or recovered and immune (Ri) to

each strain i. The deterministic model has the form:

dSi
dt
¼ m � Si

X

j

sijbjðtÞIj � mSi ð1Þ

dIi
dt
¼ biðtÞSiIi � ðni þ mÞIi ð2Þ

dRi
dt
¼ niIi þ Si

X

j6¼i

sijbjðtÞIj � mRi ð3Þ

biðtÞ ¼ bi 1þ ε sin
2p

c
ðt � cÞ

� �� �

ð4Þ

Si þ Ii þ Ri ¼ 1 ð5Þ

Hosts enter the susceptible class for strain i through the birth (and death) rate μ. They leave

through infection with strain i (Si! Ii), infection with strain j that elicits cross-immunity to

i (Si! Ri), or death. The per capita transmission rate, βi(t), depends on a mean strain-specific

rate, βi, and a forcing function that is shared by all strains. This function has a sinusoidal form

and represents a shared common driver, such as seasonal changes in susceptibility or transmis-

sion from school-term forcing. The forcing function is defined by a shared period ψ and

amplitude �. Infected hosts recover at rate νi (Ii! Ri). The immune host class grows through

these recoveries and also from the fraction of susceptible hosts, Si, contacting infected hosts, Ij,
who develop cross-immunity, σij (0� σij� 1). Immunity of this form has been described as
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“polarizing” because σij of hosts Si contacting infecteds Ij become completely immune (non-

susceptible) to strain i, while 1 − σij remain completely susceptible. This cross-immunity is a

form of competition that determines the directions of interaction between strains: when

σij> 0, strain j drives strain i. We assume σii = 1: hosts acquire perfect immunity to a strain

from which they have recovered (Table 1).

Process noise on the per capita transmission rate produces stochastic differential equations

in Ito form:

dSi ¼ ½m � mSi� dt � Si
X

j

sijbjðtÞIj½dt þ ZdWt;j� ð6Þ

Fig 7. Compartmental representation of strain-competition model. Hosts are susceptible (S), infected/infective (I), or recovered (R) with respect to

each strain. Hosts move from S to I based on a seasonally varying transmission rate, and from I to R at a constant recovery rate. Competition takes place

through cross-immunity, which is implemented by having hosts skip the infected state for one strain with some probability if they are already infected with

another strain.

doi:10.1371/journal.pone.0169050.g007

Table 1. Default parameter values.

Symbol Description Default value

β1, β2 transmission rates 0.3, 0.25 d−1

σ12 immunity to strain 1 from infection with 2 see text

σ21 immunity to strain 2 from infection with 1 0

σii homologous immunity for strain i 1

μ birth and death rate 1/30 y−1

ν recovery rate 0.2 d−1

� amplitude of seasonal forcing 0.1

ψ period of seasonal forcing 360 d

η standard deviation of process noise see text

S(0) initial fraction susceptible see text

I(0) initial fraction infected see text

Δtobs incidence and sampling interval 30 days

doi:10.1371/journal.pone.0169050.t001
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dIi ¼ biðtÞSiIi½dt þ Z dWt;i� � ½ni þ m�Iidt ð7Þ

dRi ¼ ½niIi � mRi� dt þ Si
X

j6¼i

sijbjðtÞIj½dt þ Z dWt;j� ð8Þ

where theWi are independent Wiener processes, one for each pathogen i, and η represents the

standard deviation of the noise as a fraction of the deterministic transmission rate.

The observations consist of the number of new cases or incidence over some interval.

Cumulative cases ci at time t were obtained by summing the Si! Ii transitions from the start

of the simulation through time t. The incidence over times t − Δtobs to t, written as C(t) for

convenience, is given by the difference in cumulative cases:

CiðtÞ ¼ ciðt2Þ � ciðt1Þ ð9Þ

dci ¼ biðtÞSiIi½dt þ Z dWt;i� ð10Þ

Simulation

The equations were solved numerically using the Euler-Maruyama method with a fixed step

size. The step size was chosen to be less than the smallest within-run harmonic mean step size

across deterministic, adaptive-step size pilot runs performed across the range of parameter

space being studied. When numerical errors arose during transients, the step size was reduced

further until the numerical issues disappeared.

Except where noted, the model was simulated with random initial conditions, and 1000

years of monthly observations were obtained from stochastic fluctuations around the deter-

ministic attractor. The use of random initial conditions minimizes arbitrary bias in the simu-

lated dynamics. From visual inspection of dynamics, the transient phase lasted much less than

1000 years. Time series were obtained from years 2000–3000.

Cross-mapping

Convergent cross-mapping (CCM) is a method for inferring causality in deterministic systems

via delay embedding [17]. Takens’ theorem holds that, for an E-dimensional system, the

attractor for the state space represented by delay vectors in a single variable X, x(t) = {X(t),
X(t − τ1), X(t − τ2), . . ., X(t − τE−1)}, is topologically equivalent to the E-dimensional attractor

for variables X1, . . ., XE. In the limit of infinite data, the full E-dimensional attractor can be

reconstructed perfectly from a one-dimensional time series. Therefore, because x(t) contains

complete information about the system’s dynamics, if Y is part of the same system and thus

causally drives X, observations of x(t)! Y(t − ℓ), for a fixed lag ℓ, can be used to reconstruct

unobserved values of Y(t) from new observations of x(t) (Fig 1).

To evaluate whether Y drives X, we construct “libraries” of observations of x(t)! y(t − ℓ).
For a particular library, we treat each value of Y(t) as unobserved, and reconstruct its value

Ŷ ðtÞ by identifying the E + 1 nearest neighbors to x(t) in the library, x(ti), for t1, . . ., tE+1, and

calculating Ŷ ¼
PEþ1

i¼1
wiYðtiÞ. In order to avoid predictability due to system autocorrelation

rather than dynamical coupling, neighbors are restricted to be separated in time by at least

three times the delay at which the autocorrelation drops below 1/e. Weights are calculated
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from the Euclidean distances di between x(t) and x(ti), with wi proportional to exp � di
d0

� �
,

where d0 is the distance to the nearest neighbor [17].

The cross-map correlation ρmeasures how well values of Y can be reconstructed from val-

ues of X, and is defined as the Pearson correlation coefficient between reconstructed values

Ŷ ðtÞ and actual values Y(t) across the entire time series [18]. Given library size L and lag ℓ, we

generate a distribution of cross-map correlations ρ by bootstrap-sampling libraries mapping

delay vectors x(t) to values Y(t − ℓ) and then computing the cross-map correlation for each

sampled library. We use the bootstrap distribution of cross-map correlation as the basis for sta-

tistical criteria for causality.

Criteria for causality

We infer causality using two primary criteria involving the cross-map correlation ρ [17, 18]:

(1) whether ρ increases with L for a fixed lag ℓ; (2) whether ρ is positive and maximized at a

negative temporal lag ℓ. We also consider a weaker alternative to the first criterion, testing sim-

ply whether ρ is positive, and a method intended to control for seasonal behavior based on ran-

domizing seasonal anomalies [20].

Criterion 1. If Y drives X, then increasing the library size L should improve predictions of

x(t) as measured by ρ [17] for fixed lag ℓ = 0. The first criterion tests for this increase in ρ with

L. We calculate ρ at Lmin = E + 2, the smallest library that will contain E + 1 nearest neighbors

for delay vectors x(t), and at Lmax, the total number of delay vectors x(t) in the time series. An

increase in ρ is indicated by a lack of overlap between the distributions at Lmin = E + 2, the

smallest library that will have E + 1 neighbors for most points, and Lmax, the largest possible

library given the time-series length and delay embedding parameters E and τ.
Criterion 2. If Y strongly drives X, cross-map correlation at ℓ = 0 may yield a false positive

when testing for X driving Y, but because information is transferred forwards in time from Y
to X, the cross-map correlation should be maximized at a negative lag ℓ [18]. The second crite-

rion simply requires that, to infer that Y drives X, the cross-map correlation ρ be maximized at

a negative cross-map lag ℓ and be positive. In other words, not only must X contain informa-

tion about Y, but this information must be greatest for past states of Y, reflecting the correct

temporal direction for causality.

Statistical tests for causality criteria

The theory underlying CCM assumes completely deterministic interactions and infinite

data. If Y drives X in the absence of noise, the correlation ρ between the reconstructed and

observed states of Y should converge to one with infinite samples of X. In practice, if X and

Y share a complex (e.g., chaotic) attractor, time series of X may not be long enough to see

convergence [17].

The presence of observation and/or process noise violates the deterministic assumptions

and prevents ρ from ever reaching 1. Nonetheless, a detectable increase in the correlation ρ
with the library length L (for Criterion 1), or a maximum and positive correlation at negative

lag (for Criterion 2), may suffice to demonstrate that X drives Y in natural systems. It is

important to note that we have no formal theoretical justification for such statistical

heuristics.

Our statistics are based on the distributions obtained from bootstrapping. For Criterion 1,

which tests for an increase in ρ(L), we perform a nonparametric test of whether ρ(Lmax),

obtained at the largest library length is greater than ρ(Lmin), obtained at the smallest libary

length. The p-value for this test is calculated as the probability that ρ(Lmax) is not greater than
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ρ(Lmin), and calculate the p-value directly from the sampled distributions (the fraction of boot-

straps in which ρ(Lmax)< ρ(Lmin)). We also consider a weaker alternative, testing simply

whether ρ is significantly positive.

We also test a proposed method for controlling for periodic behavior by comparing ρ to a

null distribution based on randomized seasonal anomalies [20]. Specifically, we calculate the

mean for each time point within a year (the forcing period) across all years, and the difference

(anomaly) from that mean at each time point. We construct surrogate time series by random-

izing the sequence of anomalies across all time points and adding them to the seasonal means.

The p-value is calculated as the probability that the cross-map correlation ρ for the original

time series is less than ρi for a random surrogate time series i.
For Criterion 2, which tests whether the best cross-map lag is negative and thus indicates

the correct causal direction in time, we perform a similar nonparametric test. We identify the

negative cross-map lag ℓ(−) with the highest median correlation, ρ(ℓ(−)) as well as the nonnega-

tive cross-map lag ℓ(0+) with the highest median correlation. The p-value for this test is calcu-

lated as the probability that ρ(ℓ(−)) is not greater than ρ(ℓ(0+)).

We use a significance threshold of p< 0.05 for all tests.

Choice of delay and embedding dimension

The theory underlying attractor reconstruction works with any E-dimensional projection of a

one-dimensional time series, which can be generated in many ways from lags of the time

series. In simulated, deterministic models, E can be known perfectly, but the best projection

may be system-dependent. In systems with process noise, unknown dynamics, and/or finite

observations, there is no clearly superior method to select the appropriate projection [26, 27,

45, 60–62].

We accommodated this uncertainty by using four different methods. Two methods infer

the best delay-embedding for each interaction by maximizing the ability of one variable, the

driven variable, to predict itself (akin to nonlinear forecasting [46, 63]). The third method

instead uses the delay-embedding that maximizes the cross-mapping correlation ρ for each

interaction. Three of the four methods use uniform embeddings, identifying E and a fixed

delay τ, and the other uses a nonuniform embedding, identifying a series of specific delays τ1,

τ2, etc., whose length determines E.

1. Univariate prediction method: By default, for each causal interaction (Ci! Cj), E and τ are

chosen to maximize the one-step-ahead univariate prediction ρ at Lmax for the driven vari-

able (Cj) based on its own time series.

2. Maximum cross-correlation method: As an alternative, E and τ are chosen to maximize the

mean cross-map correlation ρ at Lmax for each causal interaction being tested, for each time

series.

3. Random projection method: A recently proposed method based on random projection of

delay coordinates sidesteps the problem of choosing optimal delays [23]. Instead, for a

given E, all delays up to a maximum delay τmax are projected onto an E-dimensional vector

via multiplication by a random projection matrix. E is chosen to maximize the cross-map

correlation ρ.

4. Nonuniform method: For each driven variable Cj, starting with τ0 = 0, additional delays τ1,

τ2, . . . are chosen iteratively to maximize the directional derivative to nearest neighbors

when the new delay is added [26]. The delays are bounded by the optimal uniform
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embedding based on a cost function that penalizes irrelevant information [27]. This method

can be seen as a nonuniform extension of the method of false nearest neighbors [64].

Code

Code implementing the state-space reconstruction methods is publicly available at https://

github.com/cobeylab/pyembedding. The complete code for the analysis and figures is publicly

available at https://github.com/cobeylab/causality_manuscript; individual analyses include ref-

erences to the Git commit version identifier in the ‘pyembedding’ repository. The simulated

time series on which the analyses were performed are available from the authors on request.

Data on childhood infections

Time series were obtained from L2-level data maintained by Project Tycho [30]. All available

cases of measles, mumps, pertussis, polio, scarlet fever, and varicella were obtained from the

first week of 1906 through the last week of 1953 for New York City and Chicago. Pertussis data

were terminated in the 26th week of 1948 to limit the influence of the recently introduced per-

tussis vaccine. Incidence was calculated by dividing weekly cases by a spline fit to each city’s

population size, as reported by the U.S. Census.

Supporting Information

S1 Fig. Interactions detected as a function of process noise and the strength of interaction

(C2! C1) for different types of data. Heat maps show the fraction of 100 replicates signifi-

cant for each inferred interaction for different parameter combinations. A significant increase

in cross-map correlation ρ with library length L indicated a causal interaction. Each analysis is

based on 1000 years of data. (A) Annual incidence, (B) prevalence strobed annually, (C) first-

differenced annual incidence, and (D) monthly incidence without seasonal forcing.

(PDF)

S2 Fig. Interactions detected as a function of process noise and the strength of interaction

(C2! C1) for different delay-embedding methods. Heat maps show the fraction of 100 repli-

cates significant for each inferred interaction for different parameter combinations. A significant

increase in cross-map correlation ρwith library length L indicated a causal interaction. Each

analysis is based on 100 years of monthly data. Delay-embeddings were chosen by (A) nonuni-

form embedding, (B) random projection, or (C) maximizing the cross-map correlation ρ.

(PDF)

S3 Fig. Interactions detected for different types of data. Heat maps show the fraction of 100

replicates significant for each inferred interaction for different parameter combinations. A

maximum cross-map correlation ρ at a negative lag was required for inferring causal interac-

tion. (A) 1000 years of annual incidence, requiring that the maximum ρ be positive. (B) 100

years of monthly incidence, requiring that the maximum ρ be increasing. (C) 100 years of

monthly incidence with identical strains (β1 = β2 = 0.3), requiring that maximum ρ be positive.

(PDF)

S4 Fig. Interactions detected between identical strains with correlated process noise. Heat

maps show the fraction of 100 replicates significant for each inferred interaction. A maximum

cross-map correlation ρ at a negative lag was required for inferring causal interaction. 100

years of monthly (A) and 1000 years of annual (B) incidence, requiring that the maximum ρ be

positive. (C) 100 years of monthly incidence, requiring that maximum ρ be increasing.

(PDF)
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S5 Fig. Interactions detected between distinct strains with correlated process noise. Heat

maps show the fraction of 100 replicates significant for each inferred interaction. A maximum

cross-map correlation ρ at a negative lag and ρ> 0 were required for inferring causal interac-

tion. Results are shown for 5, 10, 25, 50, and 100 years of monthly incidence.

(PDF)

S6 Fig. Interactions detected using null surrogates with randomized seasonal anomalies.

Heat maps show the fraction of 100 replicates significant for each inferred interaction in simu-

lations using distinct strains and seasonal forcing. (A) Surrogate time series generated for puta-

tive cause and putative effect. (B) Surrogate time series generated for putative cause only.

(PDF)

S7 Fig. Incorrect inference with far-from-attractor dynamics. Cross-map correlations at dif-

ferent lags for a sample 100-year time series with monthly sampling (inset). Lines represent

bootstrap medians; gray ribbons represent the middle 95% of the bootstrap distribution.

Although C2 drives C1 (σ12 = 0.5, σ21 = 0), the maximum cross-correlation ρ for C1 cross-

mapped to C2 occurs at a positive lag, and the reverse at a negative lag, leading to the conclu-

sion that C1 drives C2, and C2 does not drive C1. Sample dynamics include process noise

(η = 0.01) but no seasonal forcing (� = 0).

(PDF)

S8 Fig. Cross-map lags for New York with default (univariate) embedding.

(PDF)

S9 Fig. Cross-map lags for Chicago with default (univariate) embedding.

(PDF)

S10 Fig. Cross-map lags for New York with embedding based on random projection.

(PDF)

S11 Fig. Cross-map lags for Chicago with embedding based on random projection.

(PDF)
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