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Abstract

In this paper, we propose a novel sparse coding and counting method under Bayesian

framework for visual tracking. In contrast to existing methods, the proposed method

employs the combination of L0 and L1 norm to regularize the linear coefficients of incremen-

tally updated linear basis. The sparsity constraint enables the tracker to effectively handle

difficult challenges, such as occlusion or image corruption. To achieve real-time processing,

we propose a fast and efficient numerical algorithm for solving the proposed model.

Although it is an NP-hard problem, the proposed accelerated proximal gradient (APG)

approach is guaranteed to converge to a solution quickly. Besides, we provide a closed solu-

tion of combining L0 and L1 regularized representation to obtain better sparsity. Experimen-

tal results on challenging video sequences demonstrate that the proposed method achieves

state-of-the-art results both in accuracy and speed.

Introduction

Visual tracking plays an important role in computer vision and has many applications such as

video surveillance, robotics, motion analysis and human computer interaction. Even though

various algorithms have come out, it is still a challenge problem due to complex object motion,

heavy occlusion, illumination change and background clutter.

Visual tracking algorithms can be roughly categorized into two major categories: discrimi-

native methods and generative methods. Discriminative methods (e.g., [1–3]) view object

tracking as a binary classification problem in which the goal is to separate the target object

from the background. Generative methods (e.g., [4–8]) employ a generative appearance model

to represent the target’s appearance.

We focus on the generative one and will briefly review the relevant work below. Recently,

sparse representation has been successfully applied to visual tracking (e.g., [9–12]). The track-

ers based on sparse representation are under the assumption that the appearance of a tracked

object can be sparsely represented by a over-complete dictionary which can be dynamically

updated to maintain holistic appearance information. Traditionally, the over-complete dictio-

nary is a series of redundant object templates, however, a set of basis vectors from target
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subspace as dictionary is also used because an orthogonal dictionary performs as efficient as

the redundant one. In visual tracking, we will call the L1 regularized object representation

“sparse coding” (e.g., [9]), and the L0 regularized object representation “sparse counting” (e.g.,
[13]). [9] has been shown to be robust against partial occlusions, which improves the tracking

performance. However, because of using redundant dictionary, heavy computational overhead

in L1 minimization hampers the tracking speed. Very recent efforts have been made to

improve this method in terms of both speed and accuracy by using accelerated proximal gradi-

ent (APG) algorithm [14] or modeling the similarity between different candidates [11]. Differ-

ent from [9], IVT [5] incrementally learns a low-dimensional PCA subspace representation,

which adapts online to the appearance changes of the target. To get rid of image noise, Lu et al.
[15] introduce L1 noise regularization into the PCA reconstruction, which is able to handle

partial occlusion and other challenging factors. Pan et al. [13] employs L0 norm to regularize

the linear coefficients of incrementally updated linear basis (sparse counting) to remove the

redundant features of the basis vectors. However, sparse counting will cause unstable solutions

because of its nonconvexity and discontinuity. Although the sparse coding has good perfor-

mance, it may cause biased estimation since it penalizes true large coefficients more, and pro-

duce over-penalization. Consequently, it is necessary to find a way to overcome the

disadvantages of spare coding and sparse counting.

From the viewpoint of statistics, sparse representation are similar to variable selection when

the dictionary is fixed. Besides, it is a bonus that Bayesian framework has been successfully

applied to select variables by enforcing appropriate priors. Laplace priors were used to avoid

overfitting and enforce sparsity in sparse linear model, which derives sparse coding problem. To

further enforce sparsity and reduce over-penalization of sparse coding, each coefficient is

assigned with a Bernoulli variable. Therefore, a novel model interpreted from a Bayesian perspec-

tive by carrying maximum a posteriori (MAP) is proposed, which turns out to be a combination

of sparse coding and counting model. In paper [16], Lu et al. also consider L0 and L1 norm under

a Bayesian perspective. However, considering that there will be occlusion, illumination change

and background clutter in tracking, we restraint the noise with L1 norm. Besides, We use an

orthogonal dictionary to replace the redundant object templates as similar atoms of redundant

templates may cause mistake of coefficients and huge computational complexity. Lastly, We pro-

pose closed solution of regularization which is the combination of the L0 norm and L1 norm.

However Lu et al. obtain the approximate solution by using he Greedy Coordinate Descent.

Tracking results by using unconstrained regularization, sparse counting, sparse coding and

our model under the same dictionary D are shown in Fig 1, respectively. As shown in Fig 1,

one can see that the coefficients of unconstrained regularization and sparse coding are actually

not sparse and the target object is not tracked well. Similarly, sparse counting with sparsity

coefficients sometimes cannot obtain appropriate linear combination of the orthogonal basis

vectors, which will interfere with the tracking accuracy. However, we note that our method is

able to reconstruct the object well and find the good candidate, then facilitating the tracking

results. We also compare our model with unconstrained regularization, sparse counting, sparse

coding over all 50 sequences in benchmark, the precision and success plots are shown in Fig 2.

One can see the parameter setting in the section Experimental Results.

Contributions: The contributions of this work are threefold.

• We propose a sparse coding and counting model from a novel Bayesian perspective for

visual tracking. Compared to the state-of-the-art algorithms, the proposed method achieves

more reliable tracking results.

Sparse Coding and Counting for Robust Visual Tracking

PLOS ONE | DOI:10.1371/journal.pone.0168093 December 16, 2016 2 / 17

Competing Interests: The authors have declared

that no competing interests exist.



Fig 1. The comparison of coefficients, optimal candidates and reconstruction. The top is the coefficients of our method

versus unconstrained, spars coding and sparse counting regularization, respectively. The bottom is the optimal candidates and

reconstruction results by using unconstrained, sparse coding, sparse counting and our method under same dictionary,

respectively.

doi:10.1371/journal.pone.0168093.g001

Fig 2. Precision and success plots of overall performance comparison among unconstrained regularization, sparse

counting, sparse coding and ours for the 22 videos in the benchmark. The mean precision scores are reported in the

legends.

doi:10.1371/journal.pone.0168093.g002
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• We propose closed solution of combining the L0 norm and L1 norm based regularization in

a unique one.

• Although the sparse coding and counting related minimization is an NP-hard problem, we

show that the proposed model can be efficiently estimated by the proposed APG method.

This makes our tracking method computationally attractive in general and comparable in

speed with SP method [15] and the accelerated L1 tracker [14].

Visual Tracking based on the Particle Filter

In this paper, we employ a particle filter to track the target object. The particle filter provides

an estimate of posterior distribution of random variables related to Markov chain. Given a set

of observed image vectors Yt = {y1, y2, . . ., yt} up to the t-th frame and target state variable xt

that describes the six affine motion parameters, the posterior distribution p(xt|Yt) based on the

Bayesian theorem is estimated by:

pðxtjYtÞ / pðytjxtÞ

Z

pðxtjxt� 1Þpðxt� 1jYt� 1Þdxt� 1; ð1Þ

where p(yt|xt) is the observation model that estimates the likelihood of an observed image

patch yt belonging to the object class, and p(xt|xt−1) is the motion model that describes the

state transition between consecutive frames.

The Motion Model: The motion model p(xt|xt−1) = N(xt; xt−1, S) models the parameters by

independent Gaussian distribution around the counterpart in xt−1, where S is a diagonal

covariance matrix whose elements are the variances of the affine parameters. In the tracking

framework, the optimal target state x̂ t is obtained by the maximal approximate posterior

(MAP) probability: x̂ t ¼ arg max xit
pðxi

tjYtÞ, where xi
t indicates the i-th sample of the state xt.

The observation model: In this paper, we assume that the tracked target object is generated

by a subspace (spanned by D and centered at μ) with corruption (i.i.d Gaussian Laplacian

noise),

y ¼ Dα þ �þ e; ð2Þ

where y 2 RN denotes an observation vector centered at μ, the columns of D ¼
fd1; d2; . . . ; dKg 2 R

N�K are orthogonal basis vectors of the subspace, α indicates the coeffi-

cients of basis vectors, � and e stand for the Gaussian noise and Laplacian noise vector respec-

tively. the Gaussian component models small dense noise and the Laplacian one aims to handle

outliers. As proposed by [17], under the i.i.d Gaussian-Laplacian noise assumption, the distance

between the vector y and the subspace (D, μ) is the least soft threshold squares distance:

dðα; eÞ ¼ min
α;e

1

2
k y � Dα � e k2

2
þlk e k1: ð3Þ

Thus, for each observation yt corresponding to a predicted state xt, the observation model

p(yt|xt) that is set to be

pðytjxtÞ ¼ exp ð� tdðα�; e�ÞÞ; ð4Þ

where α� and e� are the optimal solution of Eq (18) which will be introduced in detail in next

section, and τ is a constant controlling the shape of the Gaussian kernel.

Model Update: It is essential to update the observation model for handling appearance

change of the target in visual tracking. Since the error term e can be used to identify some out-

liers (e.g., Laplacian noise, illumination), we adopt the strategy proposed by [17] to update the

Sparse Coding and Counting for Robust Visual Tracking
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appearance model using the incremental PCA with mean update [5] as follows,

yi ¼

( yi; ei ¼ 0;

mi; otherwise;
ð5Þ

where yi, ei, and μi are the i-th elements of y, e, and μ, respectively, μ is the mean vector com-

puted the same as [5].

Object Representation by Bayesian Framework

Motivation

Considering y as the vectorized target object region, it can be represented by an feature sub-

space with both sparse corruptions and dense errors, i.e.,

y ¼ Dα þ �þ e: ð6Þ

Most existing sparsity based trackers aim to directly utilize L1 regularization on α to suppress

small coefficients for subspace reconstruction. However, by carefully investigating the soft-

thresholding operator corresponding to L1 minimization subproblem, it can be observed that

such simple regularization will consistently suppress the values of the coefficients, thus destroy

the discriminative property of the learned feature subspace.

To address this limitation in existing work, we here incorporate two different sparse regu-

larization techniques within the Bayesian perspective, which has the capacity to encode prior

knowledge and to make valid estimation of uncertainty. In other words, our goal is to propose

a Bayesian inference framework to incorporate both the coefficients threshoding and selection

to improve the discrimination of our feature subspace learning formulation Specifically, by

defining an index vector r = [r1, r2, . . ., rK] (rl ¼ Iðαl 6¼ 0Þ; l ¼ 1; 2; . . . ;K), Eq (6) can be

rewritten as

yj ¼
XK

l¼1

djlrlαl þ �j þ ej; j ¼ 1; 2; . . . ;N: ð7Þ

Here the additional index vector r can be considered as a dictionary selection operator and we

will enforce particular prior distribution on it to enhance the discriminative power of our

model for subspace reconstruction. To further enhance the representative ability of our model,

we will also develop a novel dictionary learning framework to build orthogonal subspace dic-

tionary for Eq (6). Please notice that the orthogonality of the learned dictionary will also signif-

icantly simply the numerical optimization process. Please see the following sections for more

details.

Bayesian Formulation

Now we will introduce our model under Bayesian framework in detail. The joint posterior dis-

tribution of α, r, e and σ2 based on the Bayesian theorem can be written as

pðα; r; e;s2jD; y; ~m; t1; t2; k; ŝÞ /

pðyj;D;α; r; e;s2Þpðαjs2; ~mÞpðrjkÞpðejŝÞpðs2jt1; t2Þ;
ð8Þ

where p(y|D, α, r, e, σ2), pðαjs2; ~mÞ, p(r|κ), pðejŝÞ, p(σ2|τ1, τ2), denote the priors on the noisy

vectorized target region, the coefficient vector α = [α1, α2, . . ., αK], the index vector r = [r1, r2,

. . ., rK] (rl ¼ Iðαl 6¼ 0Þ; l ¼ 1; 2; . . . ;K), the Laplacian noise, and the noise level, respectively.

In Eq (8), the parameters ~m, τ1, τ2, ŝ, and κ are the relevant constant parameters of the priors.

Sparse Coding and Counting for Robust Visual Tracking
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We generally assume that the noise �j follows the Gaussian distribution, i.e., p(�j) = N(0, σ2).

We treat the Laplacian noise term ej as missing values with the same Laplacian prior. There-

fore, the Prior p(y|, D, α, r, e, σ2) has the follow distribution:

pðyj;D;α; r; e;s2Þ

¼
YN

j¼1

Pðyjj; dj;α; r; ej; s
2Þ ¼

YN

j¼1

N
XK

l¼1

djlrlαl þ ej; s
2

 !

:
ð9Þ

To enforce sparsity, the coefficients α are assumed to follow Laplace distribution.

pðαjs2; ~mÞ ¼
YK

l¼1

pðαljs
2; ~mÞ ¼

YK

l¼1

1

2s2~m � 1
exp �

jαlj

s2~m � 1

� �

: ð10Þ

Our goal is to remove redundant features while preserving the useful parts in the dictionary.

As Laplace priors resulting sparse coding may lead to over penalization on the large coeffi-

cients, we assume the index variable rl of each coefficient αl to be a Bernoulli variable to

enforce sparsity and reduce over penalization.

pðrjkÞ ¼
YK

l¼1

krlð1 � kÞ
1� rl ; ð11Þ

where κ� 1/2. Here, the Bernoulli prior on rl means that rl will have probability κ to be 1 and

1 − κ to be 0, if the prior information is known.

The noise ej is aims at handling outliers, so it follows Laplace distribution:

pðejŝÞ ¼
YN

j¼1

pðejjŝÞ ¼
YN

j¼1

1

2ŝ
exp �

jejj
ŝ

� �

: ð12Þ

The variances of noises are assigned with Inverse Gamma prior as follow:

pðs2jt1; t2Þ ¼
t

t1
2

Gðt1Þ
s� 2ðt1þ1Þ exp �

t2

s2

� �
; ð13Þ

where Γ(�) denotes the gamma function.

Then, the optimal α, r, e, σ2 are obtained by the MAP probability. After taking the negative

logarithm, the formula is

ðα�; r�; e�; s�2Þ ¼ arg minα;r;e;s2f� 2 logpðα; r; e;s2jD; y; ~m; t1; t2; k; ŝÞg: ð14Þ

Combining the aforementioned Eqs (8)–(13), we have

� 2 logpðα; r; e;s2jD; y; ~m; t1; t2; k; ŝÞ

¼
1

s2

XN

j¼1

yj �
XK

l¼1

djlrlαl � ej

 !2

þ
1

s2

2s2

ŝ

XN

j¼1

jejj þ
2~m

s2

XK

l¼1

jαljþ

ð2N þ 2K þ 2t1 þ 2Þ log s2 þ
2t2

s2
þ
XK

l¼1

rl log
ð1 � kÞ

2

k2
þ const:

ð15Þ

With fixing σ2 = 1, Eq (15) can be rewritten as

jjy � Dα � ejj2
2
þ 2bjjejj

1
þ 2~mjjαjj

1
þ rkjjαjj0 þ const; ð16Þ

where rk ¼ log ð1 � kÞ
2
=k2; b ¼ s2=ŝ. With g 2 ½0; 1�; l ¼ ~m þ 1=2rk and

Sparse Coding and Counting for Robust Visual Tracking
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g ¼ 4~m=ð2~m þ rkÞ, Eq (16) can be rewritten as

1

2
jjy � Dα � ejj2

2
þ bjjejj

1
þ l gjjαjj

1
þ ð1 � gÞjjαjj

0

� �
þ const: ð17Þ

Final Optimization Model

By observing the objective function in Eq (17), it can be found that the essential regularization

in Eq (17) is a combination of the sparse coding and the sparse counting. With a fixed appro-

priate orthogonal dictionary D, Eq (17) can be written as the following optimization problem

min
α e

1

2
jjy � Dα � ejj2

2
þ bjjejj1 þ l gjjαjj1 þ ð1 � gÞjjαjj0

� �
; ð18Þ

where k�k0 denotes the L0 norm which counts the number of non-zero elements, γ, λ and β are

regularization parameters, and k�k2 and k � k1 denote L2 and L1 norms, respectively. The term

kek1 is used to reject outliers (e.g., occlusions), while kαk0 and kαk1 are used to select the most

discriminative subspace features. Notice that we also implicitly assume that D>D = I, where I

is an identity matrix.

Theory of Fast Numerical Algorithm

It is known that APG is an excellent algorithm for convex programming [18, 19] and has been

used in visual tracking. In this section, we propose a fast numerical algorithm for solving the

proposed nonconvex and nonsmooth model by using APG approach. The experimental results

show that it can converge to a solution quickly and achieve attractive performance. Besides,

the closed solution of the combining L0 and L1 based regularization is provided.

APG Algorithm for Solving Eq (19)

Eq (18) contains two subproblem: one is solving α given fixed e, the other one is solving e

given fixed α, the formula is shown as follow

α ¼ arg min
α

1

2
jjy � Dα � ejj2

2
þ lgjjαjj1 þ lð1 � gÞjjαjj0;

e ¼ arg min
e

1

2
jjy � Dα � ejj2

2
þ bjjejj

1
:

ð19Þ

8
>>><

>>>:

Solving Eq (19) is an NP-hard problem because it involves a discrete counting metric. We

adopt a special optimization strategy based on the APG approach [18], which ensures each

step be solved easily. In APG Algorithm, we need to solve

α�kþ1
¼ arg min

α
lgk α k1 þ lð1 � gÞk α k0 þ

L
2
k α � zαkþ1

þ
rαFðzkþ1Þ

L
k2

2
;

e�kþ1
¼ arg min

e
bk e k1 þ

L
2
k e � ze

kþ1
þ
reFðzkþ1Þ

L
k2

2
;

ð20Þ

8
>>><

>>>:

where zkþ1 ¼ ðzαkþ1
; ze

kþ1
Þ,rα F(α, e) = D>(Dα + e − y),re F(α, e) = e − (y − D α), and L is a

Lipschitz constant.

Sparse Coding and Counting for Robust Visual Tracking
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The solutions of Eq (20) can be obtained by

α�kþ1
¼ Eðlg=L;lð1� gÞ=LÞ zαkþ1

�
rαFðzkþ1Þ

L

� �

;

e�kþ1
¼ Sb=L ze

kþ1
�
reFðzkþ1Þ

L

� �

;

ð21Þ

8
>>>><

>>>>:

where SyðyÞ ¼ signðyÞmax ðjyj � y; 0Þ, and Eðd;ZÞðyÞ is defined as

Eðd;ZÞðyÞ ¼

y � d; y > dþ
ffiffiffiffiffi
2Z
p

;

y þ d; y < � d �
ffiffiffiffiffi
2Z
p

;

0; otherwise:

ð22Þ

8
>>><

>>>:

The numerical algorithm for solving Eq (19) is summarized in Algorithm 1. Due to the

orthogonality of D, Algorithm 1 converges fast, and its computation cost does not increase

compared to the solver of L1 regularized model.

Algorithm 1 Fast Numerical Algorithm for Solving Eq (19)

Initialize:Set initialguessesα0 = α−1 = 0, e0 = e−1 = 0, and t0 = t−1 = 1.
whilenot convergenceor terminationdo
Step 1: zαkþ1

:¼ αk þ
tk� 1 � 1

tk
ðαk � αk� 1Þ;

Step 2: ze
kþ1

:¼ ek þ
tk� 1 � 1

tk
ðek � ek� 1Þ;

Step 3: αkþ1 ¼ E ðlg=L;lð1� gÞ=LÞ zαkþ1
�
rαFðzkþ1Þ

L

� �
;

Step 4: ekþ1 ¼ Sb=L ze
kþ1
�
reFðzkþ1Þ

L

� �
;

Step 5: tkþ1 :¼
1þ

ffiffiffiffiffiffiffiffi
1þ4t2k
p

2
, k k+1.

end while

Closed-form Solution for Combining L1 and L0 Regularization

This subsection mainly focus on a sparse combinatory model which combines L0 and L1 norm

together as the regularizer term

min
x

1

2
ðx � yÞ2 þ djxj þ Zjxj0; ð23Þ

where x; y 2 R1, and |x| denotes L0 norm: if x = 0, then |x|0 = 0, and |x|0 = 1, otherwise.

Proposition 1. The optimal solution x� of the Eq (23) is defined as

x� ¼

y � d; y > dþ
ffiffiffiffiffi
2Z
p

;

y þ d; y < � d �
ffiffiffiffiffi
2Z
p

;

0; otherwise:

ð24Þ

8
>>><

>>>:

Proof. First, we denote EðxÞ ¼ 1

2
ðx � yÞ2 þ djxj þ Zjxj

0
. It is obvious that if x = 0, then

Eð0Þ ¼ 1

2
y2. Then we need to discuss the case that x 6¼ 0:

1. if x> 0, then EðxÞ ¼ 1
2
ðx � yÞ2 þ dxþ Z. Writing its K.K.T condition, we get x = y − δ, and

the objective value is Eðy � dÞ ¼ � 1
2

d2 þ dyþ Z.

Sparse Coding and Counting for Robust Visual Tracking
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2. if x< 0, then EðxÞ ¼ 1
2
ðx � yÞ2 � dxþ Z. It is easy to get x = y + δ, and the objective value

is Eðyþ dÞ ¼ � 1
2

d2 � dyþ Z.

Then, we need to compare these three cases, if E(0)> E(x − δ), we have (δ − y)2 > 2η. Com-

bining with x = y − δ> 0, we have y > dþ
ffiffiffiffiffi
2Z
p

. Similarly, if E(0)> E(x+δ), then we have

y < � d �
ffiffiffiffiffi
2Z
p

. And x = 0, otherwise.

If x 2 RN , the Eq (23) changes into

min
x

1

2
jjx � yjj2

2
þ djjxjj1 þ Zjjxjj0; ð25Þ

where jjxjj
1
¼
PN

i¼1
jxij and jjxjj

0
¼
PN

i¼1
jxij0. It is obvious that Eq (23) can be turned into

min
xi

XN

i¼1

1

2
ðxi � yiÞ

2
þ djxij þ Zjxij0: ð26Þ

So it can be seen as a sequence of optimization of xi, i = 1, . . ., n, and each can be solved by

proposition.

In Eq (25), if we set δ = 0 and η = 0, the model degenerates to the linear regression. If we set

δ = 0, Eq (25) reduces to L0 regularized regression, while becoming L1 regularized regression

when η = 0. Fig 3(a) shows the closed solutions of these four cases. We set δ = η = 0.5 in

Eq (25) (L0 + L1 regularized regression), η = 1 in L0 regularized regression, and δ = 1 in L1 reg-

ularized regression. We note that L0 + L1 regularized regression has the same sparsity as L0 reg-

ularized regression, while causing little over penalization than L1 regularized regression. In

Fig 3(b), sparsity threshold changes of L0, L1 and L0 + L1 regularized regression are shown,

respectively. When δ = 1 − η changes from 0 to 1, the sparsity threshold of L0 + L1 varies from

that of L0 to the threshold of L1. Besides, it is obvious that the threshold of L0 + L1 is larger than

those of L0 and L1 in interval (0, 0.8].

Fig 3. Analysis about combination of L1 and L0 regularization. (a) shows the closed solutions of linear regression, L0,

L1, L0 + L1 regularized regression, respectively. (b) shows the sparsity threshold changes of L0, L1 and L0 + L1 regularized

regression, respectively.

doi:10.1371/journal.pone.0168093.g003
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Orthogonal Dictionary Learning for Visual Tracking

In this section, we demonstrate dictionary learning in detail through three parts: dictioanry

initialization, orthogonal dictionary update and dictionary reinitialization.

Dictioanry Initialization: There are two schemes to initialize the orthogonal dictionary,

one is doing PCA for the set of initial first k frames Yk, the other is doing RPCA for Yk. When

initial frames do not undergo corruption (e.g., occlusion or illumination), we do PCA for Yk

instead of RPCA. The whole process of PCA is doing skinny SVD for Yk and get the basis vec-

tors of column space as the initial dictionary. However, when initial frames have large sparse

noise, RPCA is selected to get the intrinsic low-rank features Zk, which can be obtained by

solving [7]:

min
Zk;Ek
k Zk k� þ lk Ek k1; s:t: Yk ¼ Zk þ Ek: ð27Þ

When solving Eq (27), the skinny SVD of Zk is readily available: Zk ¼ UkSkV
T
k , and D = Uk is

the initial orthogonal dictionary. As the analysis in [6], the skinny SVD of Zk is readily avail-

able when solving Eq (27): Fig 4(a) shows that PCA initialization and RPCA initialization both

perform well when the initial first k frames have little noise. The initial frames is generally

clean, therefore, we choose PCA initialization as the default.

Orthogonal Dictionary Update: As the appearance of a target may change drastically, it is

necessary to update the orthogonal dictionary D. Here we adopt an incremental PCA algo-

rithm [21] to update the dictionary.

Dictionary Reinitialization: When the tracker is prone to drift, dynamically reinitializing

dictionary to obtain the intrinsic subspace features is needed. We adopt the strategy proposed

by [7]. The reinitialization is performed at t-th frame if σ = ketk0/len(et)> thr, where et is the

noise item at t-th frame, len(.) is the length of vector, and thr > 0 is a threshold parameter

(generally 0.5). If σ> thr, we reinitialize the dictionary in the same way as initialization of dic-

tionary by doing RPCA, but Yt in Eq (27) is different. Here, Yt consists of optimal candidate

observations respectively from the initial n (generally 10) frames and the latest t − n frames

(we set t = 30). Fig 4(b) compares the tracking performance within and without RPCA reinitia-

lization when the object undergoes variable illumination. After reinitializing dictionary, our

tracker retracks the object, so reinitializing dictionary is efficient to improve the reconstruc-

tion ability. In Algorithm 2, we summarize the overall tracking process for frame t.

Experimental Results

In this section, we compare the performance of our proposed tracker with several state-of-the-

art tracking algorithms, such as TLD [22], IVT [5], ASLA [23], L1APG [14], MTT [11], SP

[15], SPOT [24], FOT [25], SST [26], SCM [27], MIL [2], and Struck [3], on twenty-two video

sequences from the popular benchmark [20] including basketball, bolt, boy, car4, carDark,

carScale, crossing, david, david2, david3, deer, faceocc1, faceocc2, fish, football, mountainBike,

shaking, skating1, trellis, walking, walking2 and woman. These sequences are publicly available

online at http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html. Representative videos

including Tiger1 and Singer1 have been downloaded from the open video data-sets of the

paper [28]. Our tracker is implemented in MATLAB and runs at 4.2 fps on an Intel 2.53 GHz

Dual-Core CPU with 8GB memory, running Windows 7 and Matlab (R2013b). We empiri-

cally set η = 0.1, λ = 0.5, γ = 0.1, τ = 0.05 and the Lipschitz constant L = 2. Before solving Eq

(18), all the candidates y are centralized. Considering the efficiency, the updated orthogonal

dictionary D is taken columns corresponding to the 16 largest eigenvalues of PCA or RPCA,

600 particles are adopted, and the model is incrementally updated every 5 frames. In the
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following, we present both qualitative and quantitative comparisons of above mentioned

methods.

Algorithm 2 Our Robust Visual Tracking Algorithm

Initialization:InitializeorthogonaldictionaryD by performingPCA on Yk.
Input:Statext−1 (t > k) and orthogonaldictionaryD.
Step 1: Draw new samples xi

t from xt−1 and obtaincorrespondingcandidates yi
t.

Step 2: Obtainαi
t and eit using Eq (19).

Step 3: For each candidate,calculatethe observationprobabilitypðyi
tjx

i
tÞ

usingEq (4).
Step 4: Find the trackingresultpatch y�t with the maximalobservationlikeli-
hood and its correspondingnoise e�t.
Step 5: performan incrementalPCA algorithmto updatethe orthogonaldictio-
nary D every five frames.If σ > thr, reinitializingDictionaryat t-th frame
usingEq (27).
Output:State x�t and correspondingimage patch;orthogonaldictionaryD.

Qualitative Evaluation

We choose some examples from part of 22 sequences to illustrate the effectiveness of our

method. Fig 5 shows the visualization results.

Heavy Occlusion: Fig 5(a) and 5(b) show three challenging sequences with heavy occlu-

sion. In Faceocc1 and Faceocc2, the targets undergo with heavy occlusion and in-plane rota-

tion, it can be seen that our method outperforms the other tracking algorithms. David3
demonstrates that the proposed method can capture the accurate location of objects in terms

of position, and scale when the target undergoes severe occlusion (e.g., David3 #0085). How-

ever, IVT, L1APG, MIL, SP, SCM, ASLA, TLD, SPOT, FOT, SST, MTT, and Struck methods

drift away from the target object when occlusion occurs. For these four sequences, the IVT

method performs poorly since conventional PCA is not robust to occlusions. Although L1APG

Fig 4. Comparison of PCA and RPCA. The upper portion of the image is the tracking frame. the middle of the image

consists of three sub-pictures, the left is the mean image, the middle is the reconstruction result, and the right is the

Lapalace noise. the bottom of the image is the top ten basis vectors of dictionary. (a) shows the tracking results of PCA and

RPCA dictionary initialization. The tracking performance with and without RPCA reinitialization is shown in (b). Reprinted

from [20] under a CC BY license, with permission from Yi Wu, original copyright 2013.

doi:10.1371/journal.pone.0168093.g004
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Fig 5. Sampled tracking results of evaluated algorithms on ten challenging image sequences.

doi:10.1371/journal.pone.0168093.g005
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and SP utilize sparsity to model outliers, it is observed that their occlusion detection are not

stable when drastic change of appearance happens. In contrast, our method is robust to heavy

occlusion. This is because our combination of L0 and L1 regularized appearance model can

exactly reconstruct the object.

Fast Motion: Fig 5(c) show the sequences Boy and Deer with fast motion. It is difficult to

predict the locations of the tracked objects when they undergo abrupt motion. In Boy, the cap-

tured images are blurred seriously, but Struck and our method track the target faithfully

throughout the images. IVT, MTT, ALSA, SCM and SST methods drift away seriously. We

note that most of the other trackers have drift problem due to the abrupt motion and back-

ground clutter in sequence Deer. In contrast, the SST and our method successfully track the

target for whole video.

Illumination Changes and Scale Variation: In Fig 5(d) and 5(e), we test three challenging

sequences with illumination changes and scale variation. Fish chips contain significant illumi-

nation variation. We can see that the L1APG, MTT, and MIL methods are less effective in

these cases (e.g., Fish #0305). In CarDark, our method still performs well, but TLD, FOT, and

MIL fail. Our method also achieves good performance in CarScale with scale variation (e.g.,
CarScale #0204). For subspace-based approaches, they may fail to update the appearance

model as the calculation of coefficients in their models may have redundant background fea-

tures. Our method can successfully adapt to variable drastic changes since the combination of

sparse coding and sparse counting is not merely stable but also applicable to obtain the intrin-

sic features of the subspace.

Background Clutters: Fig 5(f) demonstrates the tracking results in Baskerball and Football
with background clutter. Baskerball is a difficult sequence because it contains cluttered back-

ground, illumination change, heavy occlusion and non-rigid pose variation. Unless our

tracker, none of the compared algorithms can work well on it(e.g., Baskerball #0486 and

#0614). As shown in Football, our tracker performs relatively well (e.g., Football #304) as it has

excluded background clutters in the sparse errors, but TLD, FOT, and MIL fail.

Quantitative Evaluation

We use two metrics to evaluate the proposed algorithm with other state-of-the-art methods.

The first metric is the center location error measured with manually labeled ground truth data.

The second one is the overlap rate, i.e., score ¼
areaðRT

T
RGÞ

areaðRT
S

RGÞ
, where RT is the tracking bounding

box and RG is the ground truth bounding box. The larger average scores mean more accurate

results.

Table 1 shows the average overlap rates. Table 2 reports the average center location errors

(in pixels) where a smaller average error means a more accurate result. Notice that the results

are calculated by averaging 5 runs of these algorithms. As can be seen from the table, the most

sequences generated by our method have lower average error and higher overlap rate values.

We provide the precision and success plots in Fig 6 to evaluate our performance over all the 22

sequences. The evaluation parameters are set as default in [20]. We note that the our algorithm

performs well for the videos with occlusion, low resolutionn, in plane rotation, and back-

ground clutter based on the precision metric and the success rate metric as shown in Figs 7

and 8 respectively. Both table and figures show that our method achieves favorable perfor-

mance against other state-of-the-art methods.

To further compare the running time of four subspace-based tracking algorithms (i.e. IVT,

L1APG, SP and our method), we calculated the average Frames Per Second (FPS) for 32 × 32

image patch (see the last row of Table 1). For L1APG, we reported FPS for its APG acceleration.
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It can be seen that IVT is quite faster than other trackers as its computation only involves

matrix-vector multiplication. Both SP and our method are faster than L1APG. It is also

observed that our method is much faster than SP. This is due to the different choices of the

optimization scheme. SP adopts a naive altering minimization strategy, in contrast, our

method is efficiently solved by APG.

Conclusion

In this paper, we propose sparse coding and counting method under Bayesian framwork for

robust visual tracking. The proposed method combines L0 regularization and L1 regularized

sparse representation in a unique one, therefore, it has better ability to sparsely represent an

object and the reconstruction result are also better. Besides, to solve the proposed model, we

develop a fast and efficient APG algorithm. Moreover, the closed solution of the combination

Table 1. Average overlap rate and average frame per second (FPS). The best and the second results are shown in BOLD fonts and BOLD fonts,

respectively.

TLD IVT ASLA L1APG MTT SP SPOT FOT SST SCM MIL Struck Ours

Faceocc1 0.58 0.73 0.32 0.76 0.70 0.79 0.74 0.60 0.79 0:79 0.60 0.73 0:80

Faceocc2 0.62 0.73 0.65 0.69 0:75 0.59 0.69 0.64 0.63 0.73 0.67 0:79 0.69

David3 0.10 0.48 0.43 0.38 0.10 0.46 0:77 0.41 0.30 0.41 0.54 0.29 0:73

Boy 0.66 0.26 0.37 0:73 0.50 0.36 0.57 0.64 0.36 0.38 0.49 0.76 0:81

Deer 0.60 0.03 0.03 0.60 0.61 0.72 0.72 016 0.62 0.07 0.12 0:74 0:82

Fish 0.81 0.77 0.85 0.34 0.16 0.83 0.83 0.78 0:86 0.75 0.45 0.85 0:87

CarDark 0.45 0.66 0.85 0:88 0.83 0.77 0.00 0.26 0.86 0.84 0.20 0:89 0.85

Jogging-2 0.66 0.14 0.14 0.15 0.13 0:73 0.20 0.12 0.12 0.73 0.14 0.20 0:74

CarScale 0.45 0:63 0.61 0.50 0.49 0.60 0.01 0.35 0.55 0.59 0.41 0.41 0:81

Basketball 0.02 0.11 0.39 0.23 0.19 0.23 0.01 0.17 0.20 0:46 0.22 0.20 0:63

Football 0.49 0.56 0.53 0.55 0.58 0:69 0.01 0.55 0.40 0.49 0.59 0.53 0:59

Average 0.46 0.34 0.36 0.41 0.34 0:50 0.43 0.37 0.39 0.44 0.39 0.41 0:70

FPS 21.74 27.83 7.48 2.47 0.99 2.35 – 376:48 2.12 0.37 28:06 10.01 4.27

doi:10.1371/journal.pone.0168093.t001

Table 2. Average center location error and average frame per second (FPS). The best and the second results are shown in BOLD fonts and BOLD fonts,

respectively.

TLD IVT ASLA L1APG MTT SP SPOT FOT SST SCM MIL Struck Ours

Faceocc1 27.37 18.42 78.06 17.33 21.00 14.14 17.17 29.00 13.00 13:04 29.86 18.78 12:88

Faceocc2 12.28 7.42 19.35 12.76 9.836 10.43 11.78 11.94 12.82 5:96 9.02 13.60 5:50

David3 208.00 51.95 87.76 90.00 341.33 8:74 6.27 33.40 104.50 73.09 29.68 106.50 5:79

Boy 4.49 91.25 106.07 7.03 12.77 58.09 8.93 5.79 66.97 51.02 12.83 3:84 2:57

Deer 30.93 182.69 160.06 24.19 18.91 6.84 13.95 80.30 13.81 103.54 100.73 5:27 4:59

Fish 6.54 5.67 3.85 29.43 45.50 3.99 4.52 6.50 3:14 8.54 24.14 3.40 3:08

CarDark 27.47 8.43 1.54 1:04 1.57 1.35 121.58 34.43 1.19 1.30 43.48 0:95 1.31

CarScale 22.60 11.90 24.64 79.78 87.61 13:36 207.01 106.20 87.05 33.38 33.47 36.43 7:66

Basketball 213.86 107.11 82.64 137.53 106.80 39:79 169.86 118.02 105.93 52.90 91.92 118.6 7:92

Football 14.26 14.34 15.00 15.11 13.67 5:22 202.03 13.36 17.21 16.30 12.09 17.31 7:28

Average 50.48 72.54 78.20 64.58 85.48 39:38 69.46 55.66 88.42 48.26 48.92 49.17 7:97

FPS 21.74 27.83 7.48 2.47 0.99 2.35 – 376:48 2.12 0.37 28:06 10.01 4.27

doi:10.1371/journal.pone.0168093.t002
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of L0 norm and L1 norm regularization is provided. Extensive experiments testify to the superi-

ority of our method over state-of-the-art methods, both qualitatively and quantitatively.
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