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Abstract

When studying the impacts of climate change, there is a tendency to select climate data

from a small set of arbitrary time periods or climate windows (e.g., spring temperature).

However, these arbitrary windows may not encompass the strongest periods of climatic

sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need

to consider a wider range of climate windows to better predict the impacts of future climate

change. We introduce the R package climwin that provides a number of methods to test

the effect of different climate windows on a chosen response variable and compare these

windows to identify potential climate signals. climwin extracts the relevant data for each

possible climate window and uses this data to fit a statistical model, the structure of which

is chosen by the user. Models are then compared using an information criteria approach.

This allows users to determine how well each window explains variation in the response

variable and compare model support between windows. climwin also contains methods

to detect type I and II errors, which are often a problem with this type of exploratory analy-

sis. This article presents the statistical framework and technical details behind the clim-

win package and demonstrates the applicability of the method with a number of worked

examples.

Introduction

With the growing importance of climate change there are an increasing number of studies

seeking to understand the impact of climate on biological systems (e.g., [1–5]). However, in

many study systems the impacts of climate are likely to be different at different times of the

year (e.g., [4–6]) making it necessary for researchers to subset their climate data to encompass

a particular period of interest, here termed the climate window (e.g., spring temperature, win-

ter precipitation). However, this subsetting decision is often made with little a priori knowl-

edge on the relationship between climate and the biological response, leading to the arbitrary

selection of one, or few, climate windows [7].

The use of a limited number of arbitrarily selected climate windows hinders our ability to

make meaningful biological conclusions. If a trait, such as body mass or offspring number,

PLOS ONE | DOI:10.1371/journal.pone.0167980 December 14, 2016 1 / 27

a11111

OPENACCESS

Citation: Bailey LD, van de Pol M (2016) climwin:

An R Toolbox for Climate Window Analysis. PLoS

ONE 11(12): e0167980. doi:10.1371/journal.

pone.0167980

Editor: Shijo Joseph, Kerala Forest Research

Institute, INDIA

Received: June 2, 2016

Accepted: November 23, 2016

Published: December 14, 2016

Copyright: © 2016 Bailey, van de Pol. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: LDB was supported by an Australian

Postgraduate Award scholarship and MvdP by the

Australian Research Council (http://www.arc.gov.

au/; FT120100204). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0167980&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.arc.gov.au/
http://www.arc.gov.au/


displays no response to an arbitrary climate window we cannot determine if this is evidence of

climatic insensitivity in our response variable or if the choice of climate window is flawed.

Even where we detect a relationship between climate and our response, we cannot know

whether there may be another point in time at which climate has a much stronger and more

biologically meaningful impact. With flawed conclusions there is a potential to overlook key

periods of biological importance, leading us to focus limited management and conservation

resources in the wrong areas.

To overcome these issues, there is a need to test a greater number of climate windows with

fewer a priori assumptions. One solution is the use of a sliding window approach [5, 8–11],

where one varies (or slides) the start and end time of a climate window to compare multiple

possible windows and select a best window (Fig 1). However, as these analyses are often done

manually, comparison of a large number of climate windows can be cumbersome and time

consuming. Additionally, there is currently no standardised method for testing or comparing

climate windows, and we have no knowledge on the performance of sliding window

approaches, including the possibility for false positives and false negatives (type I and II

errors); precision and bias of parameter estimates and model statistics (e.g., R2); and how these

errors and biases might depend on sample size and climate signal strength. There is a need for

a standardised and automated approach that can help streamline these frequently performed

analyses and make the testing and comparison of multiple climate windows easy and accessible

to the general scientific community. The package climwin, built in R, creates a best practice

method for this process.

In a previous paper, van de Pol et al. [7] provide a broad introduction to climate window

analysis for a general scientific audience, with practical details on how the method can be

applied using climwin. It proposes a step-wise approach for climwin implementation that

encourages users to identify all potential competing hypotheses, including different potential

climate variables (e.g., rainfall, temperature), climate window types (relative or absolute; see

Section 1.2), response functions (e.g., linear, quadratic), and aggregate statistics (e.g., mean or

maximum temperature). Each of these hypotheses should then be tested and compared using a

climate window analysis, with the intention of identifying those hypotheses that are best sup-

ported by the data.

This paper is complementary to van de Pol et al. [7], building on the general introduction

to climwin by discussing the technical details of the package, both the design of the package

code and the statistical reasoning behind the proposed methods. We discuss a number of top-

ics not covered in the previous paper, including the difference between absolute climate win-

dows (e.g., May to June) and relative climate windows (e.g., two preceding months; Section

1.2); and the potential use of multi-model inferencing in climate window analysis (Section

1.4). We expand upon the commonly used sliding window analysis, discussed in van de Pol

et al. [7], and propose an alternative method for analysing climate, a weighted window analysis

(Section 2); we then consider the mechanisms available to account for errors and biases in

both methods (Section 3). Finally, we run through a worked example to demonstrate both

methods using a real world dataset (Section 4).

In combination, this paper and van de Pol et al. [7] provide a comprehensive overview of

climwin; its strengths and weaknesses; and potential future directions for the package. While

climwin has been designed with climate analysis in mind, the package can be applied to any

analysis over a continuum (e.g., time or distance) using climatic or non-climatic predictors.

For example, climate window methods like those provided in climwin have been used to

analyse plant neighbourhood competition [12]. Therefore, we expect climwin to have broad

applicability both in climate change ecology and more broadly within the scientific

community.

climwin: An R Toolbox for Climate Window Analysis
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1 Sliding window analysis

1.1 Introduction

Model selection metrics. Early sliding window analyses used Pearson’s correlation coeffi-

cient to select among different climate window models, where the best window was considered

to be the one with the strongest correlation between the climatic predictor and response (e.g.,

Fig 1. Illustration of a sliding window approach. Shaded region represents a climate signal (April 1st—June 1st), where a climatic predictor has the

strongest impact on the biological response. Each line represents a tested climate window. The start and end time of windows is varied until we identify

the best window (in red). This figure demonstrates a sliding window analysis conducted at a monthly resolution, but such analyses can use finer scale

daily data.

doi:10.1371/journal.pone.0167980.g001
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[8–10]). Yet this method only works in simple Gaussian regression models, and there is no

possibility to include additional covariates or random effects terms or consider non-linear

effects of climate.

Later sliding window studies have used information criteria (IC; [13–15]) as a metric for

model selection among competing climate windows (e.g., [5, 11]). An IC-based approach com-

pares all candidate models (i.e. climate windows) and ranks them using a chosen Information

Criterion (e.g., Akaike, Bayesian or Deviance Information Criterion; AIC, BIC and DIC

respectively). This allows for comparison of any type of multiple regression models, rather

than correlation between two variables, and allows users to assess model uncertainty and con-

duct multi-model inferencing (see Section 1.4). These characteristics make an IC approach

more suitable for analysis of climate windows, where it is necessary to compare hundreds or

thousands of different models with the aim of determining a best window or group of best

windows. An IC approach forms the basis for all climate window comparisons in climwin.

Function slidingwin. climwin provides the function slidingwin for sliding window

analysis. slidingwin requires two separate datasets: one containing climate data (ideally at

a daily scale) covering the entire period of interest and one containing information on the

response variable, as well as any potential covariates. To properly test the relationship between

our biological response and climatic predictor, it is necessary for us to take measurements that

have different climatic histories. Ideally, this will involve a combination of temporal and spatial

replication, where we measure our response variable over multiple years and/or sites. How-

ever, combining these two forms of replication assumes that climatic sensitivity is consistent

across time and space, which may not always be the case (e.g., [16]).

A key feature of climwin is the ability for users to define a baseline model into which cli-

mate data will be added. This versatility allows for the analysis of data with a variety of error

distributions (e.g., Gaussian, binomial, Poisson), the inclusion of multiple covariates, the use

of mixed effects modelling, and different types of regression models. Currently climwin is

known to work with base R functions lm and glm [17], mixed effects model functions from the

package lme4 (lmer, glmer; [18]), and the cox proportional hazard function from package

survival (coxph; [19]). Technically, any model that returns a log-likelihood or IC value can

be integrated into climwin; however differences in syntax between different modelling pack-

ages have hindered our ability to integrate more modelling functions. We aim to provide a

greater number of options for model fitting in future versions.

As highlighted in the introduction, it is possible to vary a broad range of climate window

characteristics in slidingwin (e.g., temporal resolution of climate data, aggregate statistic,

model function). Varying different characteristics of the sliding window analysis allows users

to test a variety of climate window hypotheses and help identify potentially novel relationships

between climate and the biological response. For example, while we commonly consider mean

climate, recent studies have highlighted the potential importance of climatic range [20], rate of

climate change [21, 22], and climatic thresholds [23]. However, although it is important to

consider a diversity of climate window characteristics in our analyses, changes in many of

these characteristics can slightly alter the technical details of the methods used in climwin;

therefore, we will focus specifically here on the use of mean climate at a daily resolution.

1.2 Relative and absolute climate windows

It is possible that the date of measurement for each record in the response dataset will vary

within a sampling group (e.g., year or site). This may be due to constraints on the expression

of the response variable (e.g., the date at which offspring size can be measured will depend on

birth date) or practical limitations involved in data collection. In cases where the variation in

climwin: An R Toolbox for Climate Window Analysis
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measurement time is small it is reasonable to assume that all records will be influenced by cli-

matic conditions at the same point in time; however, as variation increases this assumption

becomes less realistic.

To address this issue, climwin allows for the use of both absolute and relative climate win-

dows [24, 25]. In an absolute climate window, we assume that all records are influenced by cli-

mate at the same absolute point in time, allowing us to define windows using calendar dates

(e.g., mean March temperature). Absolute windows require the user to provide a reference

date, used as the start point for all fitted climate windows. By contrast, a relative climate win-

dow assumes that each record will be impacted by climate at different times depending on the

time of measurement. Unlike absolute window analysis, a relative window analysis will test the

impact of climate x days before the date of measurement.

Absolute climate window analysis is most useful for sampling populations with little tempo-

ral variation or data sets where we lack any information on within-group variation in trait

expression (e.g., datasets with one aggregate measurement per group; mean body mass of a

population). However, relative windows become more appropriate as temporal variation in

the data increases, particularly when searching for short-lag climate signals. For example, large

variation in moult timing of superb fairy wrens (Malurus cyaneus) makes the use of an absolute

climate window inappropriate as many individuals will already have completed moulting

before the start point of the absolute climate window. In this case, a relative climate window

(e.g., the 25 days before moulting) is much more useful [25]. It should be noted however, that

the output of relative windows can often be more difficult to interpret at the population level

as individuals will vary in their climatic sensitivity. Thus the choice of an absolute or relative

window involves a trade-off between biological realism and ease of interpretation.

Within-group centring. As an absolute window approach assumes no variation in

response within a group it can usually only explain between-group variation in the response

variable. In comparison, a relative window approach can explain both within- and between-

group variation in the response, potentially improving the explanatory power of any fitted cli-

mate window model. In certain cases, users may wish to disentangle these within- and

between-group climate effects, as they may not necessarily be of equal interest or of the same

magnitude. For example, spawning dates of frogs showed a weaker within population response

to temperature than that observed across the whole of Britain [26]. climwin can distinguish

both effects by separating climate variables using a technique called within-group centring

[27] with the parameter centre, such that both the within- and between-group climatic sensitiv-

ity are estimated for each given time window. Whether one is interested in differentiating

between these two types of variation will inform the choice of window type.

1.3 How it works

Linking climate and biological data. The first step of the slidingwin function

involves the linking and manipulation of the date information provided in the climate and bio-

logical response data frames. As R cannot automatically read date data, climwin converts this

data into an R date format using the function as.Date. Date information must be provided

in a standard dd/mm/yyyy format to ensure this process is successful. At this point, we also

take into account whether an absolute or relative window is used. Where an absolute window

is chosen, the date values of all biological records are changed to the reference day and month

provided by the user, with year remaining unchanged.

Using this new date information, slidingwin creates a data matrix containing the rele-

vant climate data for each record in the response data frame. For each biological record we

extract the climate data needed to fit all potential climate windows (e.g., climate up to 365 days

climwin: An R Toolbox for Climate Window Analysis
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before measurement; Table 1). The amount of climate data stored in this matrix will depend

on the minimum and maximum number of days considered in the analysis, determined by the

range parameter.

Model fitting. With a completed matrix we now possess all the necessary information to

test different climate windows. slidingwinuses nested for-loops to vary the start and end

time of climate windows. Where start and end time are acceptable (i.e. start time occurs before

end time) slidingwinwill subset the climate matrix to include only climate data which cor-

responds to the tested window. We use this data subset to calculate the aggregate statistic (e.g.,

mean, max, slope), set using the stat parameter.

R> apply(climatematrix[, windowstart:windowend], 1, FUN = stat)

Where windowstart and windowend refer to the columns in the climate matrix from which

climate data is extracted. The user can decide to test a linear effect of climate, or use more com-

plex model structures (e.g., quadratic, logarithmic, inverse). The function used to test climate

is determined by the user with the func parameter. Before the for-loops begin, we update the

baseline model structure to be consistent with the level of func, using a dummy climate vari-

able. Carrying out this structure update before entering the for-loops helps to reduce computa-

tional time.

R> func <- “quad”
R> baseline<- glmer(Response* 1 + (1|ID),data = BiolData,

family = poisson)
R> BiolData$climate<- rep(1, times = nrow(BiolData))
R> baseline<- update(baseline,.*. + climate+ I(climate^2),

data = BiolData)

Once inside the for-loops, we can replace the dummy climate data with the climate data

extracted from the climate matrix. Using the update function we then refit our model.

Information criterion. Once we have updated our model to replace the dummy climate

data we can extract a sample size corrected measure of AIC (AICc), using the function AICc
from the package MuMIn [28]. However, AICc does not tell us whether a fitted climate win-

dow improves upon the baseline model (i.e. a model containing no climate). Therefore, we

subtract the model AICc from the AICc value of the baseline model. This creates a metric

(ΔAICc) that can be used to both compare individual climate windows to one another and

determine how well climate in any given window improves upon the explanatory power of the

baseline model. Currently all climwin functions use AICc as their information criterion; how-

ever, there is potential for other criteria to be used in the future.

Output. slidingwin returns three distinct objects. Firstly, slidingwinwill return a

data frame containing information on the entire model set reflecting all fitted climate win-

dows. This data is sorted by ΔAICc, so that the best model (i.e. smallest ΔAICc value) is listed

Table 1. Example of a climate matrix built using slidingwin.

RecordID Measurement date (x) Climate on day x Climate on day x − 1 Climate on day x − 2 . . . Climate on day x − n

1 01/01/2015 5.2 6.0 2.4 . . . 23.1

2 02/02/2015 4.8 5.2 6.0 . . . 22.0

3 21/01/2015 4.5 2.4 7.5 . . . 23.9

Climate data is stored for each day before the biological data was collected. Data will be stored up until day x—n, where n is set by the user with the

parameter range.

doi:10.1371/journal.pone.0167980.t001
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at the top. With this data frame, the function plotdelta can be used to produce a heat map

representing the landscape of ΔAICc values for all fitted climate windows (see Section 4). By

examining the ΔAICc landscape the user can determine whether multiple peaks of climatic

sensitivity may be present in the data. Additionally, slidingwin returns the best model (i.e.

the model with the lowest value of ΔAICc) as well as the climate vector used to fit this best

model.

1.4 Multi-model inferencing

Until this point we have only discussed extracting a single best model from our slidingwin
analysis; however, we must be aware that there will be uncertainty in the estimation of the best

model. An IC approach provides well established methods to deal with this uncertainty, using

Akaike model weights (wi; the probability that model i is in fact the best model within the

model set; [15]). In practice, we often have little certainty that the model with the lowest

ΔAICc is in fact the best model, as a number of top models can have very similar values of wi.

This is particularly likely in climate window analysis as climate data will often be strongly

auto-correlated. Our worked examples illustrate that the top models can have very similar val-

ues of both ΔAICc and wi (see Section 4). Is it reasonable, therefore, to extract a single best

window from a sliding window analysis?

Ultimately, this will depend on one’s reason for using climwin. Although we often discuss

climate as the key point of interest, in some cases users may be more interested in simply

accounting for the effect of climate on their response variable, without much concern for the

exact nature of the climatic signal. In such a case, it makes sense to extract and use the best cli-

mate window as this is, by definition, the climate window that can best explain variation in the

response variable.

In other cases, we may be more interested in accurately calculating the timing of a climate

signal and/or the relationship between climate and our response. In these scenarios, it makes

much less sense to pick a single window as the difference in wi between the top windows is

likely to be small. As an alternative we can take a group of models that make up a cumulative

sum of wi. For example, we may group all those models that include the top 95% of wi. With

such a subset we can be 95% confident that the best model is located within our new model set.

This model set is often called a ‘confidence set’ [15]. We can then report values calculated from

this subset of top models using multi-model inferencing.

Measuring the percentage of windows included within a confidence set (C) can help users

determine confidence in a given climate signal. If the models within the set make up a small

percentage of the total models tested (C is low; e.g., Fig 2a) we can be much more confident

that we have observed a real climate signal; however when no climate signal occurs, the confi-

dence set is likely to be much larger (C is high; e.g., Fig 2b). climwin includes the plotting func-

tion plotweights that visualises different confidence sets for a sliding window analysis and

calculates the percentage of models within the 95% confidence set (by default plotweights uses

the 95% confidence set although users can adjust this cut-off if desired).

When we are interested in estimating the timing of a climate window, it may be useful to

determine a median start and end time for all windows within the confidence set. This can be

acheived using the function medwin. Additionally, the function plotwin can generate

box plots illustrating the variation in start and end times within the 95% confidence set. These

median values allow users to account for model uncertainty when estimating climate window

timing. Similarly, when a user is interested in estimating the relationship between climate and

the biological response we can draw information from a subset of potential climate windows

using model averaging [15]. A model averaged parameter estimate is simply the sum of

climwin: An R Toolbox for Climate Window Analysis
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parameter estimates weighted by wi. With such model averaging we can determine the average

relationship between climate and our response variable within the confidence set. Users can

conduct model averaging using the parameter estimates and model weight values presented in

the slidingwin output.

Multi-model inferencing is fairly straight forward for datasets with a clear climate signal,

where the value of C is small, yet this will not always be the case. Large values of C may occur

when multiple climate signals are present in the data or when the climate signal is weak (i.e.

low R2), exacerbated by low sample size (Fig 3). Both the median window location and model

averaged parameter estimates are less informative in situations where C is large as the 95%

confidence set may include poor models with spurious parameter estimates [29]. Where multi-

ple peaks are present it can be reasonable for users to adjust the range parameter within their

slidingwin analysis to approach each climate signal separately. However, when a large

value of C is caused by a weak signal model averaging is not advisable.

2 Weighted window analysis

2.1 Introduction

When testing climate windows using mean climate one effectively fits a weight function to the

climate data. Using a sliding window approach, we assume that all points between the start

and end time of a climate window influence the biological response equally (i.e. a uniform

weight distribution with sum of 1). Outside the window, climate is assumed to have no influ-

ence on the response (i.e. a uniform distribution with sum of 0; Fig 4a). As we group time into

discrete units (i.e. days, weeks, months), assuming a uniform distribution leaves us with a finite

number of potential climate windows to test, allowing us to undertake a brute-force approach

Fig 2. Heat-map of 95%, 50% and 25% confidence sets for slidingwin analysis. Where a strong climate signal occurs, models within the confidence

sets make up a small percentage of total models (a; 7%). Where there is no climate signal the confidence set is much larger (b; 91%). A point with window

start of 100 and window end of 50 represents a climate window fitted using mean climate 50–100 days before measurement date. Figures generated using

plotweights.

doi:10.1371/journal.pone.0167980.g002
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for climate window analysis, where we systematically test all possible combinations of start

and end time sequentially.

Realistically however, the assumption that all points within a time window contribute

equally to a climate signal may not be true. The importance of climate will likely change gradu-

ally, not abruptly, over time. As an alternative, one can determine a weighted climate mean

using a single fitted weight distribution, allowing each climate record to take any weight value

between 1 and 0. This allows for more biologically realistic relationships between climate and

the biological response. We call this method a ‘weighted window approach’.

Fig 3. Relationship between the percentage of models in the 95% confidence set and climate signal strength. Percentage of models in the

95% confidence set (C) are shown for a very strong (R2 = 0.8), strong (R2 = 0.4), and moderate climate signal (R2 = 0.2). Boxes represent median

and inter-quartile range. Data from 2,000 simulated datasets, see Section 3 for methods.

doi:10.1371/journal.pone.0167980.g003
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climwin includes the function weightwin, based on the methods outlined in van de Pol

and Cockburn [25], which allows for the calculation of weighted climate means using more

complex weight distributions fitted using three parameters: scale, shape and location. The loca-

tion parameter allows users to adjust where the peak of the distribution sits, similar to a sliding

window approach (e.g., Fig 4b solid and dashed lines). Unlike a sliding window analysis how-

ever, the scale and shape parameters allow for users to also adjust the width (duration of win-

dow) and shape (e.g., exponential decay or bell-shaped) of the distribution respectively. These

three parameters are optimised to achieve the lowest possible value of ΔAICc.

As the type of data used is the same, users can apply both the slidingwin and weight-
win function to the same set of data with no changes required. This allows these two

approaches to be used in complement to one another and directly compared (section 2.4).

2.2 Weight distribution

In principle, any type of probability distribution function can be used to model a weight distri-

bution. So far two probability distribution functions are implemented in weightwin that

specifically reflect aspects of weight distributions that we think are biologically relevant. The

Weibull function is described by the three parameters shape, scale and location and allows for

a wide range of weight distributions (Fig 4b). Moreover, for specific values of shape and loca-

tion the Weibull weight function reduces to an exponential distribution, producing a weight

distribution that reflects gradual decay/fading memory effects (Fig 4b; [25]).

The second function is the Generalized Extreme Value (GEV) probability distribution func-

tion, which allows for even greater flexibility as it includes functions from the Frechet, Gum-

bel, and reverse Weibull families (Fig 4c). The GEV function also has a shape, scale and

location parameter but, in contrast to the Weibull, includes left-skewed, right-skewed, as well

as fairly non-skewed functions, which allows for the comparison of even more refined compet-

ing hypotheses. In practice, the GEV function can be harder to fit, as it is more likely to get

stuck on local optima during convergence due to the asymptotic nature of the shape parameter

around the value zero [25].

Importantly, both the Weibull and GEV probability distribution functions enforce smooth-

ing on the weight distribution. This is of particular importance when analysing climate data, as

data is likely to show strong auto-correlation. Furthermore, by imposing smoothing the weight

Fig 4. Examples of weight distributions generated with a) uniform, b) Weibull, and c) Generalised Extreme Value probability distribution

functions.

doi:10.1371/journal.pone.0167980.g004
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distributions are less likely to be impacted by single extreme climatic events thus reducing the

potential for overfitting bias.

Although Weibull and GEV are useful for modelling climate windows, additional probabil-

ity distribution functions (e.g., Gaussian) may provide reasonable alternatives. Future updates

in climwin will seek to expand the range of weight distributions available to users, increasing

the versatility of the weightwin function.

2.3 How it works

weightwinworks in a similar way to slidingwin. However, rather than varying window

start and end time using nested for-loops, weightwin varies the values of scale, shape and

location to minimise the value of ΔAICc, using the base optimisation function optim in R. By

default, we use a quasi-Newton method of optimisation, described by Byrd et al. [30]. This

allows for bounding of the shape, scale and location parameters; however, users can employ

alternative optimisation methods through the method parameter in weightwin. Each set of

scale, shape and location values is used to generate a weight distribution using either the Wei-

bull or GEV function. This distribution is then used to calculate a weighted climate mean,

which is added to the baseline model with the update function. A value of ΔAICc is returned

for the optimisation function to assess.

Once the optimisation function has converged, the user will be provided with an output

showing the optimised weight distribution and a corresponding best model. Additionally,

users will be shown technical details of the optimisation procedure, which can help users to

adjust and improve the optimisation process if needed (e.g., alter the initial values with param-

eter par or change the settings of the optimisation routine with parameter control).

2.4 Comparing approaches

Using a weighted window approach provides a number of benefits over slidingwinwhen

assessing the impacts of climate. Firstly, by allowing for an infinite number of potential weight

distributions, weightwin can provide greater detail on the relationship between climate and

the response, such as the occurrence of exponential functions reflecting fading memory effects

of past climate. Additionally, by using more diverse weight distributions, weightwinwill

often generate models with better ΔAICc values, which may be especially important when

users are most interested in achieving high explanatory power, although one should be aware

of potential over-fitting bias (Section 3). Furthermore, by using an optimisation routine

weightwin often needs to test far fewer models than slidingwin, allowing for more

rapid analysis.

Despite these benefits, weightwinwill not always be the most appropriate function for all

scenarios. Firstly, the nature of the fitted weight distributions means that weightwin can

only detect single climate signals, which forces users to detect and compare potential climate

signals with separate analyses. While step-wise peak comparison is also required in sli-
dingwin, the brute-force approach allows for the detection of multiple climate signals with a

single analysis by observing the full ΔAICc landscape. weightwin can also be more techni-

cally challenging, with users needing to adjust starting values and optimisation settings (e.g.,

step size, optimisation method) to find the global optimum (i.e. lowest value of ΔAICc). Such

technical requirements may limit the accessibility of the weightwin function to the general

user. Additionally, weightwin can only be used for testing mean climate, with no capacity to

consider other aggregate statistics. Therefore, whether one chooses to use weightwin or

slidingwinwill depend on the aggregate statistic of interest, the level of detail desired, and

the user’s technical knowledge.
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Ideally, we recommend the use of slidingwin and weightwin in conjunction to

improve our understanding of climate windows. The slidingwin approach can be used to

explore general trends in the climate data and broadly identify climate signals, including cir-

cumstances where multiple climate signals are present. When climate signals are detected

using mean climate, the weightwin function can then provide greater detail on the specific

climate signals observed in the slidingwin approach.

2.5 Alternative approaches

As discussed above, a limitation of using weightwin is the inability to detect and compare

multiple climate signals in a single analysis. This issue is a necessary consequence of the

assumptions built into the Weibull and GEV functions, forcing us to identify and analyse each

climate signal separately. Although slidingwin improves upon this issue somewhat by

allowing for multiple signal detection, step-wise signal comparison is still required. Yet multi-

ple climate signals may be fairly common and the ability to test and compare these simulta-

neously would be useful.

With advances in computing and statistics a number of data-driven methods to tackle high-

dimensional problems like climate analysis have become common, such as machine learning,

least absolute shrinkage and selection operator (LASSO) and functional linear models using

splines [12]. These alternative methods offer additional flexibility compared to Weibull and

GEV functions, by allowing for the detection of multiple signals with a single analysis (e.g.,

[12]). Furthermore, they open up the possibility of multi-dimensional climate window analy-

sis, analysing multiple climate variables at the same time, potentially improving upon the uni-

dimensional analysis currently employed in climwin.

Splines in particular may provide a suitable alternative for weighted window analysis, as

they are ideally suited for modelling a smooth function over a continuum (e.g., time; [12, 31]).

In their work, Teller et al. [12] successfully apply a spline function to assess climate signals,

demonstrating the ability to detect multiple climate signals within a single weight distribution.

Encouragingly, the spline method was able to outperform functions generated by random for-

est machine learning and LASSO methods, especially at higher climatic resolution that will be

common in climate window analyses (e.g., weeks instead of months). The use of splines may

reduce the limitations currently encountered by weightwin, and incorporating splines is a

priority for future climwin versions.

However it should be noted that the effectiveness of spline functions, in comparison to

LASSO and machine learning, was found to vary depending on the characteristics of the data

used ([12]; their Fig 6). Users of climwin will likely analyse a wide variety of data types and

seek to answer a broad range of questions. One should be aware that no single method may be

ideal for all questions, and it may be more appropriate to consider a range of possible climate

window methods and provide a mechanism to compare them. By incorporating a range of

alternative methods, such as sliding and weighted window methods, climwin offers a broad

toolbox for analysis of a wide range of questions.

3 Assessing method performance

Although sliding and weighted window approaches can help us identify climate signals, there

has so far been limited systematic testing of the performance of these methods and no way to

assess the likelihood that a detected signal is genuine. While Teller et al. [12] employed some

method comparison using model correlation (i.e. the correlation of observed parameter esti-

mates with predicted estimates), we still possess little knowledge on potential bias inherent to

climate window analyses; the precision of the climate window coefficients and model statistics
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(e.g., slope, R2, window duration); or the rates of type I and type II errors. climwin includes

mechanisms to test and account for many of these potential errors and biases, providing a

standard method for testing current and future climate window approaches.

In this section, we will discuss two of these mechanisms, data randomisation and k-fold

cross-validation, and quantify their ability to reduce type I and II errors and R2 bias respec-

tively. Although we focus here on only two potential biases, users should be aware that biases

in other metrics also occur (e.g., slope and window duration bias) and the approaches to

account for these biases may differ [7]. Ultimately, the mechanisms one employs to account

for potential bias will depend on which metric we most accurately want to predict.

3.1 Data randomisation

To estimate the probability that a given result represents a false positive (type I error) we can

calculate the expected distribution of ΔAICc values in a data set where no relationship exists

between climate and our response variable. climwin provides the function randwin, which

randomises a given dataset (i.e. removes any climate signal) and conducts a sliding window

analysis to extract a value of ΔAICc. randwin reorders the date variable in the original response

data frame, allowing us to maintain any relationship between the response variable and other

covariates and maintaining auto-correlation within the climate data while still removing any

relationship between climate and the response. Following this randomisation procedure, rand-
win will run a climate window analysis on this new set of data from which we extract the

ΔAICc of the best model.

The randomisation process is repeated a number of times, defined by the user with the

parameter repeats. We recommend a large number of randomisations (e.g., 1,000) to best esti-

mate the distribution of ΔAICc values that could be obtained from a climate window analysis

on a dataset with no climate signal (ΔAICcrand). We can then determine the percentile of

ΔAICcrand that exceeds the value of ΔAICc observed in our analysis, allowing us to calculate

the likelihood that a given ΔAICc value might occur by chance (termed PΔAICc). PΔAICc can be

obtained using the function pvalue.

Although conducting a large number of randomisations is the best method to guard against

false positives, running this many randomisation can be impractical. Many analyses will use

large datasets and/or complex models that can take multiple hours to run. Running time will

also be impacted by the range over which the analysis covers, with the number of models run

during a sliding window analysis increasing approximately quadratically with analysis range

(Eq 1).

models ¼
range � ðrangeþ 1Þ

2
ð1Þ

For a sliding window analysis covering a year (range = c(365,0)) climwin will fit over

67,000 models.

Consequently, carrying out 1,000 or even 100 randomisations may simply take too long for

many users. Yet it is still important that we are able to protect against the possibility of false

positives. As an alternative, climwin includes a metric that can be used to estimate the proba-

bility of false positives with a limited number of randomisations (e.g., 5–10).

To empirically derive an alternative metric, we analysed a range of simulated datasets

where the occurrence of a real signal was known. We generated groups of 2,000 datasets, each

with a range of sample sizes (10, 20, 30, 40, or 47 datapoints) and levels of climate signal

strength (climate signals with an R2 that was very high [0.80], high [0.40], moderate [0.20], or

where no signal was present). Our simulated datasets were intentionally small, which allowed
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us to derive a potential metric that is able to function well in challenging situations. Many cli-

mate analyses will use datasets with many more data points by employing temporal and spatial

replication. The performance of the metric will often be much better in these circumstances.

We assigned each dataset a binary value (SignalTrue) depending on whether it contained a

real signal (1) or no signal (0). For every dataset, we then ran a full slidingwin analysis and

extracted metrics for the best model, here after termed the observed result (R2, sample size,

ΔAICc, and the percentage of models within the 95% confidence set [C]). In addition, we ran

each dataset either with k-fold cross-validation (with k = 10 folds; see Section 3.2) or without.

In total, we tested 80,000 different datasets. For each of these datasets we then used randwin,

with repeats = 5, to determine the median value of ΔAICc and C from randomised data. From

this we calculated two new metrics:

DD ¼ DAICcobserved � medianðDAICc5 randomizationsÞ ð2Þ

DC ¼ Cobserved � medianðC5 randomizationsÞ ð3Þ

We divided our simulation results in half to generate a training and test dataset that we

could use to calculate our new metric. We expected that the effectiveness of ΔD and ΔC would

vary with both sample size and the use of cross-validation. We therefore divided our training

dataset again to separate those datasets that used cross-validation and those that didn’t. For

each of these two training datasets we then fitted two potential models:

LogitðSignalTrueÞ � b0 þ b1DDþ b2N þ b3DD � N ð4Þ

LogitðSignalTrueÞ � b0 þ b1DC þ b2N þ b3DC � N ð5Þ

where N is the sample size of the dataset used to calculated the values of ΔC and ΔD.

Both with and without cross-validation, Eq 5 was clearly the best supported (ΔAICc<

-2,500), suggesting that ΔC is the best metric to determine the likelihood of a real signal. There-

fore, we determine the likelihood that a given value of ΔAICc has occurred by chance with our

new metric (PC) to be:

PC ¼
1

1þ expð� 0:54þ 1:95 � DC þ 0:08 � N þ 0:31 � DC � NÞ
ð6Þ

for datasets analysed without the use of cross-validation, and

PC ¼
1

1þ expð� 0:62þ 11:56 � DC þ 0:06 � N þ 6:88 � DC � NÞ
ð7Þ

for datasets analysed with the use of 10-fold cross-validation.

Finally, we used our test dataset to determine the rate of misclassification for our new met-

ric, PC. Specifically, we calculated the rate of false negatives in datasets where we knew a signal

was present and the rate of false positives in those datasets where no signal existed.

PC was able to provide a good estimate of the reliability of a signal, with average rates of mis-

classification generally low (Fig 5; mean false negative rate = 0.10, mean false positive

rate = 0.17). The effectiveness of PC was strongly influenced by both sample size (Fig 5) and cli-

mate signal strength (Fig 6), with misclassification rates dropping well below the overall aver-

age when sample size and signal strength increased (e.g., false negative rate = 0.02 when

N = 30, R2 = 0.4; Fig 6). Sample size also had a strong influence on false positive rates which

decreased with increasing sample size (Fig 5b). These results are not necessarily surprising as

misclassification is common when dealing with weak effects and small sample sizes, but it
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highlights the importance of using large sample sizes when conducting these types of explor-

atory analyses and the need for caution when interpreting results from small datasets.

For this exercise, we considered a signal to be identified when PC< 0.5 (i.e. when PC calcu-

lated that there was a better than even chance that a given signal was real). The point that one

Fig 5. Relationship between sample size (N) and misclassification rate of climate signals. Misclassification rate calculated using the metric PC

both with 10-fold cross-validation (dashed line) and without cross-validation (solid line). Metric tested on datasets where a) a climate signal is present

and b) a climate signal is missing. Note that misclassification in a) denotes false negatives while in b) it denotes false positives.

doi:10.1371/journal.pone.0167980.g005

Fig 6. Relationship between climate signal strength (R2) and misclassification rate of climate signals. Misclassification rate (false negative)

calculated using the metric PC at sample sizes of 10 (solid line), 30 (dashed line) and 47 (dotted line) with a) no cross-validation and b) 10-fold cross-

validation.

doi:10.1371/journal.pone.0167980.g006
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chooses to distinguish between real and false signals will ultimately involve a trade-off between

false positive and negative rates. A lower more conservative cut-off would reduce the chance of

false positives but simultaneously increase false negative rates. As an alternative to cut-off val-

ues, we encourage the reporting of the full values of PC and PΔAICc as a means of documenting

the confidence in a given result, rather than trying to classify signals as either real or not.

3.2 k-fold cross-validation

While PC and PΔAICc can help test the rates of false positives and negatives, they give us no indi-

cation of the reliability of the parameter estimates and model statistics derived from our best

model (e.g., R2, slope, window duration). k-fold cross-validation, provided in slidingwin,

can be a key tool to help account for any potential biases in these estimates that might arise

from overfitting [32]. k-fold cross-validation involves the division of a dataset into k training

datasets (of length N � N
k) and k test datasets (of length N

k , with k� N), where N represents

sample size. Once these training and test datasets are partitioned, slidingwin fits each cli-

mate model to one of the training datasets and its predictive accuracy is then tested on the cor-

responding test dataset. To measure predictive accuracy, mean square error (MSE) of the

training fit to the test data is used to calculate the AICc:

AICcmodel ¼ N � logðMSEÞ þ 2rþ
2rðrþ 1Þ

N � r � 1
ð8Þ

(where ρ is the number of estimated model parameters) and subsequently compared to the

AICc of the baseline model, also determined using the training dataset, to obtain ΔAICcmodel.

This procedure is repeated k times (once for each test dataset), after which the ΔAICcmodel is

averaged across all folds to obtain the cross-validated ΔAICcmodel. The total number of folds

used, is set by the user with the parameter k in the slidingwin function.

Cross-validation is used in slidingwin to improve the ΔAICc predictions of each cli-

mate window, the out-of-sample ΔAICc, which is then used to improve the model selection

process. Each climate window is ultimately fitted to the full dataset, so all other parameter esti-

mates and model statistics (e.g., R2) have not been cross-validated. However, our more conser-

vative model-selection process is able to greatly reduce the bias in the estimation of climate

signal R2, reducing the inherent optimistic bias observed in climate window analyses con-

ducted without cross-validation (Fig 7).

To determine the optimum value of k for R2 estimation, we generated groups of 1,200 data-

sets each with a known climate signal (R2 = 0.22) and varying sample sizes (10, 20, 30, 40, or 47

datapoints). For each sample size group, slidingwin analysis was conducted varying the

value of k (0, 2, 4, 6, 8, and 10-folds), so that 200 datasets were tested for each level of sample

size and k-folds. Because k cannot exceed N, k = 10 was used as the largest number of folds.

We found that increasing the number of folds consistently improved estimation of R2 across

all sample sizes, with k = 10 providing the best estimate of R2 (Fig 8).

Although cross-validation greatly improves R2 estimation, users should be aware that R2

bias is not completely removed by cross-validation and the goodness-of-fit of the best model

from slidingwinmay still be overly optimistic. Additionally, like data randomisation, k-

fold cross-validation can substantially increase the computational time of slidingwin, and

users will need to consider a trade-off between reducing R2 bias and analysis time.

While data randomisation and k-fold cross-validation improve our detection of climate sig-

nals and our estimates of climate signal R2, neither of these methods can be reliably used to

simultaneously combat all potential biases in climate window analysis. For example, although

cross-validation can effectively reduce bias in R2 it will also increase false positive rates,
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particularly at low sample sizes (Fig 5b). Ultimately, therefore, the methods chosen to reduce

bias in climate window analysis will differ depending on the particular parameters of interest.

4 Worked examples

This section provides examples applying the climwin package to real data. We use the Chaff
and ChaffClim datasets, included with the package, to run both a sliding window and

weighted window analysis. As part of this analysis, we demonstrate the use of multi-model

inferencing to determine the median start and end time of a climate signal and conduct model

averaging on parameter estimates. In addition, we conduct k-fold cross validation and data

randomisation to determine PC and PΔAICc.

4.1 Analysis with slidingwin

Our analysis of the Chaff dataset focuses on the impact of mean temperature on the annual

average laying date of the common chaffinch (Fringilla coelebs) over a 47 year period (1966-

2012; with data provided by the British Trust for Ornithology). We first carry out a sliding

window analysis on our data using slidingwin.

Function syntax. To begin, we set the structure of our baseline model using the base lm
function.

R> baseline= lm(Laydate* 1, data = Chaff)

Although we use a simple baseline model for illustration, it is possible to include covariates

and random effects terms into the baseline model, as well as using different model functions

(e.g., lmer, coxph). We next specify the climatic variable of interest using the parameter xvar
(xvar = list(Temp= Chaff$Temp)), and include both the climate and biological date

data with the parameters cdate and bdate (cdate = ChaffClim$Date,bate = Chaff
$Date). As our Chaff dataset contains no within-year variation, we conduct our analysis

using absolute climate windows (type = “absolute”) with a reference day of April 24th

(refday= c(24, 4)), equivalent to the earliest biological record in our data.

As we have no a priori knowledge on when a climate signal might occur, we test all possible

climate windows over the period of a year (range = c(365,0)), considering the linear

Fig 7. Performance of slidingwin in estimating the true R2 value of a climate signal. Performance determined at varying sample sizes with very high

R2 (0.80; left), high R2 (0.40; centre), and moderate R2 (0.20; bottom) both without cross-validation (black) and with 10-fold cross-validation (white). Points

represent median R2 estimates from 2,000 simulated datasets. Error bars represent inter-quartile range. The horizontal dashed line shows the true value

of R2 used to generate the simulated datasets.

doi:10.1371/journal.pone.0167980.g007
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effect (func = “lin”) of mean temperature (stat = “mean”). With all these elements, our

final function is shown below:

R> SLIDING<- slidingwin(baseline= lm(Laydate* 1, data = Chaff),
xvar = list(Temp= ChaffClim$Temp),
cdate = ChaffClim$Date,bdate = Chaff$Date,
type = “absolute”,refday = c(24, 4),
range = c(365,0), func = “lin”,stat = “mean”)

Fig 8. Effect of cross-validation folds (k) on the median R2 estimation of k-fold cross-validated slidingwin analysis. Each point generated

using 200 simulated datasets. The horizontal dashed line shows the true value of R2 used to generate the simulated datasets (R2 = 0.22). R2 was

estimated using 0, 2, 4, 6, 8, or 10-folds (black to white respectively). Sample sizes of 10, 20, 30, 40, and 47 were used. Error bars represent inter-

quartile range.

doi:10.1371/journal.pone.0167980.g008
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By default, slidingwinwill assume daily climate data is used to test climate windows.

However, in cases where the resolution of climate data is coarser, users can alter the parameter

cinterval to use either weeks or months.

Results. The object SLIDING is a list item with two separate elements. We can firstly

examine a summary of our results using the combos item, a truncated version of which can

be see in Table 2.

R> SLIDING$combos

The combos item provides a summary of our sliding window analysis and a brief overview

of the best fitted climate window, showing us the ΔAICc, start and end time, and slope of the

best window. It should be noted that climwin allows for multiple hypotheses to be tested in a

single function (e.g., effect of mean and maximum temperature), in which case the combos
item will provide a summary of all tested hypotheses. For this example, we can see that the best

climate window detected in our analysis falls 0–46 days before our reference date (April 24th),

equivalent to mean temperature between March 9th and April 24th.

We can look at the results further in the full model selection dataset, a truncated version of

which can be seen in Table 3.

R> head(SLIDING[[1]]$Dataset)

In Table 3 we can see that there are a number of climate windows that exhibit similar

model weights (wi) to our best window. To understand how these other windows influence

our result we can determine the median window size of the 95% confidence set with our func-

tion medwin and calculate model averaged parameter estimates for the same confidence set.

R> medwin(SLIDING[[1]]$Dataset)
R> dataset<- SLIDING[[1]]$Dataset
R> ConfidenceSet<- dataset[which(cumsum(dataset$ModWeight)

<= 0.95),]
R> sum(ConfidenceSet$ModelBeta�ConfidenceSet$ModWeight)

Median window size from the 95% confidence set is slightly wider than our best window

(73—1; February 11th–April 23rd), although the median and best window still contained over

Table 2. Output of combos item from an absolute sliding window analysis.

response climate type stat func ΔAICc Start End betaL

Laydate Temp absolute mean lin -84.01 46 0 -3.86

Testing the relationship between mean temperature and laying date in the common chaffinch (Fringilla coelebs) using a reference day April 24th.

doi:10.1371/journal.pone.0167980.t002

Table 3. Top five climate windows detected using slidingwin with an absolute window approach.

Window start Window end ΔAICc Temperature β (days/˚C) Standard error wi

46 0 -84.01 -3.86 0.25 0.06

47 0 -83.46 -3.85 0.25 0.05

74 0 -83.41 -3.79 0.25 0.05

75 0 -83.20 -3.78 0.25 0.04

73 0 -83.13 -3.80 0.25 0.04

Window start and end time are measured in days before April 24th.

doi:10.1371/journal.pone.0167980.t003
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60% of the same days. The best window shows a strongly negative relationship between tem-

perature and laying date (β = -3.86 days/˚C, 95% CI = -4.35–-3.37; Table 3), very similar to the

model averaged relationship (β = -3.60 days/˚C). Multi-model inferencing tells us that the

average laying date of F. coelebs advances by 3.6 days for every 1˚C increase in mean tempera-

ture between February 11th and April 23rd.

Although these results point to the presence of a strong climate signal in F. coelebs laying

date, we cannot be sure that this result has not occurred due to chance. To test this possibility,

we next run the randomisation procedure using the function randwin, with repeats= 5.

R> SLIDING.RAND<- randwin(repeats= 5,
baseline= lm(Laydate* 1, data = Chaff),
xvar = list(Temp= ChaffClim$Temp),
cdate = ChaffClim$Date,bdate = Chaff$Date,
type = “absolute”,refday= c(24, 4),
range = c(365, 0), func = “lin”,stat = “mean”)

The output of the randwin function can then be used to run the function pvalue to

return a value of PC.

R> pvalue(dataset= SLIDING[[1]]$Dataset,
datasetrand= SLIDING.RAND[[1]],metric= “C”, sample.size= 47)

From this function, we can conclude that the likelihood of observing such a climate signal

by chance is very small (PC = 5.89e-16).

Although this provides us with information on the best model, it does not tell us whether

multiple peaks may be present. Our final step should therefore be to examine the ΔAICc and

model weight landscape (Fig 9). In this case, there is only a single clear ΔAICc peak (red; Fig

9a), which is mirrored in the small size of the confidence set (C) (Fig 9b). We can therefore dis-

count the possibility of multiple peaks.

Using k-fold cross-validation. Above, we have focused on estimating the window dura-

tion and slope using multi-model inferencing. However, in other circumstances we may be

more interested in determining the strength of the detected climate signal (R2). As R2 estima-

tions using slidingwin can be biased at low sample size and/or effect size, k-fold cross-vali-

dation should be employed to improve the accuracy of our R2 estimate. To conduct our

slidingwin analysis with k-fold cross-validation we incorporate the parameter k into the

slidingwin function (k = 10).

R> SLIDINGK<- slidingwin(baseline = lm(Laydate* 1, data = Chaff),
xvar = list(Temp= ChaffClim$Temp),
cdate = ChaffClim$Date,bdate = Chaff$Date,
type = “absolute”,refday = c(24, 4),
range = c(365,0), func = “lin”,stat = “mean”,
k = 10)

Looking at the combos object, we can see that the best model selected using cross-valida-

tion has a very similar window duration and slope to that calculated using multi-model infer-

encing in our first sliding window analysis (Window duration: 75—0, February 9th–April 24th;

window slope: -3.78 days/˚C, 95% CI = -4.27–-3.30; Table 4).

R> SLIDINGK$combos

Although window duration and slope are similar to our previous analysis, the value of

ΔAICc is much less negative, due to the conservative nature of ΔAICc calculation when using
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cross-validation (i.e. ΔAICc is calculated on a smaller test dataset). This more conservative

ΔAICc estimation will also lead to much larger values of C (Fig 10), which will often remove

the possibility for users to conduct multi-model inferencing. However, even though the model

weight landscape shows less compelling evidence of a climate signal, by running randwin
with cross-validation and calculating PC, we find that the likelihood of getting such a value of

C by chance when using 10-fold cross-validation is still very small (PC = 1.10e-11).

Once we are confident in our climate signal result we can then examine the summary of the

best model to gain an estimate of strength for the climate signal.

R> summary(SLIDINGK[[1]]$BestModel)

In this case, the strength of the climate signal detected in F. coelebs laying date is particularly

strong (R2 = 0.83).

4.2 Analysis with weightwin

Using slidingwinwe have been able to identify a negative relationship between mean tem-

perature and F. coelebs laying date. Yet we have so far assumed a uniform weight distribution

Table 4. Output of combos item from an absolute sliding window analysis.

response climate type stat func ΔAICc start end betaL

Laydate Temp absolute mean lin -11.07 75 0 -3.78

Testing the relationship between mean temperature and laying date in the common chaffinch (Fringilla coelebs) using a reference day April 24th and 10-fold

cross-validation.

doi:10.1371/journal.pone.0167980.t004

Fig 9. Output of absolute sliding window analysis. Analysis testing the relationship between mean temperature and laying date in the common

chaffinch (Fringilla coelebs) using a reference day April 24th. (Left) Heat map of ΔAICc (AICc of null model—AICc of climate model) for all fitted climate

windows. (Right) 95%, 50% and 25% confidence sets for all fitted climate windows. The best fitted climate window (lowest value of ΔAICc) is circled. Plots

generated using plotdelta and plotweights functions.

doi:10.1371/journal.pone.0167980.g009
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Fig 10. Heat-map of 95%, 50% and 25% confidence sets for an absolute sliding window analysis. Analysis testing the relationship between mean

temperature and laying date in the common chaffinch (Fringilla coelebs) using a reference day April 24th and 10-fold cross-validation. Shading levels

represent 95%, 50% and 25% confidence sets for all fitted climate windows. Plots generated using the plotweights functions.

doi:10.1371/journal.pone.0167980.g010
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when calculating mean temperature. To gain more insight into the detected climate signal, we

can next run a weighted window analysis using weightwin.

Firstly, we want to determine the best starting distribution to use for the weightwin opti-

misation procedure, using the included explore function. We can experiment with the

shape, scale and location parameters for a Weibull distribution to determine a reasonable start-

ing weight distribution for our optimisation procedure (Fig 11).

R> explore(shape= 3, scale = 0.2, loc = 0, weightfunc= “W”)

Most of the parameter values will be the same between weightwin and slidingwin,

but we must provide additional information on the type of probability distribution function

being used (in this case Weibull, weightfunc= “W”) and the starting values of our three

optimisation parameters, taken from the explore function (par = c(3, 0.2, 0)). Addi-

tionally, both the parameters k and stat are not used in weightwin.

R> WEIGHT <- weightwin(baseline= lm(Laydate* 1, data = Chaff),
xvar = list(Temp= ChaffClim$Temp),
cdate = ChaffClim$Date,bdate = Chaff$Date,
type = “absolute”,refday = c(24, 4),
range = c(365, 0), func = “lin”,
weightfunc= “W”, par = c(3, 0.2, 0))

In contrast to the uniform distribution assumed by slidingwin, our analysis with

weightwin returned a rapidly decaying weight distribution, with temperature having the

largest impact on laying date close to April 24th and rapidly declining further into the past (Fig

11). Furthermore, by examining the WeightedOutput item generated by weightwin, we

Fig 11. Weight distribution calculated using a Weibull probability distribution function. Distribution shows the relative importance of climate over

time (days). (Left) Values of shape, scale and location used as starting parameters for weighted window analysis. (Right) Output from weightwin

analysis showing the relative influence of temperature on the average annual laying date of the common chaffinch (Fringilla coelebs). Weight distribution

shows that temperature has the strongest influence on laying date immediately before the reference date (April 24th) but slowly decays as we move

further into the past. Plots created using the function explore.

doi:10.1371/journal.pone.0167980.g011
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can see that the explanatory power of this weight distribution (ΔAICc) is much greater than

that generated with the uniform distribution assumption in slidingwin (-84.01 v. -100.42;

Table 5).

R> WEIGHT$WeightedOutput

Once again, however, we cannot be sure that such a result could not occur by chance and so

we can compare our result to those from a randomised dataset using randwin. In this case,

however, the smaller computational time required to run weightwin allows us to increase

repeats to 1,000. Note, however, that we must specify we are running a weighted window anal-

ysis with the argument window = “Weighted”.

R> WEIGHT.RAND<- randwin(repeats= 1000, window= “weighted”,
baseline= lm(Laydate* 1, data = Chaff),
xvar = list(Temp= ChaffClim$Temp),
cdate = ChaffClim$Date,bdate = Chaff$Date,
type = “absolute”,refday = c(24, 4),
range = c(365,0), func = “lin”,
weightfunc= “W”, par = c(3, 0.2, 0))

With 1,000 randomisations, we are able to use the more reliable PΔAICc to estimate the prob-

ability that we would observe such a largely negative value of ΔAICc by chance.

R> pvalue(dataset= WEIGHT$WeightedOutput,
datasetrand= WEIGHT.RAND[[1]],metric= “AIC”)

Once again, we find that the probability of observing such a weight distribution by chance

is very small (PΔAICc< 0.001). Therefore, our analysis using climwin provides good evidence

that laying date in F. coelebs is strongly impacted by temperature over late winter and early

spring (February–April) with a decaying relationship over time.

4.3 Replication

The worked examples above can be replicated using functions and data included with climwin.

The full release version of climwin (version 1.0.0) is available from the Comprehensive R

Archive Network at http://CRAN.R-project.org/package=climwin. The current pre-release

version of the package can be accessed on GITHUB https://github.com/LiamDBailey/climwin.

The worked examples above use the Chaff and ChaffClim datasets included with the full

release version of the package. All code was written by Liam D. Bailey and Martijn van de Pol

and can be used freely according to the General Public License (GPL), version 2.

5 Conclusion

The way in which previous research has tested and compared the effects of climate has tended

to require arbitrary a priori selection of a limited number of climate windows, curtailing our

ability to make meaningful conclusions. Climate window analyses, such as sliding and

weighted window analyses, improve on these methods by reducing the need for a priori

Table 5. Output of an optimised weight distribution (Weibull function) testing the relative influence of temperature on the laying date of the com-

mon chaffinch (Fringilla coelebs).

ΔAICc shape scale location model β standard error

-100.42 2.99 0.32 -0.26 -4.28 0.23

doi:10.1371/journal.pone.0167980.t005
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assumptions. Yet until now, we have lacked a standardised and accessible way in which to

carry out such analyses, nor any way to assess method performance. We introduced the R

package climwin, which provides an easy and versatile toolbox for analysing the impacts of cli-

mate using a number of potential methods and includes metrics to assess the performance of

these methods. This toolbox will allow for the greater utilisation of more sophisticated climate

analyses within the general scientific community and consequently improve our understand-

ing of the impacts of climate.

Supporting Information
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