
RESEARCH ARTICLE

Using Diffusion Tensor Imaging to Evaluate

Microstructural Changes and Outcomes after

Radiofrequency Rhizotomy of Trigeminal

Nerves in Patients with Trigeminal Neuralgia

Shu-Tian Chen1, Jen-Tsung Yang2, Mei-Yu Yeh1, Hsu-Huei Weng1, Chih-Feng Chen3,

Yuan-Hsiung Tsai1*

1 Department of Diagnostic Radiology, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan,

2 Department of Neurosurgery, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan, 3 Department of

Diagnostic Radiology, Asia University Hospital, Taichung, Taiwan

* russel.tsai@gmail.com

Abstract

Trigeminal neuralgia is characterized by facial pain that may be sudden, intense, and recur-

rent. Our aim was to investigate microstructural tissue changes of the trigeminal nerve in

patients with trigeminal neuralgia resulting from neurovascular compression by diffusion

tensor imaging, and to test the predictive value of diffusion tensor imaging for determining

outcomes after radiofrequency rhizotomy. Forty-three patients with trigeminal neuralgia

were recruited, and diffusion tensor imaging was performed before radiofrequency rhizot-

omy. By selecting the cisternal segment of the trigeminal nerve manually, we measured the

volume of trigeminal nerve, fractional anisotropy, apparent diffusion coefficient, axial diffu-

sivity, and radial diffusivity. The apparent diffusion coefficient and mean value of fractional

anisotropy, axial diffusivity, and radial diffusivity were compared between the affected and

normal side in the same patient, and were correlated with pre-rhizotomy and post-rhizotomy

visual analogue scale pain scores. The results showed the affected side had significantly

decreased fractional anisotropy, increased apparent diffusion coefficient and radial diffusiv-

ity, and no significant change of axial diffusivity. The volume of the trigeminal nerve on

affected side was also significantly smaller. There was a trend of fractional anisotropy reduc-

tion and visual analogue scale pain score reduction (P = 0.072). The results suggest that

demyelination without axonal injury, and decreased size of the trigeminal nerve, are the

microstructural abnormalities of the trigeminal nerve in patients with trigeminal neuralgia

caused by neurovascular compression. The application of diffusion tensor imaging in under-

standing the pathophysiology of trigeminal neuralgia, and predicting the treatment effect

has potential and warrants further study.
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Introduction

Trigeminal neuralgia (TN) is a common cause of facial pain, and is characterized by recurrent

sudden onset, unilateral, brief electric shock-like pain that is localized to the sensory supply

area of trigeminal nerve, i.e., cranial nerve V (CN V) [1]. Neurovascular compression (NVC)

of the CN V at the root entry zone (REZ) is the most common cause of TN [2, 3], and can be

diagnosed by 3D-gradient echo sequence magnetic resonance imaging (MRI) [4]. TN is usu-

ally treated with anticonvulsants, microvascular decompression, stereotactic radiosurgery, or

minimally invasive percutaneous lesioning of CN V such as radiofrequency rhizotomy [5, 6].

However, the pathophysiology of TN is still debated. Postoperative histopathological studies

have shown axonal atrophy and demyelination in patients with TN [2, 7, 8]. Several recent

studies have revealed that diffusion tensor imaging (DTI) enables identification of microstruc-

tural abnormalities, including decreased fractional anisotropy (FA) and increased radial diffu-

sivity (RD) [9–14].

FA reduction has been shown to be correlated with visual analogue scale (VAS) pain scores

in patients with TN, which suggests that DTI metrics could be a MRI marker for monitoring

clinical severity [13]. However, the correlation of DTI metrics and prognosis after intervention

has never been reported. The aim of this study was to investigate microstructural tissue

changes of CN V in patients with TN resulting from NVC by multiple DTI metrics, and corre-

late the DTI metrics with outcome after radiofrequency rhizotomy.

Materials and Methods

Participants

Forty-seven patients with TN were prospectively enrolled into this study. All patients were

diagnosed with TN according to the criteria of the International Headache Society for TN, and

underwent MRI. Four patients had history of TN on the contralateral side, and were excluded

from further the analysis. Among the 43 patients with unilateral TN, 36 (83.7%) received

radiofrequency rhizotomy after MRI. VAS pain scores were assessed twice, before rhizotomy

(pre-rhizotomy VAS) and 1 month after rhizotomy (post-rhizotomy VAS). Effective respond-

ers were defined as patients with VAS reduction [(post-rhizotomy VAS)—(pre-rhizotomy

VAS)� 6] (Fig 1).

MRI acquisition and processing

All data were collected with a 3 Tesla Siemens Verio MRI system (Siemens Medical System,

Erlangen, Germany) using a 32-channel head coil. DTI sequences were obtained using a read-

out-segmented echoplanar imaging (RS-EPI) sequence (Syngo RESOLVE; Siemens Medical

System) with the following parameters: matrix size = 110 × 110; FOV = 220 mm; section thick-

ness = 2 mm; readout segments = 5; slice = 50 without gap; b value = 0 and 1,000 s/mm2; diffu-

sion directions = 30; TR = 6700 ms; TE1/TE2 = 70/95 ms; spatial resolution = 2 mm × 2

mm × 2 mm; echo spacing = 0.32 ms; echo reading time = 7.04 ms; acquisition time = 20 min-

utes 58 seconds. 3D MP-RAGE anatomical images were obtained using a gradient echo

sequence with the following parameters: TR = 1900 ms; TE = 2.98 ms; FOV = 230 mm;

matrix = 220 × 256; slice number = 160; spatial resolution = 0.9 mm × 0.9 mm × 0.9 mm;

acquisition time = 5 minutes 59 seconds. The DSI Studio software package utilities (http://dsi-

studio.labsolver.org/) was used for the post-processing of DTI data. The DTI maps were co-

registered to the 3D MP-RAGE anatomical images in the axial plane. Then, the regions of

interest (ROIs) were placed on the co-registered image and at the slice that had the largest

voxel numbers at the cistern segment of CN V. All imaging voxels covering the cisternal
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segment of CN V were selected manually on the DTI images by an experienced neuroradiolo-

gist (YH Tsai) who was blinded to patient data. During selection, the ROIs were displayed

simultaneously on the MP-RAGE images in order to check the accuracy of ROI locations

(Fig 2). The average DTI metrics of all voxels within the ROI, including apparent diffusion

coefficient (ADC), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity

(RD), were then calculated. The volume of CN V on MP-RAGE images was estimated using

NIH ImageJ software (https://imagej.nih.gov/ij/). To test the inter-observer reliability, another

experienced neuroradiologist (CF Chen) who was also blinded to patient data repeated the

measurements on the affected CN V.

Radiofrequency rhizotomy

Percutaneous CT-guided radiofrequency rhizotomy was performed by an experienced neuro-

surgeon. The rhizotomy needle was inserted into the location confirmed by reproduction of

Fig 1. Flow diagram of patient selection.

doi:10.1371/journal.pone.0167584.g001
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paresthesia upon stimulation, covering the distribution of a specific division of CN V. The

lesion at the Gasserian ganglion was produced by radiofrequency thermocoagulation (Radio-

nics, Inc. Burlington, MA, USA) at 60˚C for 60 seconds.

Statistical analysis

All DTI metrics, including ADC, FA, AD, and RD, were tested for normality of distribution

using the Kolmogorov-Smirnov test. The mean values of DTI metrics were compared between

the affected side and the contralateral side in the same patient by using a two-tailed t test, as

were the mean DTI metrics of responders and non-responders. The inter-observer reliability

between two neuroradiologists for measuring FA of the affected CN V were tested with two-

way intra-class correlation coefficients (ICC) with absolute agreement. Values of P< 0.05

were considered to indicate a significant difference. All statistical calculations were performed

with SPSS V.18 software (SPSS, Chicago, IL).

Results

Patient characteristics are summarized in Table 1. A total of 43 patients were included (16

males, 27 females, mean age 58.8 ± 11.0 years), and the left side was affected in 19 patients, and

right side in 24 patients. The mean time interval between MRI scan and radiofrequency rhizot-

omy was 7.9 days.

Fig 2. Images of trigeminal neuralgia, image processing steps, and rhizotomy. (A) Coronal T2-weighted image showed CN V was compressed by

the superior cerebellar artery on the affected side (long arrow), compared with the normal unaffected side (short arrow) in a 55 year-old women with TN.

(B) Co-registration of diffusion tensor image with MP-RAGE image in the axial plane, and selection of voxels covering the largest cisternal segment of the

trigeminal nerve on co-registered image. (C) Percutaneous CT-guided radiofrequency rhizotomy of the right side (affected side) of the Gasserian ganglion

was performed one day after MRI scanning.

doi:10.1371/journal.pone.0167584.g002
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Differences in DTI metrics between the affected side and contralateral side are shown in

Table 2. The volume of the affected CN V (51.2 ± 20.2 mm3) was significantly smaller than

that of the contralateral nerve (62.0 ± 19.8 mm3) (P = 0.014). FA was significantly lower on the

affected side (0.216 ± 0.073) as compared to the unaffected side (0.313 ± 0.106) (P< .001).

ADC and RD were significantly greater on the affected side (1.70 ± 0.27 ×10−3 mm2/s and

1.53 ± 0.28 × 10−3 mm2/s, respectively) as compared to the contralateral unaffected side

(1.54 ± 0.28 × 10−3 mm2/s; 1.30 ± 0.29 × 10−3 mm2/s, respectively) (P = 0.006 and< 0.001,

respectively). There was no significant difference in AD between the affected (2.05 ± 0.29 ×
10−3 mm2/s and uninvolved contralateral side (2.01 ± 0.32 × 10−3 mm2/s) (P = 0.536) (Table 2

and Fig 3). The ICC showed high inter-observer reliability for measurement of the affected CN

V FA (average measures ICC = 0.898).

There were no statistical differences in DTI metrics and volume between effective respond-

ers and non-responders. However, there was a trend of FA reduction and VAS pain score

reduction (P = 0.072) (Table 3 and Fig 4).

Discussion

This study examined microstructural abnormalities of CN V in patients with TN due to NVC

by multiple DTI metrics. Compared with the unaffected side, the affected side showed signifi-

cantly decreased FA, increased ADC and RD, and no significant change of AD. The volume of

CN V on the affected side was significantly smaller than on the unaffected side. The results

suggest that the pathological features of TN are prominently demyelination and decreased CN

V size.

In this study, the lower FA of CN V at REZ of the affected side compared to the unaffected

side was due to an increase in RD, without significant difference in AD. These changes of DTI

Table 1. Patient characteristics.

Characteristic Number (percentage) or Mean (SD)

Total number of patients 43

Age, y 58.8 (11.1)

Male gender 16 (37.2%)

Left side 19 (44.2%)

Pain duration, mo 65.2 (65.8)

Interval between MRI and Radiofrequency rhizotomy, d 7.9 (8.8)

Numbers of patient that received radiofrequency rhizotomy 36 (83.7%)

VAS pain score

Pre-radiofrequency rhizotomy 9.4 (0.9)

Post-radiofrequency rhizotomy 1.7 (2.0)

doi:10.1371/journal.pone.0167584.t001

Table 2. Differences in DTI metrics between the affected and contralateral TN (N = 43).

Lesion Mean (SD) Normal Mean (SD) P value

Volume (mm3) 51.2 (20.2) 62.0 (19.8) 0.014*

Fractional anisotropy 0.216 (0.073) 0.313 (0.106) < 0.001*

Apparent diffusion coefficiency (×10−3) 1.703 (0.270) 1.536 (0.278) 0.006*

Axial diffusivity (×10−3) 2.052 (0.295) 2.012 (0.318) 0.536

Radial diffusivity (×10−3) 1.528 (0.281) 1.298 (0.288) < 0.001*

* P < 0.05 was considered to indicate a significant difference.

doi:10.1371/journal.pone.0167584.t002
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metrics may be the consequences of demyelination, edema, and also decreased axonal packing

density. Although both demyelination and edema may cause a decrease in FD and an increase

in RD, we also found an increased ADC on the affected side, which indicated vasogenic edema

and implies increased extracellular space in view of the edematous effect. This is contrary to

our finding that the volume of CN V of the affected side is smaller than that of the unaffected

side. Therefore, we contribute the changes in DTI metrics in our study to demyelination rather

than edema.

AD and RD are believed to be useful tools to differentiate axonal injury and demyelination,

and our results suggest that demyelination plays a more significant role than atrophy in micro-

structural changes of CN V. This result is consistence with that of previous studies [13, 14].

Myelin is thought to inhibit ephaptic interactions [15]. The consequences of demyelination are

(1) altered action potential and spontaneous activity, (2) current leakage due to loss of the

insulating effects of myelin, and (3) ephaptic spread of excitation [16]. Therefore, a focal demy-

elinating lesion may be a source of spontaneous activity, and further spread the excitation lat-

erally to fibers that are supposed to be electrically silent. Our finding is consistent with the

hypothesis that ephaptic transmission caused by focal demyelination of the CN V root is the

cause of TN [17, 18].

Fig 3. Box-and-whisker plots of DTI metrics between the affected and contralateral TN. Box-and-

whisker plots demonstrating medians and interquartile ranges (25–75 percentiles) of fractional anisotropy

(FA), apparent diffusion coefficient (ADC), radial diffusivity (RD), axial diffusivity (AD), and volume. An outliner

was removed in advance. (*P < 0.05)

doi:10.1371/journal.pone.0167584.g003

Table 3. DTI metrics associated with patient response to RFA (N = 36).

Effective responders (n = 28) Mean (SD) Non-responders (n = 8) Mean (SD) P value

Volume (mm3) 51.83 (19.0) 43.13 (21.78) 0.277

Fractional anisotropy 0.202 (0.069) 0.256(0.086) 0.072

Apparent diffusion coefficiency (×10−3) 1.729 (0.288) 1.662 (0.228) 0.552

Axial diffusivity (×10−3) 2.069 (0.327) 2.044 (0.229) 0.842

Radial diffusivity (×10−3) 1.559 (0.292) 1.471 (0.261) 0.450

doi:10.1371/journal.pone.0167584.t003

Using DTI to Estimate Microstructure Change in Patient with Trigeminal Neuralgia

PLOS ONE | DOI:10.1371/journal.pone.0167584 December 20, 2016 6 / 10



We found that the volume of CN V of the affected side was smaller than that of the unaf-

fected side. Erbay et al. [19] reported similar results, and they believed that CN V atrophy is

the reason for the pain of TN. Our results suggest demyelination, rather than axonal injury, is

the major cause of CN V atrophy due to neurovascular compression, as the results of a patho-

logical study by Hilton et al. [7] reported.

To the best of our knowledge, there have been no previous studies using DTI metrics as an

imaging tool to predict the effect of TN treatment. The VAS is a simple and reproducible

research tool for the assessment of pain severity [20, 21]. In our study, VAS pain scores were a

mean of more than 9 points before radiofrequency rhizotomy, and decreased to a mean of 1.7

points 1 month after treatment. Radiofrequency rhizotomy treatment of TN is based on the

fact that Aδ and C fibers are more sensitive to thermocoagulation than Aα and β fibers [22,

23]. Irreversible damage to small, unmyelinated pain fibers blocks pain sensation without sen-

sory and motor nerve damage when the temperature is 55 to 70˚C [24]. We found a trend of

FA reduction and VAS pain score reduction, but the result did not reach statistical signifi-

cance. This may suggest that the more severe the microstructural abnormalities of the trigemi-

nal nerve, the greater the sensitivity to the thermocoagulation effect on pain fibers. Conversely,

less FA reduction may mean relative preservation of nerve integrity, and that a higher temper-

ature (60 to 70˚C) or longer thermocoagulation time is necessary to reach an optimal lesioning

Fig 4. Box-and-whisker plots of fractional anisotropy between effective responders and non-responders.

Box-and-whisker plots demonstrating medians and interquartile ranges (25–75 percentiles) of fractional anisotropy.

An outliner was removed in advanced.

doi:10.1371/journal.pone.0167584.g004
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effect. However, further comparative studies, such as prospective, randomized, case-con-

trolled, double-blind studies are necessary to verify this observation.

Single-shot echoplanar imaging (SS-EPI) has been used in most diffusion imaging studies,

including all TN studies with DTI. However, SS-EPI is very sensitive to susceptibility artifacts;

it requires long echo trains and echo time to encode whole k-space within 1 echo signal inten-

sity, and the T2/T2� decay during acquisition causes image blurring and phase shift accumula-

tion from field inhomogeneity, leading to geometric distortion [25]. Such effects are particular

important for diffusion imaging near the skull base, which is prone to strong susceptibility arti-

fact and field inhomogeneity. In this study, we used a RS-EPI with parallel imaging (GRAPPA)

for DTI imaging. RS-EPI can reduce acquisition time by partitioning the k-space into seg-

ments along the readout direction, and parallel imaging can reduce the echo train length, thus

reducing image distortions with higher resolution and reducing blurring from T2/T2� signal

intensity decay compared with SS-EPI [26]. The superiority of RS-EPI has been demonstrated

for diffusion imaging of areas that are prone to strong susceptibility artifacts, such as the pedi-

atric brain [27], breast [28], and craniovertebral junction [29]. The application of RS-EPI DTI

in the cisternal segment of CN V was confirmed in this study.

We recognize there are some limitations to this study. First, the partial volume effect, espe-

cially from imaging voxels with the cerebrospinal fluid (CSF) signal, might lead to error in

DTI measurement. In general, there are three options to overcome this problem. 1) Use a DTI

sequence with higher spatial resolution; however, this requires a very long scan time and is not

suitable for a clinical study. 2) Regress out the voxels with the CSF signal, or by tissue segmen-

tation. This is often used in modern neuroimaging studies; however, its use for a specific cra-

nial nerve in the skull base surrounded by CSF has not been validated. 3) Define a threshold of

white matter, such as a FA value > 0.2, and exclude all voxels with a FA below this limit. This

may work in normal white matter, but will exclude white matter with severe demyelination or

axonal injury. In this study, we co-registered DTI images to MP-RAGE and selected the imag-

ing voxels in the axial slice containing the most voxels of CN V. Each voxel can be checked

simultaneously in both DTI and MP-RAGE images to make sure the voxel is within the CN V.

Furthermore, choosing the voxels in the slice containing the most voxels of CN V may reduce

the partial volume effect in cranial-caudal images. Other limitations include that the study

population was small, and the disease duration differed between patients. Long-term follow-

up of patients to evaluate the prognostic value of DTI metrics and pain outcomes is necessary.

Conclusions

Our results suggest demyelination and decreased CN V volume are the major microstructural

abnormalities in TN caused by NVC. DTI may have the potential for predicting response to

radiofrequency rhizotomy, but further investigation is necessary. Further studies are needed to

understand how DTI metrics can quantitatively represent the pathophysiology of TN, and to

examine the application of DTI in the treatment of TN.
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