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Abstract

Empirical mode decomposition (EMD) is an adaptive filter bank for processing nonlinear

and non-stationary signals, such as electroencephalographic (EEG) signals. EMD works

well to decompose a time series into a set of intrinsic mode functions with specific fre-

quency bands. An IMF therefore represents an intrinsic component on its correspondingly

intrinsic frequency band. The word of ‘intrinsic’ means the frequency is totally adaptive to

the nature of a signal. In this study, power density and nonlinearity are two critical param-

eters for characterizing the amplitude and frequency modulations in IMFs. In this study, a

nonlinearity level is quantified using degree of waveform distortion (DWD), which repre-

sents the characteristic of waveform distortion as an assessment of the intra-wave modu-

lation of an IMF. In the application of anesthesia EEG analysis, the assessments of power

density and DWD for a set of IMFs represent dynamic responses in EEG caused by two

different anesthesia agents, Ketamine and Alfentanil, on different frequency bands. Keta-

mine causes the increase of power density and the decrease of nonlinearity on γ-band

neuronal oscillation, which cannot be found EEG responses of group B using Alfentanil.

Both agents cause an increase of power density and a decrease of nonlinearity on β-band

neuronal oscillation accompany with a loss of consciousness. Moreover, anesthesia

agents cause the decreases of power density and nonlinearity (i.e. DWD) for the low-fre-

quency IMFs.
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1 Introduction

Electroencephalography (EEG) is noninvasive medical technique for monitoring and record-

ing the electrical activity of brain. In clinical applications, Bi-spectral index (BIS) [1], audio

evoked potential (AED) [2] and spectral entropy [3] perform ensemble assessments for quanti-

fying the depth of anesthesia. However, the underlying pharmacological mechanisms of anes-

thesia agents are complicated. Different anesthesia agents cause different pharmacological

reactions in a human brain, which also cause different dynamical patterns in surface EEG.

Ensemble assessments are sufficient to provide a simple indicator representing the sedation

status and level of consciousness, but they are insufficient to be a tool for characterizing the

dynamic properties of EEG affected by different anesthesia agents. For the purpose to charac-

terizing the dynamic properties of EEG, time-frequency analysis is commonly used to study

the dynamics of an EEG signal in both time and frequency domains simultaneously [4, 5]. One

of the most basic forms of time–frequency analysis is the short-time Fourier transform (STFT)

[6], but more sophisticated techniques have been developed, notably wavelets [7]. In the tradi-

tional spectral analysis based on Fourier transform or wavelet, the spectra are derived from

finite time periods, in which signals are assumed to be linear and stationary. However, EEG

signals are totally nonlinear and non-stationary [8]. EEG signals contain complicated fre-

quency modulations (FM) and amplitude modulations (AM) in the structure of data [9]. Both

AM and FM are important dynamic features of nonlinear and non-stationary signals. But, the

local AM and FM cannot be measured by traditional spectral analysis methods based on the

assumptions of linearity and stationary. To overcome the drawbacks of traditional methods of

time-frequency analysis, the innovative signal processing and analysis method named as Hil-

bert-Huang transform (HHT) [10] was used as the critical technique in this study. HHT works

to decompose a nonlinear and non-stationary signal into a set of intrinsic mode functions

(IMFs) by the method named as empirical mode decomposition (EMD), in which the instanta-

neous frequency and amplitude are derived by Hilbert transform as functions of time. The

oscillations of instantaneous frequency and amplitude depict local and detailed AM and FM

for an IMF. The function of EMD had been approved as an adaptive filter bank [11]. The spec-

tra of instantaneous bandwidths and frequencies of IMFs are adaptive to the nature of data. It

is convenient to map the instantaneous frequency bands into their correlated frequency bands

(δ band: 0.5–3.5 Hz; θ band: 3.5-8Hz, α band: 8-13Hz; β band: 13–30 Hz; and γ band: 32-

80Hz) according to the spectrum of EEG bandwidths and frequencies in clinical use and in

research [12]. In the study for investigating the characteristics of white noise by EMD [13], a

parameter of power density was defined to represent the power of an IMF. In this study, power

density is used to represent the brain responses using the power of inter-wave amplitude mod-

ulation of an IMF on its corresponding bandwidth and frequency. In addition, the nonlinearity

for an IMF is defined as a new assessment based on intra-wave frequency modulation [14]. In

previous studies, the degree of nonlinearity had been used to assess the intra-wave frequency

modulation as the characteristic parameter of waveform for nonlinear oscillations [15, 16].

The degree of nonlinearity reflects a new feature different from the intensity as the power of

inter-wave amplitude modulation. Moreover, we also took a modification for the calculation

of degree of nonlinearity to reduce the computing loading and complexity.

In additions, the evidence from anesthesia converges to suggest that loss of consciousness is

associated with breakdown of cortical connectivity and thus of integration [17]. The functional

connectivity of the frontoparietal association cortex is often reduced. The prime candidates for

functional networks of the forebrain that play a critical role in maintaining the state of con-

sciousness are those based on the posterior parietal-cingulate-precuneus region and the non-

specific thalamus [18]. Therefore, this investigation focused on the analysis of EEG signals at
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the frontal lobe (FP1). In the application of anesthesia EEG analysis, 56 patients with a low

anesthetic risk requiring general anesthesia participated in this study. They were randomly

divided into two groups. Ketamine was used for 28 patients of group A and Alfantnil was used

for the other 28 patients of group B. Both assessments of power density and nonlinearity were

used to assess the neuronal oscillations on different frequency bands during the first 10 min-

utes after the time point of anesthesia agent injection via the frontal EEG (channel FP1). We

hypothesize that some changes of inter-wave amplitude modulations and intra-wave frequency

modulations on specific intrinsic frequency bands are common responses correlated to the

loss of consciousness. The word of ‘intrinsic’ means the frequency band determined adaptively

to the nature of signals. Moreover, different anesthesia agents trigger their corresponding

changes of EEG modulations on particular frequency bands. According to our findings, Keta-

mine triggers an increase of γ-band power (i.e. the power density of IMF1 from EEG) and a

decrease of γ-band nonlinearity (i.e. the assessment of nonlinearity of IMF1). The γ-band

responses of group B are totally different from those of group A. Moreover, there are some

common responses on low-frequency bands of IMFs for groups A and B, which are considered

to be the characteristics of EEG in anesthesia.

2 Materials

The present study was approved by the Institutional Review Board of National Taiwan Univer-

sity Hospital, and all participants provided written informed consent for EEG data analysis.

There are no conflict issues in this study.

A total of 56 patients with a low anesthetic risk (American Society of Anesthesiologists

Physical Status Classification I-II) requiring general anesthesia participated in this study. Prior

to the surgical operation, the standard equipment for pulse oximetry, electrocardiography

(EEG), BIS monitoring, and blood pressure monitoring were set up before anesthesia induc-

tion, following which recording was initiated. After monitoring patients for one minute, an

anesthesiologist induced anesthesia using low-dose of Propofol. The frontal EEG signals were

collected through a BIS module. Different anesthesia agents of Ketamine or Alfantnil were

injected into the subjects, which were randomly sorted into two different groups, respectively,

when an anesthesiologist confirmed that patients were consciousless. Surgical operations

started at ten minutes after Ketamine/Alfentanil injection for recording the frontal EEG

responses to different anesthesia agents.

3 Methods

In this section, we describe what is the function of a adaptive filter bank using the enhanced

EMD method and the distribution of instantaneous frequency for each IMF. The correlated

frequency bands of IMFs are determined according to the correlation between the distribu-

tions of instantaneous frequency and the spectra of bandwidths and frequencies in the clinical

use.

3.1 Classical empirical mode decomposition (CEMD) & Hilbert-Huang

transform (HHT)

The classical EMD (CEMD) proposed in 1998 by Huang et al. [10] is the first step of HHT for

decomposing a nonlinear and non-stationary time series into a set of IMFs. The procedure to

decompose a time series into IMFs is show as the followings:

1. Identify the local extrema (i.e. maxima and minima) of the time series X(t)
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2. Connect local maxima/minima using cubic splines to generate an upper/lower envelop

emax(t)/emin(t) of the time series.

3. Define the mean envelop asm1(t) = (emax(t) + emin(t))/2

4. The mean envelop is subtracted from the time series, providing the local oscillatory compo-

nent h1(t) = X(t)–m1(t).

5. Check whether the component satisfies the conditions [10] to be an IMF. If yes, the compo-

nent is considered as first IMF denoted C1(t) = h1(t). On the other hand, if h1(t) is not an

IMF, consider the component as a new data to obtain a new component by repeating steps

1~5 until the new component satisfies the conditions to be an IMF.

6. Subtract the IMF from original time series to obtain the first residual r1(t) = X(t)–C1(t).
Consider the residual is a new time series and repeat steps 1~5 to obtain the next IMF until

the residual is a monotonic time series.

After decomposition by EMD, the original time series is the sum of all IMFs and the final

residual. Hilbert transform can be used as the second step of HHT to derive the analytical

form ziðtÞ ¼ CiðtÞ þ j ~CiðtÞ ¼ AiðtÞejyiðtÞ for each IMF, where Ai(t) is amplitude time series

and θi(t) the phase of the ith IMF. The differential of phase represents the instantaneous

frequency.

3.2 The adaptive filter banks using the enhanced EMD method and the

distributions of instantaneous frequency for the IMFs decomposed from

EEG signal in sampling rate of 128 Hz

In this study, EEG signals were recorded in sampling rate of 128 Hz and decomposed into the

first 6 IMFs by an enhanced EMD method. The mode-mixing problem is a major obstacle to

the use of EMD on many signals [19, 20]. For the purpose to solve the mode-mixing problem,

many enhanced methods, such as ensemble EMD (EEMD) [21] and complementary ensemble

EMD (CEEMD) [22], had been suggested to filter out the intermittency, which causes the

mode-mixing problem, by adding white noises into the original signals. As a different approach,

masking signals were used to improve EMD for separate components that are similar in fre-

quency that would be inseparable with CEMD techniques [23]. In this study, a set of four mask-

ing signals, sine waves with different predetermined initial phases, are used to solve the mode-

mixing problem in the CEMD method and to avoid the residual of added white noise in the

EEMD method.

In the enhanced EMD, the frequencies and amplitudes of masking signals are determined

adaptively to the natures of signals. A pre-decomposition using the CEMD method for only

IMF1 is used to determine the frequency and amplitude of masking signals used in the

enhanced EMD method. In the enhanced method, a set of IMFs, ci(t), decomposed from a sig-

nal, x(t), can be derived by the following steps.

1. Derive the pre-decomposed IMF1 by the CEMD method.

2. Obtain the time series of instantaneous frequency and amplitude for the pre-decomposed

IMF1 using Hilbert transform.

3. Determine the frequency of masking signals using the mean value of the distribution of

instantaneous frequency, and determine the amplitude of masking signals using averaged

amplitude of the pre-decomposed IMF1.
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4. Generate four masking signals using the sine waves with amplitude and frequency deter-

mined by step 3. The initial phases of four masking signals are 0, π/2, π, and 3π/2.

5. Add masking signals into the original signal to generate four mixtures for formal decompo-

sition by the CEMD, and decompose IMF1 from each mixture.

6. Obtain a new IMF ci(t) using the averaged mode function of four IMF1 decomposed from

four mixtures.

7. Obtain the residual by removing the new IMF from the signal for decomposing next IMF

until the residual is monotonic.

The enhanced EMD method works well to solve the mode-mixing problem. In comparison

with the performance of EEMD, low computing loading and no residual of added white noises

are two advantages of the enhanced EMD in comparing with the functions of EEMD. In this

study, anesthesia EEG signals were decomposed into the first 6 IMFs using the enhanced EMD

method. The distributions of instantaneous frequencies for the six IMFs decomposed from

EEG recordings from 56 subjects for two groups recruited in this study are shown in Fig 1.

According to the spectrum of EEG bandwidths and frequencies in clinical use and in

research, IMF1 represents the γ band neuronal oscillation (> 30 Hz); IMF2 represents β band

oscillation (13–30 Hz); IMF3 reflects α band oscillation (8-13Hz); IMF4 reflects θ band oscilla-

tion (3.5-8Hz); and IMFs 5–6 represents δ band oscillation (0.5–3.5Hz). The distributions of

instantaneous frequency of the first 6 IMFs for two groups are similar.

Fig 1. The distributions of instantaneous frequency for the first 6 IMFs decomposed from anesthesia EEG recordings of 56 subjects for two

groups. Group A includes 28 subjects using Ketamine. Group B includes 28 subjects using Alfentanil.

doi:10.1371/journal.pone.0168108.g001
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3.3 Power density of a section of an IMF

The power density is a fundamental assessment of an intrinsic component (IMF). A short-

term power density represents the magnitude of short-term fluctuation for an intrinsic compo-

nent. In this study, a short-term power density for instant t is calculated using the following

equation.

PDiðtÞ ¼
1

p
�
Pt¼tþ0:5p

t¼t� 0:5pciðtÞ � ciðtÞ ð1Þ

where, PDi(t) is the power density at instant t of i-th IMF ci(τ), and p is the segment length for

the calculation of power density. Here, a segment length of 3 seconds was used for calculating

power density.

3.4 The degree of nonlinearity based on intra-wave frequency

modulation

In the HHT principle, the fluctuating of instantaneous frequency in one oscillation is regarded

as intra-wave frequency modulation. The intra-wave frequency modulation is a unique defini-

tion of HHT [10, 14], in which frequency changes from time to time within an oscillation. The

profile of an oscillation with intra-wave frequency modulation is not a pure sine or cosine

wave. The intra-wave frequency modulation deforms the wave profile and the characteristic of

the waveform deformation is not evalutable by traditional methods using Fourier spectral

analysis and wavelet analysis.

According to Huang’s definition of nonlinearity [15], the assessment of intra-wave fre-

quency modulation, which measures the deviation of the instantaneous frequency from the

mean frequency in one oscillation based on the zero crossing period, is related to nonlinearity.

To demonstrate the calculation of the assessment of intra-wave frequency modulation, a sim-

ple mathematic model using a generalized intra-wave frequency modulation as:

xðtÞ ¼ cosð2pwt þ d � sinðZ � 2pwtÞÞ ð2Þ

where x(t) represents an frequency modulated signal with modulating signal sin(η2πwt);w is

the carrier frequency; η is the ratio of modulating to carrier frequency; and δ is a measure of

strength of the frequency modulation.

Fig 2(A) shows the waveforms and instantaneous frequency of the simulated signals with

intra-wave frequency modulation using the ratio of modulating to carrier frequency η = 1. The

waveform distortion depends on the intra-wave frequency modulation. In the simulation, the

instantaneous frequency of the modulated signal is 2πw (1 + ηδ cos η2πwt). Therefore, the devi-

ation of wave shape from the linear one (δ = 0), or the changes of instantaneous frequency

(intra-wave modulations in a nonlinear system) from a constant value (for a linear system),

can be used as a measure of nonlinearity. In 2013, Norden et al. suggested the deviation of

intra-wave frequency modulation represents an assessment of degree of nonlinearity (DN),

and it can be de calculated by the following equation [15]:

DN ¼
1

n
Pn

t¼1

IFðtÞ � IFz
IFz

� �2
" #1=2

ð3Þ

where, DN is the degree of nonlinearity; IF(t) is the instantaneous frequency for an IMF; n is

the sample number of the segment; and IFz is the mean frequency based on the zero crossing

period.
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In the numerical simulation, the strengths δ from 0 to 0.3 were used to modulate the intra-

wave frequency of oscillations based on sine wave. Then, a linear relationship between the

strength of frequency modulation and the degree of nonlinearity is shown as the Fig 3(A).

3.5 The degree of nonlinearity based on the profile of waveform

distortion

Instantaneous frequency is necessary for understanding the detailed mechanisms frequency

modulation of oscillation. Historically, instantaneous frequency was computed from analytic

signal through the Hilbert transform. In facts, there are many difficulties for computing

instantaneous frequency and many methods proposed to overcome the difficulties [24]. In

this study, for the purpose to simplify the calculation of degree of nonlinearity based on the

deviation of instantaneous frequency, the ratio of the power density to the power of envelope

represents a characteristic feature of normalized oscillations, which contains the information

of waveform distortion corresponding to its particular intra-wave frequency modulation.

According to the results of our numerical simulations, the ratio of power density to the power

of envelope is 0.5 for a linear wave (i.e. a sine wave). In this study, the ratio of power density to

the power of envelope is named as degree of waveform distortion (DWD). The DWD values

for the simple mathematic model of Eq (2) with ratio of modulating to carrier frequency η = 1

were calculated for the strength of frequency modulation δ from 0 to 1 as shown in Fig 3 The

relationship between DN and DWD is positive and nonlinear.

Fig 2. The simulated nonlinear wave and its frequency modulation for the simple mathematic nonlinear model using a generalized intra-wave

frequency modulation with ratio of modulating to carrier frequency η = 1. (a) shows the simulated signals for strength of modulation δ = -0.3, 0, and 0.3;

(b) shows the instantaneous frequency of the simulated signals.

doi:10.1371/journal.pone.0168108.g002
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In this study, DWD represents a different feature of waveform distortion from the power

density, which represents the magnitude of oscillations during a time period in an IMF.

4 Results

4.1 Solve the mode-mixing problem by enhanced EMD using masking

signals

The mode-mixing problem is a serious issue for the applications using EMD. In this investiga-

tion, EEG signals were decomposed into sets of IMFs by the enhanced EMD algorithm using

masking signals. To test the performance of the enhanced method, the daily length of day

(LOD) dataset, which contains many different intrinsic oscillating cycles, was decomposed

into sets of IMFs by the methods of CEMD, ensemble EMD and the enhanced EMD using

masking signals as shown in Fig 4.

As shown in Fig 4, the mode-mixing phenomenon can be observed in IMF 4–6 for the set

of IMFs decomposed by the CEMD; in IMF 6 & 7 for the set of IMFs decomposed by EEMD.

The mode-mixing phenomenon is not found in those by the enhanced EMD using masking

signals. IMF 1 decomposed by EEMD is a redundant mode function as a part of residual of

added white noises. IMF6 in the set of IMFs decomposed by the enhanced EMD is an annual

cycle, which is scattered into two different IMFs for both set of IMFs decomposed by the

CEMD and EEMD. These results prove that the enhanced EMD using masking signals works

promisingly to solve the mode-mixing problem.

4.2 Frequency-depend power density for different groups

In the study of anesthesia EEG analysis, a sliding window with a size of 10 seconds was used to

quantify the power density and DWD for each IMF. One-minute EEG signal before anesthesia

Fig 3. Degree of nonlinearity and DWD for the modulated signals of η = 1 and δ from 0 to 1.

doi:10.1371/journal.pone.0168108.g003
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induction is selected to be the baseline as pre-anesthesia EEG. For the purpose to observe the

process of losing consciousness, ten check points were set up according to the individual time

period from anesthesia induction to lost consciousness. The first ten minutes of EEG record-

ing after Ketamine/Alfentanil injection were analyzed using the enhanced EMD method. Since

the instantaneous frequency distribution of IMF 7 is lower than 0.5 Hz, only the first 6 IMFs

were used to reconstruct the EEG signals. The oscillations within frequency band lower than

0.5 Hz and the long-term trend in EEG signals were filtered out in this study. Fig 5 shows the

power of the reconstructed EEG for baseline, during the period of losing consciousness, and

ten-minutes after anesthesia agent (Ketamine for group A and Alfentanil for group B) injec-

tion. EEG power for both groups became significantly different from the baseline at the forth

check point after anesthesia induction. For group A, EEG power keeps low during the first two

minutes and then increases at the third minute after Ketamine injection. For group B, EEG

power keeps low during the anesthesia stage. EEG power during the anesthesia stage is signifi-

cantly lower than that of baseline for both groups.

For the purpose to detail the changes in EEG signals, the power densities for the first 6

IMFs from EEG are shown in Fig 6. For both groups, the power densities of IMF 4–6 during

anesthesia stage are significantly lower than those of baseline. The power density of IMF1 dur-

ing anesthesia stage is significantly lower than that of baseline for group A, but the power den-

sity of IMF1 significantly increases after the third minutes after Ketamine injection for group

B. The changes in power densities of the first 3 IMFs for two groups are total different.

In addition, the power densities of the first 6 IMFs are normalized using the EEG power to

represent the power distribution on different frequency bands as shown in Fig 7. The normal-

ized power density of IMF2 after the forth check point after anesthesia induction significantly

different from that of baseline. This implies that the normalized power density of IMF2 is a

Fig 4. Three sets of IMFs decomposed from the daily length of day dataset by CEMD, EEMD, and the enhanced EMD using masking signals.

doi:10.1371/journal.pone.0168108.g004
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potential assessment correlated to the level of consciousness. During the anesthesia stage, the

normalized power densities of IMF 4–6 are significantly lower than that of baseline for both

groups.

4.3 Results using degree of waveform distortion

In this section, DWD was used to quantify the nonlinearity of the IMFs. As shown in Fig 8,

DWD values of IMF2 for both groups significantly decrease with time. During the time period

from anesthesia induction to the surgical operation, DWD of IMF 2 and 3 gradually decrease

until steady state. This result implies that the level of consciousness is correlated to the power

density and degree of nonlinearity in IMF 2 and 3. A high power density accompany with low

nonlinearity of IMF2 reflects a low level of consciousness. However, the DWD of IMF1 for

group A is significantly different from that for group B when different anesthesia agents were

Fig 5. The power of the reconstructed EEG signals using the first 6 IMFs for two groups using Ketamine/Alfentanil. The time point before the mark of

‘P’ is the baseline; the mark of ‘P’ is the start point of propofol infusion; and the mark of ‘K/R’ is the time point of anesthesia agent injection. The marks of ‘o’

represent the p-value of statistical test in comparison with baseline lower than 0.05, and the marks of ‘*’ represent the p-value lower than 0.01.

doi:10.1371/journal.pone.0168108.g005
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injected into the human bodies. Ketamine causes an increase of power density and a decrease

of nonlinearity for IMF1, but Alfentanil causes a decrease of power density (as shown in Fig 6)

and an increase of nonlinearity for IMF1. These results imply that two anesthesia agents cause

different responses in EEG signals, which reflect different underlying physiological mecha-

nisms in a human brain.

5 Discussions and Conclusions

In this study, an enhanced EMD method using masking signals is proposed and used in anes-

thesia EEG analysis. Both frequencies and amplitude of masking signals are determined

according the nature of EEG signals. A pre-decomposition was used to determine the fre-

quency and amplitude of conjugate masking signals used for decomposing an IMF formally.

This enhanced EMD works out high performance for solving the mode-mixing problem.

Then, the enhanced EMD method worked as a good dyadic filter bank for decomposing EEG

Fig 6. The power density of the first 6 IMFs for two groups. The time point before the mark of ‘P’ is the baseline; the mark of ‘P’ is the start point of propofol

infusion; and the mark of ‘K/R’ is the time point of anesthesia agent injection.

doi:10.1371/journal.pone.0168108.g006
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signals into sets of IMFs. Moreover, the enhanced EMD method also keeps the nature of non-

linearity in the decomposed intrinsic components (i.e. IMFs).

In many previous study of amplitude-frequency studies based on empirical mode decom-

position, a scaling behavior can be quantified by marginal spectral analysis in turbulences [25]

and fractal Gaussian noises [11]. Multiscale high-order moments introduced by Huang et al.

[25] are candidates for assessing local scaling property of EEG signals with a limitation of short

data length. Moreover, we checked the distributions of instantaneous frequency for the first six

IMFs using intermittency measure introduced by Farge [26]. The moment values of skewness

and kurtosis are used to assess the intermittencies for three sets of IMFs decomposed by

CEMD, EEMD, and enhanced EMD respectively. The mean values of skewness for the first 5

IMFs decomposed by CEMD are 0.10, 0.16, -0.01, 0.11 & 0.40; the values derived by EEMD

are 2.10, 1.75, 0.59, 0.12 & 0.18; the values derived by the enhanced EMD are 1.39, 0.87, 0.11,

-0.07 & -0.08. The mean values of kurtosis for the first 5 IMFs decomposed by CEMD are 2.60,

3.64, 3.79, 4.06 & 5.88; the values derived by EEMD are 17.22, 21.97, 11.81, 5.96 & 5.17; the

Fig 7. The normalized power density of the first 6 IMFs for two groups.

doi:10.1371/journal.pone.0168108.g007

Power Density and Nonlinearity of Anesthesia EEG

PLOS ONE | DOI:10.1371/journal.pone.0168108 December 14, 2016 12 / 16



values derived by the enhanced EMD are 11.48, 11.72, 7.04, 4.58 & 4.32. These results show

that the instantaneous frequency distribution for each IMF decomposed by CEMD is similar

to a normal distribution. Those for first 4 IMFs decomposed by the enhanced EMD are cen-

tralized distributions. The overlap between two sequential IMFs decomposed by CEMD is

larger than that by the enhanced EMD. Centralized instantaneous frequency distributions and

small overlaps represent the mod-mixing problem is diminished by the enhanced method.

In this study, two different anesthesia agents were used in the general anesthesia. Power

density and DWD are used to quantify the strength and nonlinearity of IMFs with different

frequency bands. According to the analysis results using power and power density, the com-

mon changes from conscious to consciousless for two groups can be clearly observed via the

normalized power density of IMF2 and IMF 4–6. In general, EEG power in anesthesia is lower

than that of baseline (i.e. awareness). The power density of IMF1 reflects significant difference

between the dynamical characteristics of EEG signal for two groups. Ketamine causes a signifi-

cant increase of power density in IMF1 and Alfentanil does not.

Fig 8. The DWD values of the first 6 IMFs for two groups.

doi:10.1371/journal.pone.0168108.g008
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On the other hand, nonlinearity represents a new feature different from power density.

Anesthesia causes significant decreases of nonlinearity in comparison with baseline on IMF

2–3. Ketamine causes a decrease of nonlinearity and an increase of power density in IMF1

before the start of surgical operation. The nonlinearity of IMF1 became unstable because of

surgical actions. In this study, what causes the nonlinearity and power density of IMF1 during

the time period of taking surgical operation is not clear. It is hard to evaluate the effects caused

by surgical stresses and the medicine. In this study, we found some common responses in fron-

tal EEG during a general anesthesia and some particular responses correlated to the pharmaco-

logical effects of Ketamine.

In conclusions, the EMD method is an innovative algorithm for analyzing the nonlinear

and non-stationary real-world signals, such as EEG signals. However, the mode-mixing prob-

lem is always a big issue for the applications using EMD. In this study, we suggest the conju-

gate masking signals with frequency and amplitude adaptive to the nature of the decomposed

component can be used to overcome the mode-mixing problem as a big advantage of this

study. Moreover, the use of an assessment of nonlinearity is another advantage of this study.
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