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Abstract

This paper introduces a bibliometric, citation network-based method for assessing the social

validation of novel research, and applies this method to the development of high-throughput

toxicology research at the US Environmental Protection Agency. Social validation refers to

the acceptance of novel research methods by a relevant scientific community; it is formally

independent of the technical validation of methods, and is frequently studied in history, phi-

losophy, and social studies of science using qualitative methods. The quantitative methods

introduced here find that high-throughput toxicology methods are spread throughout a large

and well-connected research community, which suggests high social validation. Further

assessment of social validation involving mixed qualitative and quantitative methods are dis-

cussed in the conclusion.

Introduction

The validation of novel scientific methods takes place at two levels. On the first level, or formal

validation, methods are validated by showing that they are theoretically well-supported, their

results can be replicated, they agree with established methods, and so on. The second level, or

social validation, is the acceptance of methods by the relevant scientific community. Ideally,

high formal validation would be both necessary and sufficient for novel methods to be broadly

accepted by the scientific community. However, these two levels can operate independently. A

novel method can have high formal validation when performed by its developers, but fail to be

generally accepted by the scientific community. This might happen because the novel method

is difficult to use, requires equipment or materials that are expensive or otherwise difficult to

obtain, is very slow, or depends on assumptions that are not widely accepted or mathematical

techniques that are not widely understood. Conversely, a method can become so widely

adopted as the standard and expected technique in the field that it is applied and in ways that

significantly weaken its formal validity. For example, [1] argues that this has happened with

statistical hypothesis testing.

Social validation has been frequently studied in science and technology studies [STS] and

philosophy of science for decades [2–5], primarily using qualitative methods. Fields such as

bibliometrics, scientometrics, and meta-research [6] study scientific practice quantitatively.

However, these fields either have not directly taken up questions of research validation (as in
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citation-based ranking studies) or have focused on formal validation (as in replicability stud-

ies). ([7] is a notable exception to this pattern.) This paper presents a quantitative method to

study social validation using a citation network. As an illustration, the method is applied to the

US Environmental Protection Agency’s high-throughput toxicology [HTT] research.

The US Environmental Protection Agency’s Chemical Safety for Sustainability [CSS] pro-

gram is developing HTT data sources and analytical techniques to address limited toxicity and

exposure data for tens of thousands of commercial chemicals [8]. Traditional toxicology meth-

ods focus on directly observable macrophysiological effects (e.g., tumors, death) in whole

organisms (in vivo studies). By contrast, HTT methods focus on micro-level interactions (e.g.,

whether a chemical activates a certain cellular pathway) and use systems biology and computa-

tional simulations (in vitro and in silico studies).

For some particular applications, HTT methods have been shown to have degrees of formal

validation comparable to those of traditional, in vivo methods [9]. In other cases the formal

validation of currently-existing HTT methods is low [10, 11]. There has been no previous sys-

tematic study of the social validation of these methods.

Methods

Conceptual Model

Citation networks have been used in bibliometrics since the 1970s, and today are a standard

tool of the field [12–16]. Fig 1 is a conceptual model of how citation networks can be used to

quantitatively analyze social validation. In this network, nodes (also called vertices, and occa-

sionally dots or points) are publications, and two publications are linked with an edge if one

publication cites the other. Two communities—subsets of the entire network, indicated by

blue and red coloring of the nodes—have been identified using a standard algorithm [17].

There are dense connections within these two communities, but relatively few connections

between them; in other words, blue papers tend to cite other blue papers, and red papers tend

to cite other red papers, but relatively few blue papers cite red papers and vice versa. Low social

validation provides one possible explanation for this network structure; perhaps researchers

publishing in the red community are using methods that are not generally accepted by their

peers in the blue community.

The strength of a partition—a division of a network into mutually exclusive and jointly

exhaustive communities—can be quantified using the modularity statistic [17], defined as

Q ¼
Xk

i¼1

ei

m
�

di

2m

� �2
" #

;

where Q is the modularity statistic, i indexes the communities in a given partition of the net-

work (in Fig 1, k = 2), ei is the number of intracommunity edges in i (i.e., edges between two

members of i), di is the total degree of all nodes in i, and m is the total number of edges in the

network. Q is meant to capture the thought that a well-defined community has more intra-

community edges (corresponding to the term ei/m) than would be expected in a random

rewiring of the network (corresponding to the term (di/[2m])2).

Over all partitions of all networks, the value of Q ranges between � 1

2
and 1, where greater

values of Q are interpreted as a sharper division of the network into subcommunities [17].

However, on any given network, the maximum and minimum values of Q across all possible

partitions can be a much smaller subset of this interval. For example, the partition in Fig 1

maximizes Q for this network at 0.16. Many algorithms for community detection try to iden-

tify partitions that maximize the value of Q. However, [18] shows that modularity optimization
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can be noisy and miss “intuitively modular structures,” especially in large networks. For

instance, consider a nearly disconnected network built by connecting two regular graphs of

degree 4, G1, G2, with a single edge (Fig 2). Suppose e1� e2�m, and consider the formula for

Q on the partition corresponding to these connected components. Since
e1

m �
d1

2m � 0, in the

formula for Q the term for G1 is approximately 0. And since
e2

m �
d2

m � 1, the term for G2 is also

approximately 0. Thus, while “intuitively” the partition of the network into G1 and G2 should

have high modularity, Q goes to 0 as the relative sizes of the components increase, and thus

this partition is likely to be missed by a modularity optimization algorithm.

To avoid this problem, an insularity statistic is also calculated. Given a community i of a

partition s, we define insularity as

Si ¼
ei

mi
;

where Si is the insularity statistic, ei is the number of intracommunity edges, and mi is the

Fig 1. Hypothetical citation network indicating low social validation. Nodes represent publications, e.g.,

journal articles; two publications are linked if one publication cites the other. While the network is connected,

red and blue nodes form distinct communities with only a few ties between them, suggesting the methods

used by authors of the red publications could have low social validation.

doi:10.1371/journal.pone.0168597.g001
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number of community edges, i.e., edges with at least one end in the community. In the exam-

ple of G1, G2 connected by a single edge, insularities are Si ¼
ei

eiþ1
� 1 as ei increases.

Informally, insularity is negatively associated with the ratio of “surface area” to “volume”

(when insularity is high, this ratio is low). With a relatively small community in a large net-

work, high insularity can indicate that the community is isolated from the rest of the network.

At the same time, with a relatively large community, high insularity can simply reflect the large

“volume”; see Fig 3. Consider a network with n� 1 nodes and uniform degree d, and a com-

munity comprising every node except for one; this community will have S ¼ dðn� 1Þ=2

dn=2
¼ n� 1

n � 1.

These points suggest that Q and S can be highly informative, but must be interpreted with

care.

Network Construction

The citation network is constructed iteratively using metadata retrieved from Elsevier Scopus

using the Scopus API [application programming interface] and custom Python scripts. A con-

ceptual model for the construction process is given in Fig 4. Complete source code and further

discussion of the network construction scripts is available at [19], and a compressed GraphML

file containing the citation network used in the case study is available at [20].

[16] finds that “bibliometric data from [Web of Science] or Scopus [are] adequate to con-

duct research evaluations” in physical and biological science ([16] p4), but that Google Scholar

contains a significant number of errors, and that coverage of Web of Science and Scopus can

be limited for other research fields. PubMed has limited bibliometric data, and has limited cov-

erage outside of biomedical research. Both Web of Science and Scopus have APIs, which can

be used to efficiently search and retrieve large amounts of data. All together, both Web of Sci-

ence and Scopus are appropriate sources of data for this kind of analysis. However, I was

unable to find useful documentation for the Web of Science API; by contrast, Scopus’ API is

Fig 2. Modularity optimization can miss “intuitively modular structures”. Both subfigures show the same network, comprised of a

small subnet of 5 nodes with a single link to a large subnet of 1,000 nodes. A: The network as constructed; small subnet nodes are blue and

large subnet nodes are red. For this partition, Q� .005, Ssmall ¼
10

11
� :91, Slarge ¼

2000

2001
� :995. B: The result of a modularity-optimizing

community detection algorithm, with the two “communities” in yellow and green. Note that the algorithm completely misses the constructed

partition of small and large subnets. For this partition, Q� .156.

doi:10.1371/journal.pone.0168597.g002
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documented at http://dev.elsevier.com. For this purely practical reason, I chose to work with

Scopus here.

[16] describes two methods to construct a citation network for a given author: a forward

citation search on the author’s publications, and a backwards search for citations to the author

across all publications in the research database. Another common method is based on the bib-

liographies of every article published in a given journal (or set of journals) over a period of

time. The two methods described by [16] give a limited view of the relevant scientific commu-

nity; and the journal-based method will miss citations coming from outside of the predeter-

mined set of journals.

Given these limitations of previous methods for constructing a citation network, the

method developed here involves a novel, iterative construction. See Fig 4. Construction begins

with a set of given publications (in particular, a list of DOIs [digital object identifiers]). Given

these “core” publications, Scopus’ web interface is used to manually conduct a forward or

downstream citation search on the core set, retrieving every publication that cites a core

publication. These publications are designated “generation +1.” A set of Python scripts then

Fig 3. Insularity can be spuriously high with small subsets in much larger networks. A regular network

of degree 3 on 100 nodes is generated, and partitioned by selecting one node (blue) uniformly at random. The

insularity of the large subnet (red) is very high, S ¼ 147

150
¼ :98, but the modularity of the partition is extremely

small, Q� .0001.

doi:10.1371/journal.pone.0168597.g003
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automatically retrieves metadata for generation +1, including bibliography contents; the

papers cited by generation +1 become generation 0. Note that generation 0 should include

every core publication. The Python scripts then retrieve the metadata for generation 0, and the

papers cited by generation 0 form generation -1. The script included in the code repository

then retrieves the metadata for generation -1. However, in the use case below, generation -1

contained over two million papers. Given weekly caps on the number of requests that can be

sent to the Scopus API, retrieving the metadata for generation -1 would have taken several

months. Thus, for the use case below, metadata retrieval stopped at generation 0.

This construction approach is somewhat similar to the method used by [21] to construct

co-citation networks, which also involves a combination of forward and backward citation

searches. However, in their construction, the reference article (equivalent to the core

Fig 4. Conceptual model for the sequential construction of the citation network. A: Construction begins

with a set of given or “core” publications (black). In the use case discussed below, these are publications by

researchers in the CSS program. B: Downstream or forward citation search identifies other publications (red,

diagonal pattern) that cite the core set. These are designated “generation +1.” C: Automated backwards

citation search identifies publications (white and black) cited by the generation +1 publications. These are

designated “generation 0,” and include the core set. D: Automated backwards citation search identifies

publications (yellow, crosshatch pattern) cited by white and black publications, as “generation -1.”

doi:10.1371/journal.pone.0168597.g004
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publications) is connected to every node in the resulting network. This method is therefore

inappropriate to assessing social validation in terms of whether the articles of interest are iso-

lated within one part of the citation network.

After retrieving the metadata, a small sample of metadata entries is extracted, allowing the

analyst to manually check the quality of the metadata. The Python package graph-tool is

then used to construct, manipulate, analyze, and visualize the citation network [22]. Con-

nected components of the network are separated and analyzed as independent networks. For

analysts interested in coauthor networks—in which the nodes are authors and two nodes are

connected if, and only if, the two authors are listed as coauthors on at least one paper in the

dataset—the code in the repository also constructs these kinds of networks, though they are

not analyzed here. After analysis, copies of the networks are saved in gt and graphml for-

mats; gt is a compact, binary format supported only by graph-tool, while graphml is a

widely-supported xml-based format.

Analysis

As discussed above, the two key statistics, Q and S, need to be interpreted with some care. In

what follows, I refer to the partition of the citation network into core and non-core nodes as

the core partition. The core partition has values for Q and S, but it is not clear what these statis-

tics mean, taken in isolation. The analytical approach developed here places these statistics

into context using up to 8 different analyses, which apply 3 analytical methods across 3 differ-

ent networks.

Sampling Distributions. In the random sample method, Q and S are calculated for ran-

dom sets of nodes (each with the same size as the core set); in the noisy community detection

method, these statistics are calculated for binary partitions (that is, partitions with exactly

two communities) identified using a modularity-maximization method. (Community detec-

tion is discussed in more detail below.) For both of these methods, by iterating the construc-

tion of the partition several hundred times, I build sampling distributions for Q and S, then

calculate a p-value for the observed values of Q and S for the core partition against this sam-

pling distribution, asking “how frequently did values at least as extreme as the observed val-

ues occur?” Since the core set is known not to be constructed using a random sample or

modularity optimization, this p-value should not be interpreted as a likelihood in a hypothe-

sis test. But it can be used, as in a hypothesis test, as an indicator of the “distance” between

the core set and some hypothetical constructions. For example, p = .3 for the random sample

method might be interpreted as indicating that the core set is distributed as though it were a

random set of nodes, while p = .002 for the noisy communication detection method might be

interpreted as indicating that the core partition is not distributed as though it were a modu-

larity-maximizing partition.

These 2 sampling distribution-based analyses are applied to 3 different networks: the con-

structed citation network, as well as two reference networks from the high-energy physics and

theoretical physics communities of the arXiv online repository [23, 24]. Comparison to refer-

ence networks could allow us to detect unusual features of the constructed citation network.

These particular reference networks were chosen as publicly available and widely-used models

of citation networks.

Noisy and Stable Community Detection. In addition to the problems of missing intuitive

structure and returning spurious structure, modularity optimization can be highly noisy, in

the sense of producing dramatically different partitions of a given network with approximately

the same maximum modularity [18]. I therefore refer to this as noisy community detection.

(For a comprehensive review of community detection methods, see [25].)
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Given the problems with noisy community detection, in this paper it is not considered a

reliable way to identify structure in the citation network. However, noisy community detection

can still be considered a reliable way to discover the “modularity plateau” of partitions that

approximately maximize modularity. Comparing the modularity values for these partitions to

that of the core partition can tell us whether the core partition is within, or close to, that modu-

larity plateau. In graph-tool, noisy community detection is implemented by an algorithm

that attempts to optimize modularity using a statistical mechanics approach [26].

graph-tool also implements an alternative approach to community detection, referred

to as a stochastic blockmodel approach [27, 28]. A blockmodel is a generative model for net-

works: the model assumes a set of discrete blocks (that is, communities) and edge frequencies

within and between the blocks; a given network is generated from the model by randomly add-

ing edges according to the edge frequencies. Given a block set (that is, partition) b and network

G, model fit is calculated as the posterior probability pr(b|G) using Bayes’ theorem:

prðbjGÞ ¼
P

y
prðGjy; bÞprðy; bÞ

prðGÞ
;

where θ are other model parameters. Maximizing this posterior probability is equivalent to

minimizing the description length

S ¼ � lnprðGjy; bÞ � lnprðy; bÞ;

which can be interpreted information-theoretically as the amount of information required to

describe the network G given θ and b.

While this algorithm is not deterministic, the resulting values of Q and S do not vary

enough to apply the sampling distribution analysis. I therefore refer to it as stable community

detection. Instead of constructing a sampling distribution, a contingency table is used to com-

pare the communities detected by one run of this algorithm (set to produce a binary partition

with exactly two communities) against the core partition. Since there is no meaningful way to

compare the results of this algorithm when it is applied to different networks, this analytical

method was not used with the two physics reference networks.

Data Validation and Robustness Analysis

Like other online research databases, Scopus does not have complete coverage of all academic

journals and other publishing venues, and can potentially have errors in its individual records.

The network construction method introduces further possibilities for data error.

To validate the data, the scripts generate a tractable sample of 100 DOIs from the final data-

set. The analyst can then manually check key pieces of information, such as the number of bib-

liography entries, comparing the dataset to the publication version of record.

The modularity and insularity statistics depend on the network topology, which cannot eas-

ily be checked by examining a small number of individual records. However, two methods of

robustness analysis can be used. First, the analysis can be repeated under varying inclusion/

exclusion criteria. In the use case below, in the primary run, the analysis examined only publi-

cations dated 2006 or later; then in a secondary run the analysis was restricted to publications

dated 2011 or later. An alternative approach would randomly rewire a fraction of the edges in

the network, such as 10%, to simulate the effects of data errors on the network topology. This

approach would be more useful for smaller or less densely connected networks than the one

examined in the use case, since these networks will be more sensitive to rewiring.

Bibliometrics for Social Validation
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Text Analysis

Because network community detection is based purely on the topology of the network, the

resulting communities can be difficult to interpret. Similarly, the layouts used to visualize net-

works are generally based purely on network topology; while they may suggest communities

and other structures, they can also be difficult to interpret. Pairing network topology-based

analyses with text analysis might support meaningful interpretations of community member-

ships or other features of the network structure.

Different functions in the Scopus API return different sets of article data. The particular

function used in the code developed for this project includes both backwards citations (refer-

ence lists) and abstract text for articles, but does not include article fulltext. Other functions

include article fulltext, but these do not include backwards citations in a convenient format.

Storing article text, whether abstracts or fulltext, also significantly increases the storage and

memory resources required to work with these networks.

For these practical reasons, the primary code developed for this project does not store arti-

cle abstracts, and so does not directly support text analysis. However, an exploratory analysis

of the core paper abstracts alone is much more tractable, and potentially informative. Such an

analysis is conducted in S1 Topic Analysis of the Core Set Abstracts. In addition, at the end of

the use case I discuss several ways in which, given sufficient computational resources, more

sophisticated text analysis techniques could be applied to the question of social validation.

Use Case: Social Validation of HTT

As discussed in the introduction, the USEPA’s Chemical Safety for Sustainability [CSS] pro-

gram is developing novel methods for testing chemical safety. The citation network methods

described in the previous section were developed to investigate the social validation of these

novel methods within the broader research community. A list of CSS publication titles was

retrieved from STICS, a USEPA-internal database of research products; DOIs were identified

for these publications using semi-automated title searches. The CSS publications for which

DOIs were found formed the core publications for the citation network (see the explanation of

the construction method in Fig 4).

The citation network for CSS research is shown in Fig 5, using a publication cutoff of 2006.

This network comprises 80.1 thousand nodes connected by 663 thousand edges, including 323

core publications. Although the core publications are highly disconnected, the full network is

connected. This connectivity was not expected; CSS researchers work at several different

USEPA national labs and centers, on a diverse set of topics, and using a wide range of methods.

When a publication cutoff of 2011 is used instead, the network has 48.5 thousand nodes, 214

thousand edges, all 323 of the CSS publications, and is still connected.

The core partition for this network has modularity Q = 9.5 × 10−4, and the core nodes have

insularity S = .032; that is, only about 3% of their edges are shown in the right panel of Fig 5. In

random samples, the mean values of modularity and insularity were Q = 3.0 × 10−9, S = .0020.

With the noisy community detection algorithm, the mean sample modularity was Q = .42 and

the mean insularity was S = .86. In all of these analyses, p = 0; that is, neither random sampling

nor noisy community detection produced any values as extreme as the observed values for

Q and S. Using the 2011 cutoff, Q = .0028, S = .052; random samples had Q = 5.3 × 10−7,

S = .0034; noisy communication detection had Q = .41, S = .84; and with all of these sampling

distributions p = 0.

These statistics indicate that CSS publications have very low modularity and insularity, and

are not distributed as though they were either a random subset or a modularity-maximizing

partition.

Bibliometrics for Social Validation
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Both of the reference networks had on the order of 30 thousand nodes and 400 thousand

edges; these values were on the same order of magnitude as the constructed network, and the

constructed network was larger in terms of both nodes and edges. However, the reference net-

works had relatively more edges. (Edge:node ratio: constructed network: 8; reference net-

works: 13.) In the reference networks, for the random partitions, modularities were on the

order of −1 × 10−6 and −7 × 10−7 and insularities were approximately .002. As in the con-

structed network, in all of these analyses p = 0. Since the noisy community detection algorithm

is quite slow (500 runs of the algorithm took approximately five hours for the constructed net-

work on available computing equipment), that comparison was skipped for this use case.

Again, these statistics indicate that the core publication’s modularity and insularity were

low, though not as low as a random sample of nodes.

The partition produced by the stable, blockmodel community detection method is shown

in Fig 6, and a contingency table for the partitions is given in Table 1. This partition has

Q = .44 and insularities of .97 and .95. Modularity is more than three orders of magnitude

larger than the modularity for the core partition. Insularities are also very high, although this

should be interpreted with caution; as noted above, with large partitions, large insularities

reflect the low “surface area” to “volume” ratio. Note that these values are similar to those pro-

duced by the noisy community detection algorithm. When the 2011 threshold is used instead,

these values are only trivially different: Q = .45, S = .94, .92.

Within the partition produced by this stable community detection algorithm, CSS nodes

are 33% less likely to be in Community 0 than non-CSS nodes, and a χ2 test for independence

on this table is conventionally highly statistically significant (p = 3.0 × 10−10). However the

effect size—as measured by Cramér’s V, a correlation coefficient—is conventionally small

and—given a significance level of 5%—this χ2 test reaches 99% power at an effect size of

Fig 5. Citation network for high-throughput toxicology research. A: The core nodes alone. B: The full citation network of 80 thousand nodes.

Positions in the two panels roughly correspond.

doi:10.1371/journal.pone.0168597.g005
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just .015, suggesting that it could be overpowered for this case [29, sec. 5.4]. These findings are

approximately the same when the 2011 threshold is used instead.

All together, this analysis has the following key findings for the case of CSS research:

• CSS publications appear in a single large, connected citation network.

• CSS publications have very low modularity and insularity, indicating that they are not iso-

lated within the citation network.

• CSS publications are not distributed evenly across the communities of the network, or as

though they were a random subset, though this bias is small.

• All together, CSS publications are well integrated into the research community.

• The above findings are robust when 2011 is used as the publication date threshold rather

than 2006.

These findings provide evidence that CSS research enjoys high social validation.

Further Assessment of Social Validation

The analytical approach presented in this paper could be extended in several ways in future

work. The CSS program is divided into four different topics and several different projects.

Table 1. Contingency table for the core and blockmodel partitions. Counts (row-wise percentages).

Compare to Fig 6B. χ2 = 40, p = 3.0 × 10−10, V = .022.

Community 0 Community 1

CSS 121 (37%) 202 (63%)

non-CSS 43,839 (55%) 35,958 (45%)

doi:10.1371/journal.pone.0168597.t001

Fig 6. Comparison of core and blockmodel partitions of the citation network. A: The citation network, using the same positions as in Fig 5.

Blockmodel partition indicated by node color. Core publications are indicated by larger nodes. B: Percentage distribution of core and other nodes across

the two blockmodel communities. Bars correspond to core (right) and other nodes (left). Blockmodel partition is indicated by node color. Note that the y-

axis is a percentage scale, not an absolute node count. Compare to Table 1.

doi:10.1371/journal.pone.0168597.g006
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These divisions could be used for a more complex, community-based analysis, i.e., the integra-

tion and distribution of these four topics across the citation network. Unfortunately, in this

project there was no efficient way to associate individual papers with their USEPA topics or

projects.

This paper focuses on publications using a citation network. The Python code developed

for this project also constructs and analyzes coauthor networks. For CSS, the findings of this

coauthor network analysis were qualitatively similar to the citation network findings reported

above. However, for other cases the coauthor network analysis could be more relevant, or

notably disagree with the citation network analysis.

Further use of community detection algorithms could also be useful in some cases. For

example, the stable community detection algorithm could be applied (without the limitation to

produce a binary partition) to both the core nodes and the entire citation network, and mem-

bership in the two partitions could be compared. This might reveal, for instance, that the core

nodes enjoy high social validation in some parts of the literature but low social validation in

others. Because the CSS nodes taken by themselves were highly disconnected, this algorithm

did not find any further structure in the core nodes, and thus this use of community detection

was not applicable to the case examined in this paper.

As discussed above, for practical reasons the primary code developed for this project does

not store article abstracts or other text data. Extensions to the code, supported by sufficient

computational resources, could be used to conduct more sophisticated text analysis. [30]

develops a notable approach based on topic modeling. Briefly, topic models use word co-

occurrence patterns and a generative model of text construction to identify latent topics or

themes across a collection of texts. (Topic models are used in the exploratory text analysis

included in S1 Topic Analysis of the Core Set Abstracts.) While topic model algorithms are

essentially syntactical, human reviewers of the resulting topics often find them meaningful and

semantically rich [31]. [30] extends the generative model to a citation network; a given text is

modeled as incorporating the topics found in the upstream texts that it cites. Further, the

extent to which the distribution of topics across a given text resembles those of its predecessors

supports a quantifiable estimate of the influence of each predecessor text. This method could

provide a rich analysis of social validation across the citation network. Higher influence means

that the downstream text is using language that is distinctive to the upstream text. This lan-

guage use can then be interpreted as an indication of the extent to which the downstream

authors accept the novel methods and conceptual frameworks of the upstream text. Given the

complexity of the approach presented in [30], it was not attempted here.

[32] describes a method using natural language processing to characterize citations as “posi-

tive” or “negative.” This kind of analysis could be extremely valuable for assessments of social

validation; the findings discussed in the last section indicate that CSS research is integrated

into the research community, but perhaps much of the discussion of it is negative. However,

the method described in [32] involved a team of 5 researchers manually constructing a training

set of 15,000 citations. Given limited resources, this method was not applied here.

A tractable sample of 25 generation +1 papers was drawn, and the citations to core papers

were examined manually. These generation +1 papers cited 30 core papers. For 2 of the gener-

ation +1 papers papers, fulltext was not available, and so the citations could not be examined.

23 of the remaining 28 citations were classified as “point citations,” a single citation to the core

paper as the source of a value, description of an experimental method, etc. A further 3 citations

were classified as “repeated point citations,” in which the core paper was referred to more than

once (in the given generation +1 paper), but each time as a source of a value, description of

an experimental method, or other point-like reference. 1 generation +1 paper referred to the

core paper as a “companion paper” by the same authors, and 1 generation +1 paper gave a
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paragraph-length discussion of the cited core paper. None of the 28 available citations were

considered negative.

This small sample suggests that, while CSS research is well-integrated to the scientific com-

munity, a typical citation to a CSS publication treats it as “just another data point,” rather than

a radically new approach. However, it could be that the typical CSS publication is only meant

to report “just another data point,” rather than present HTT as a radical new approach to toxi-

cology. In Kuhnian terms, perhaps a typical CSS publication is “normal science,” and only a

few papers are intended to announce “revolutionary science” [3]. In this case, it would be use-

ful to focus on citations to a subset of CSS publications that are written as “calls to revolution,”

such as programmatic papers or high-level reviews.

Conclusion: Further Assessment of Social Validation

This paper has introduced a method for quantitatively assessing the social validation of a body

of research using an iteratively-constructed citation network. This method was applied to the

case of high-throughput toxicology research, showing that this research enjoys high social

validation.

Supporting Information

S1 Topic Analysis of the Core Set Abstracts. Text analysis of the core set.

(PDF)
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