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Abstract

Biologists regularly create phylogenetic trees to better understand the evolutionary origins

of their species of interest, and often use genomes as their data source. However, as more

and more incomplete genomes are published, in many cases it may not be possible to com-

pute genome-based phylogenetic trees due to large gaps in the assembled sequences. In

addition, comparison of complete genomes may not even be desirable due to the presence

of horizontally acquired and homologous genes. A decision must therefore be made about

which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic

Information based on Total Entropy (dCITE) is proposed as an easily computed metric for

measuring the cladistic information in multiple sequence alignments representing a range of

taxa, without the need to first compute the corresponding trees. dCITE scores can be used

to rank candidate genes or decide whether input sequences provide insufficient cladistic

information, making artefactual polytomies more likely. The dCITE method can be applied

to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type

is most appropriate, given the choice. In a series of experiments the dCITE method was

compared with related measures. Then, as a practical demonstration, the ideas developed

in the paper were applied to a dataset representing species from the order Campylobacter-

ales; trees based on sequence combinations, selected on the basis of their dCITE scores,

were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST)

combinations of fragments. We see that the greater the dCITE score the more likely it is that

the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic

information saturates, beyond which little additional cladistic information can be obtained by

adding additional sequences. Finally, sequences with high cladistic information produce

more consistent trees for the same taxa.
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Introduction

Data for building phylogenetic trees

Biological researchers create phylogenetic trees as hypotheses of the evolutionary relationships

between species. Historically, tree building was based on phenotypic properties of the taxa;

phenotypic information is still used, in whole or part, to build some trees. However, since the

pioneering work of Woese on the use of the small subunit (SSU) rRNA gene to distinguish spe-

cies [1], protein and nucleotide sequence data has been used as input for for numerous tree

building programs. Over time, other genes have been proposed, e.g. the bacterial gene recA

[2], because SSU rRNA may not provide sufficient variation to distinguish different species.

However, it soon became clear that no single gene can be expected to resolve every set of taxa;

see, for example Penny et al’s comment on “MUTOG, the Myth of a Universal Tree from One

Gene” [3]. A movement began to base phylogenetic analyses on concatenated sequences. For

example, a concatenation of 13 mitochondrial protein sequences and a second concatenation

of 12S and 16S genes were used to reconstruct the evolutionary history of guinea-pigs [4]. A

study of 14 yeast taxa [5] expanded the number of genes included in concatenations up to 106,

with the aim of eliminating incongruence between the computed trees. Among other things,

the study concluded that a single gene, or small set of genes, will be inadequate for unambigu-

ously resolving phylogenetic histories. However, what the study made clear is that one may not

need entire genomes to create dependable phylogenetic trees.

D’Erchia et al (1996) [4] called such concatenations of genes “super-genes”, but the term

most frequently used for such concatenations is “super-matrix” (see the review de Queiroz &

Gatesy (2006) [6]). The idea is that standard tree-building programs compute trees from the

set of concatenations, much as they would for databases of single gene or protein sequences. It

is now appreciated that each gene/protein in the concatenation may have its own evolutionary

history (see, for example, the review Zhang & Yang (2015) [7]), which implies the need for dif-

ferent parameters, both for rate variables and for the proportions of invariant sites, across the

concatenation. (Sites may be thought of as the columns in a multiple sequence alignment.)

One way around this problem is to use a Bayesian framework; Different data can be combined,

each with its own model in its own partition, e.g. protein sequences, nucleotide sequences,

RNA sequences including information from RNA secondary structure and categorical/

encoded phenotypic data [8, 9]. However, a major limitation is that only a small number of

genes, proteins or other data sources, can be included due the heavy computational load, even

on modern multi-core computers. In other words, it may not be feasible to include all genes

and, from the Rokas et al [5] study, it may not be necessary. More importantly, given the ubiq-

uity of horizontal gene transfer in prokaryotes [10], and even eukaryotes [11], using whole

genomes or all genes concatenated runs the risk of including genes which have their origins in

other species and can therefore create a discord between the computed gene tree and the actual

species tree [12, 13], though one recent approach has been to use information about the pres-

ence or absence horizontally gene transfer, gene duplication and gene loss events to make

inferences about speciation [14].

If not all genes/proteins in a genome/proteome are to be included, the issue, then, is to

determine the most representative and the most informative set of genes or proteins upon

which to base the task of computing a reliable species tree spanning the taxa of interest. The

need for the most representative set is intuitively clear, and encompasses issues such as avoid-

ance of paralogues (gene duplication/extinction) and horizontally acquired genes [12, 13], and

minimisation of “nonphylogenetic signals”, such as nucleotide composition bias and muta-

tional saturation at particular positions, often third codon positions [15, 16]. Artefacts due to

inclusion of paralogues can be minimised by only using mono-copy genes, while inclusion of
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horizontally acquired genes can be made less likely by choosing genes that are highly

expressed, on the basis that highly expressed genes evolve more slowly [13, 17] and are more

resistant to horizontal transfer [18]. Issues arising from biases in nucleotide composition and

mutational saturation at particular sites can be ameliorated by using protein, rather than

nucleotide, sequence data for protein-coding genes [15]. In addition, differences in computed

trees, resulting from differences in methods for the input multiple sequence alignments, may

be minimised when protein sequence data are used [19]. That said, rates of evolution can vary

considerably between species—see, for example [20]—and analysis based on nucleotide

sequences may be more appropriate for protein coding genes from very slowly evolving spe-

cies. Finally, there is the important issue of taxon sampling, for which no simple solution exists

starting with the need to adequately sample the space of taxa [21], with Townsend & López-

Giráldez (2010) [22] highlighting the need to target strategically the deepest in-group taxa, i.e.

those closest to the time of speciation. The literature, and attendant controversies, regarding

taxon selection has been extensive [23].

Quantifying the information content of trees

Beyond the need to put together the most representative set of taxa is the need for the data

characterising the set to be as informative as possible, which has also been known for some

time [3]. In particular, we need to determine the information content of the proposed set of

data representing taxa to decide if there is at least the minimum phylogenetic information,

below which it will be impossible to construct as fully resolved phylogenetic tree as the input

taxa allow. This amount of information I shall call necessary cladistic information. For example,

based on results from phylogenetic tree building based on 2,538 RuBisCo large subunit rbcL
genes, each 1,428bp, Källersjö et al [24] argues for the inclusion in phylogenetic analyses of

information from the highly variable third codon position, despite the fact that the third posi-

tion data are saturated. The paper finds that, when only the more conserved first and second

codon positions are used, 431 of the taxa can be resolved, but this rises to 1,400 when all three

positions are used. Another way of viewing these findings is that adding information from the

third codon position has considerably added to the cladistic information, allowing the phylo-

genetic relationships of more taxa to be resolved.

A series of papers starting with Nelson & Platnick (1981) [25] have canvassed the informa-

tion content of “classifications”, i.e. phylogenetic trees, and different ways to measure it. Wort-

ley & Scotland (2006) [26] calls them “measures of potential utility”. Measures of cladistic

information offer another way of looking at the question of how good a particular tree is, in

addition to comparisons with the “true tree”, where this is known a priori, or can be inferred.

Two basic approaches have emerged: measurements on computed trees and measurements on

the multiple-sequence alignments (or other data) that are inputs to the tree building process.

The earliest approaches were on trees. Maddison (1989) [27] distinguishes between “hard” and

“soft” polytomies, where the former are due to multiple speciation events having occurred in a

common timeframe, while the latter are due to ambiguities in tree construction. All the

authors looking at cladistic information encoded in phylogenetic trees have, explicitly or

implicitly, made use of the assumption that, unless there is evidence to the contrary, all poly-

tomies are soft polytomies. With this in mind, Thorley et al (1998) [28] defines the phyloge-

netic (or cladistic) information content of a tree or subtree to be

� log
number of permitted trees
number of possible trees

� �

A binary (sub) tree permits only 1 tree. Thorley [29] provides a comparison between cladistic
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information content as defined above, and metrics proposed in earlier studies. Taking a differ-

ent approach, the EDIBLE program computes the Fisher information, or expected information

from an input phylogenetic tree, allowing different topologies and branch lengths to be com-

pared [30]. EDIBLE was used to evaluate the phylogenetic information of different genes, and

gene combinations [31]. In particular, phylogenetic trees were computed and their underlying

models were optimised before the trees were passed to EDIBLE. The tree-based phylogenetic

information was then used to compare the input sequences [31].

Quantifying the information content of the alignments used to build trees

The problem with tree-based metrics is that they necessarily involve first creating a tree from

which the information content can be derived. However, the information content found in the

output tree is implicit in the input data used to create the tree, although the relationship will

not be linear with the number of taxa because the number of possible trees increases factorially.

If based on the input data, cladistic information is about characters rather than trees, so it is

worthwhile to distinguish between input cladistic information and output cladistic information.

A number of input cladistic information metrics have been proposed:

• Δmin [26], which the authors characterise as “the minimum number of parsimony informa-

tive character-state changes”. For a given site, this is defined to be the number of different

character states minus 1, where each state change must be present in at least two taxa. (The

character states are set of values seen at a given site.) The site scores are then summed across

all the sites.

• Total Cladistic Information Content (Total CIC) [32]. Total CIC sums the function I(χ),

found in section 9.3 of Steel & Penny [33], across all characters/sites. I(χ) quantifies the

information to be found in a single r-state character as the number of trees where a site can

be explained without homoplasy. Assuming a particular character/site partitions into r states

with counts of instances labelled a1, a2, . . ., ar, then

IðwÞ ¼
Xn� rþ1

j¼3

ð1 � bjÞlogð2j � 3Þ

where bj = |{i : ai� j}| and n is the number of taxa. The variable bj represents, for a given

count j of instances of a given character state, the number of states with that count or greater.

For example, in an alignment of 50S ribosomal protein L11 sequences representing 10 taxa,

in which one site has 7 instances of G and 3 of A, then b3 = 2 and b4 = b5 = b6 = b7 = 1.

Δmin captures the notion, from parsimony, that there must be different character states in a

site for there to be cladistically useful information, and counting the states relates to the poten-

tial for splits between clades, and between species, in the final tree. On the other hand, Total

CIC relates the utility of characters to numbers of permitted trees.

Both Δmin and Total CIC capture many intuitions about the information, encoded in a mul-

tiple sequence alignment, that will be used to create a phylogenetic tree. However, neither is

ideal. The shortcoming of Δmin is that each character state counts equally, so long as it appears

more than the threshold number of times. However, the utility of a character, say with 2 states,

will be very different in the case where the split in counts between the states is n/2, n/2 − n the

number of taxa—versus when the split is 2, n − 2. (This follows from the definition of CIC

above. Both the number of possible trees and the number of permitted trees are, in the limit,

O(n!). Assuming that a split between two clades occurs due to information at a given site/char-

acter, CIC is maximal when the split is even.) Total CIC is able to deal with this issue, but in
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Total CIC the utility of a character rises, without limit, with increasing count of taxa (approxi-

mately n × log(n)), because bj = 0 in the above equation for all j greater than the count of the

most numerous state, so b8 = b9 = b10 = 0 in the above example. Such unconstrained growth is

an undesirable model for the underlying information because, given a fixed number of charac-

ters (in practice fixed sequence length), and fixed alphabet size, the number of possible unique

sequences is limited, particularly given the highly conserved genes/proteins one typically uses

for phylogenetic reconstructions, where many sites are likely to be invariant.

Methods and Databases

A New-Old Method for Computing Cladistic Information

Building from the predecessor methods, the following method, called “deflated Cladistic Infor-

mation (based on) Total Entropy” (or dCITE) is proposed. The method sums the entropy scores

for each character/site, only counting character states that have at least 2 instances. That is:

CITE ¼ �
Xn

i¼1

Xmi

j¼1

pj � log2ðpjÞ

wheremi is the number of character states, present in at least 2 taxa, at site i, and pj is the pro-

portion of the jth character state at site i. Below is a small example to illustrate the method. To

keep the example compact, assume that the parsimony assumption above is not made; charac-

ters with a count of 1 will be included in the computation.

Site 12345
Tax1 abaca
Tax2 abaca
Tax3 aaaac
Tax4 aacad

The corresponding CITE score is 0 + 1 + 0.8113 + 1 + 1.5 = 4.3113.

The raw CITE score is then deflated in two ways to produce a dCITE score. Firstly,

sequences that are completely identical to other sequences do not contribute additional cladis-

tic information; on the evidence of these sequences the taxa are indistinguishable. However,

duplicate sequences will alter scores because percentages of characters for a given site will be

increased in the duplicated taxa at the expense of characters from unique taxa. Tax2 is dupli-

cate of Tax1 in the above example. For that reason, from a set of identical taxa, one is retained

and the rest are ignored. (Ignored taxa are, however, reported by the software so the user is

made aware of the duplication.) Similarly, a site, whose states recapitulate the splits at another

site, is ignored. In the example above, Site 2 and Site 4 have the same split: Tax1 with Tax 2,

and Tax 3 with Tax4. Site 4 adds no new information beyond that provided by Site 2, so the

contribution to the cladistic information from Site 4, and therefore to the correspond CITE

score, can be ignored. (However, Site 4 does provide confirmation of the split seen in Site 2 so,

depending on the tree building algorithm, could add weight to the cladistic information pro-

vided by Site 2.) This sort of duplication could occur, for example, in RNA data when second-

ary structure is formed and there is base-pairing across stems; in a stem, the base on one side

will determine the base on the other side. Such patterns are also characteristic of haplotypes,

leading to the concept of tag SNPs in the HapMap project [34]. Returning to the example

above, the dCITE score is now 0 + 0.9183 + 0.9183 + 0 + 1.5850 = 3.4216 (from 3 taxa). As a

more realistic example, in a set of 4 unique ATPA—ATP synthase alpha chain—proteins (aver-

age length 525aa), there were 32 informative sites with total CITE score of 32. However, the

dCITE score was 3 from just 3 sites with different split patterns.
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dCITE retains the notion of summing the contribution of each character, but those con-

tributions are now weighted, with the greatest weights occurring when the counts of charac-

ter states are balanced at a given site. In addition, as is evident from Site 5, n different

character states at a given site will return higher scores than comparable sites with n − 1 char-

acter states. This is reasonable when one considers the increase in information available

from an n-way split versus an n − 1-way split. However, while dCITE has the desirable prop-

erty that invariant sites do not contribute to the score, a worst-case exists where every char-

acter state in the alphabet appears in approximately equal numbers at a given site. That site

would convey little cladistic information but the dCITE score will be close to maximal. Site 5

in the example above has that property. The problem is excess diversity of characters at a par-

ticular site, and is related to the problem of mutational saturation [16], except that the latter

is an average property across all sites, or all instances of a class of sites, e.g. all third codon

positions, while the former is site specific. The impact of excess diversity was tested in Exper-

iment 1, described below.

Experiment 1

Three experiments were undertaken to examine the application of dCITE in a number of set-

tings. The first experiment sought to compare dCITE with tree-based CIC and multiple

sequence alignment based Total CIC and Δmin. Three sets of evolutionarily highly conserved

sequences were obtained: ATPA, ATP synthase alpha chain, TYMS, thymidylate synthase and

RL11, 50S ribosomal protein L11. For each of these proteins, sets of homologues were obtained

using BLAST sequence search [35] on the UniProt web site. For each set, species diversity was

enhanced by only accepting one sequence with a given species suffix in the sequence identifier.

In addition, the sets were sieved using the Ucluster function from the Usearch suite [36], so

that near duplicates (greater than or equal to 98% identity) were removed, yielding 603, 286

and 520 sequences, respectively. For each database, starting with 4 randomly chosen

sequences, a multiple-sequence alignment was computed using Muscle [37]. From the multi-

ple-sequence alignments 100 bootstrapped phylogenetic trees were created using a multi-

threaded version of the maximum-likelihood tree builder Phyml [38]. Then, an additional ran-

domly chosen sequence was added and the process repeated, and so on, until the final set con-

tained 200 sequences. When the 197 sets of bootstrapped trees were completed a number of

metrics were computed.

For each of the consensus forming rules—Strict, Majority Rule (MR, i.e. 50th percentile)

and Majority Rule extended (MRE)—the Consense application from the Phylip suite [39]

was used to build a consensus tree for each of the sets of trees. Then, for each of the consen-

sus trees, a Python application computed the tree based CIC statistic, the minimum boot-

strap count for the clades in the tree and the degeneracy of the tree. Degeneracy is a measure

of the number and degree of polytomies contained in the tree. That is, using a recursive algo-

rithm, degeneracy is the sum across all levels of a tree t and all subtrees ti, of differences

between the actual degrees of subtrees (i.e. number of branching points) and the ideal (a

dichotomy).

degeneracyðtÞ ¼
0; if t is a leaf :

degreeðtÞ � 2þ
PdegreeðtÞ

i¼1
degeneracyðtiÞ; otherwise:

(

Degeneracy represents a refinement of Colless’ Consensus Fork Index [40], which counts the

number of internal nodes. (In this study, the minimum degeneracy score was 1, rather than

0, because Consense structures the top-level node as a trifurcation.)
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A second Python application was used to compute Δmin, Total CIC, CITE and dCITE from

the multiple sequence alignments that were used to create the trees. Because dCITE involves

deletion of duplicate sequences prior to computing the metric, this was done for all the analy-

ses as duplicate-deletion affects the count of taxa. In addition, while dCITE is able to treat the

gap character as a fifth (nucleotide) or twenty-first (protein) state, this was ignored for these

experiments.

A final Python application was used to calculate character diversity statistics for each of the

input multiple sequence alignments. The character diversity at a given, variable site is defined

as the number of character states represented at that site divided by the minimum of the num-

ber of non-gap characters found at that site or the alphabet size. In other words, character

diversity measures the extent to which the entire alphabet appears at a given site, constrained

by the number of taxa. The mean, median and maximum character diversity values were then

calculated, together with the fraction of values less than or equal to 0.5.

Experiment 2

The second experiment sought to examine the impact on the quality of the computed phyloge-

netic trees of diminishing cladistic information from a single, synthetic dataset. The starting

point for this experiment was the ATPA dataset containing 50 taxa retained from Experiment

1. A starting tree was computed using MrBayes [41] (WAG amino acid rate matrix, variation

between sites being modelled with a gamma function and a percentage of invariant sites—

invgamma—and a birth-death clock model), based on a multiple sequence alignment created

using Muscle [37]. (A maximum-likelihood tree could equally have been used.) Armed with

the starting tree, and taking one of the 50 sequences as the root (i.e. ancestral) sequence,

Pyvolve [42] was used to create a set of 50 gap-free, evolutionarily related, synthetic sequences

(WAG substitution matrix). In addition, a percentage of randomly chosen sites were made

invariant, the number being equal to the percentage of invariant sites in the source ATPA data-

set. Using settings similar to those used for the starting tree, a Bayesian “True Tree” was com-

puted for the synthetic dataset.

A Muscle-generate multiple sequence alignment of the synthetic dataset was used in the fol-

lowing way. As in Experiment 1, 100 bootstrapped phylogenetic trees were computed using

Phyml, with a Majority Rule Extended consensus tree computed using Consense. The applica-

tion TreeCmp [43] was then used to compare the consensus tree against the True Tree across

four metrics: Robinson-Foulds Distance, Estabrook’s Quartet Distance, Steel and Penny’s Path

Difference Distance and the authors’ own metric, Matching Split Distance. The dCITE score

for the input multiple sequence alignment and degeneracy of the consensus trees were also

recorded. Then, ten randomly chosen amino acids were removed from the multiple sequence

alignment, and the process of computing a new tree and measuring the difference with the

True Tree was iterated until a minimum number of sites (20) remained.

Experiment 3

The third experiment puts together many of the ideas that have been developed in this paper,

in a comparison of three phylogenetic trees examining the evolution ofHelicobacter pylori in

the context of other members of the order Campylobacterales. Campylobacterales includes the

family Campylobacteraceae, which includes the genera Campylobacter [44] and Arcobacter
[45], and the family Helicobacteraceae, which includes the generaHelicobacter [46] andWoli-
nella [47]. The list of species included in the study can be found in Table B in S1 File. If we

accept the preference for single copy genes (at least at the protein level), a preference for avoid-

ing horizontally transferred genes, and also the argument that highly expressed genes are less
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likely to have been acquired horizontally, the following method was used to derive such a set of

protein sequences from which to build phylogenetic trees. While RNA expression data does

exist forHelicobacter pylori on services such as ArrayExpress (at EBI) and GEO (at NCBI),

each experiment has involved different custom-made arrays and they are therefore not compa-

rable. By contrast, there is a considerable body of data for Escherichia coli. The starting point,

therefore, was a list of highly expressed E. coli proteins, taken from proteomic data [48]. High

mRNA expression, across a range of conditions, was confirmed using the Genevestigator data-

base https://www.genevestigator.com/. Confirmation was also sought for the proteins’ pres-

ence inHelicobacter pylori. Unsurprisingly, the resulting list, which can be found as Table C in

S1 File, is dominated by proteins involved in the transcription and translation machinery. In

addition to the highly expressed genes/proteins, two moderately expressed proteins were

added to the database: mutY, A/G-specific adenine glycosylase, and trpC, bifunctional indole-

3-glycerol phosphate synthase/phosphoribosylanthranilate isomerase. (It is the indole-3-glyc-

erol phosphate synthase moiety that is of interest here.) The reason for including the two addi-

tional sequences is to allow comparison with the Multilocus Sequence Typing (MLST)

technique [49], which is the current state of the art in strain identification, particularly forH.
pylori. MLST involves strain identification through the concatenation of nucleotide or protein

sequence fragments obtained using organism-specific sets of primers for a range of genes. The

genes surveyed, and the locations of the primer sites, vary from species to species.

As in Experiment 1, a multiple sequence alignment was computed using Muscle [37]. Hav-

ing assembled the database of 87 sets of protein sequences, the dCITE method was run on each

set and on each pairwise combination of sets. In some cases, target sequences were simply not

found for specific strains, likely due to sequence assembly or gene-calling errors, because these

are all single copy, essential proteins. Taking in to account the availability of the corresponding

sequences, two pairs of proteins were selected as being the most informative: glyS+pheT

(dCITE score of 1648.40 bits across 1,230 informative sites, out of 1,461 sites overall) and lon

+rpsA (1059.76 bits from 960 informative sites out of 1,360 sites overall).

BIGSdb is a database of MLST sequence data for a range of species [50]. In particular, data

from a large number of isolates is available for both Campylobacter jejuni andH. pylori, and

data for 6 of the 7 protein fragments available forH. pylori overlap protein fragments from C.
jejuni: atpA, efp, mutY, ppa, trpC and engA. (The protein known as yphC in theH. pylori
BigsDB dataset, is more widely known as engA or der.) To create an equivalent concatenation,

starting with the complete protein sequences used in this study, sample concatenations of the 6

protein fragments fromH. pylori and C. jejuni were downloaded from BIGSdb and then

aligned with concatenations of the corresponding sequences from this study. (The MLST

sequences are much shorter.) The multiple-sequence alignment was then edited using JalView

[51], leaving only the portions that correspond to the MLST data. The atpA+efp+mutY+ppa

+trpC+engA concatenation corresponding to the MLST data had a dCITE score of 480.85

from 467 informative sites out of a starting count of 934 sites. I shall call this concatenation

MLST.

For each of the 3 concatenations, phylogenetic trees were computed using MrBayes [41]. In

particular, a partitioned analysis was used, with each protein occupying its own partition. An

invgamma model was used to model both the per site evolutionary rate and the percentage of

invariant sites, with both the alpha parameter of the gamma distribution (the shape parameter)

and the proportion of invariant sites being allowed to vary between partitions. The computa-

tion was stopped when the average standard deviation of split frequencies was less than 0.01.

As with Experiment 2, TreeCmp [43] was used to compare pairs of trees across the four met-

rics: Robinson-Foulds Distance, Estabrook’s Quartet Distance, Steel and Penny’s Path Differ-

ence Distance and the authors’ own metric, Matching Split Distance.
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Results

Experiment 1

The discussion here will focus on the ATPA dataset; corresponding Figures for the TYMS and

RL11 datasets may be found as Figs A-D in S1 File. The figures have been produced using Ver-

sion 3.1 of the R suite of mathematical/statistical functions [52].

Fig 1 shows scores for the different metrics based on the 197 input multiple sequence align-

ments for the ATPA dataset: dCITE (shown as a black, solid line), Δmin (blue, dot-dash line)

and TOTAL CIC (CIC_msa, purple dashed lined), or the 197 tree-based CIC scores (shown in

red), which is for the set of MRE trees. (The graph for CIC values of the MR and Strict agree-

ment trees will be lower as these will have many more polytomies.) Note that CIC_msa is

drawn to a much larger scale (on the right hand side). The point to note here is that, after ini-

tially rising, dCITE scores plateau, which implies that the amount of cladistic information in

the multiple sequence alignment has, essentially, saturated, implying that adding more taxa

adds little further cladistic information. This is further explored in Experiment 2. (The possible

confounding effect of mutational saturation—as approximated here by character diversity—is

discussed below.) Δmin may also be levelling off, but the two CIC based scores continue to rise

steadily.

Fig 2 shows (in black) the dCITE scores for each of the 197 multiple sequence alignments

for the ATPA dataset. As noted in Fig 1, after initially rising, the dCITE scores plateau. More

pragmatically, the count of taxa where the dCITE scores level off, �N , can be estimated by look-

ing for the first count where, for the next 15 counts, the sums of differences between scores

from adjacent counts is less than or equal to 15. That is:

�N ;
X�Nþ15

j¼ �N

jdCITEjþ1 � dCITEjj � 15

This is shown in green, and a legend highlights the count where this has occurred. Also shown,

in blue, is the plot of the minimum bootstrap counts for each set of taxa, against the count of

taxa, for the consensus trees computed by Consense using the Majority Rule Extended (MRE)

algorithm [39]. The ultimate points in the MRE algorithm are where a clade is supported by

just the one tree, i.e. the clade has no other support bar itself (but is not contradicted by any

other clade prediction). The first such case for the ATPA dataset occurs for the dataset contain-

ing 52 taxa.

In Fig 3, dCITE scores are plotted in black against Ntaxa, with y-axis on the left. Shown in

red, with y-axis on the right, is a plot of the degeneracy scores for the set of Strict consensus

trees Ds. Two linear models, depicted using red dashed lines, were computed for the set of

degeneracy scores. The first, encompassing the initial 65 data points has a slope of 0.632

(adjusted R2 = 0.992), while the second, taking in the final 65 data points has a slope of 0.754

(adjusted R2 = 0.975). Degeneracy scores for the Majority Rule consensus trees Dmr are shown

in blue, together with the corresponding linear models. In this case the model for the initial

data points had slope 0.261 (Adjusted R2 = 0.0.909) rising to 0.384 (Adjusted R2 = 0.887) for

the final data points. By contrast, the degeneracy scores for the MRE trees are mostly 0, corre-

sponding to dichotomies at every ancestral node, though, of course, the level of support can be

very low (see Fig 1). A small number of polytomies are present for larger counts of taxa.

The slopes of the corresponding linear models for the TYMS and RL11 data sets are steeper

than for the ATPA data (see Fig C in S1 File). This is likely due to TYMS sequences being

approximately half the length of ATPA (mean length of 279aa versus 514aa), and RL11 being

smaller still (mean length 144aa). The final thing to note in Fig 3 is the dashed black line,
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corresponding to CITE scores, that closely follows the dCITE curve. The line is most evident

near the origin, indicating that the deflation of CITE scores for duplicate sites is most relevant

for small counts of taxa, but even then the impact is generally very small (less than 1% differ-

ence for more than 15 taxa in the ATPA dataset).

The character diversity statistics for the ATPA dataset can be found as Table A in S1 File.

For small sets of taxa, character diversity is dictated by the parsimony assumption; for 4 taxa

each character state must appear twice so the diversity was 0.5, while the fraction of low values

Fig 1. Experiment 1. Plot of dCITE score, Δmin, CIC and TOTAL CIC For the ATPA-98 dataset, the plot of dCITE score (solid black line), Δmin (shown as

a blue . — . — line), computed from the input multiple sequence alignments, and CIC scores based on the MRE trees (shown in red using a . — . — line)

are plotted versus the counts of taxa. TOTAL CIC scores based on the input multiple sequence alignments, also plotted against counts of taxa, are shown

using purple dashed lines. Note the different Y-axis for these scores, on the right hand side.

doi:10.1371/journal.pone.0166991.g001
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(less than or equal to 0.5) was 1.0. However, by the time there were 20 taxa (the size of the

amino acid alphabet), the median diversity value was 0.15 while the fraction of low values was

still 1.0. In the case of 200 taxa, the median diversity value had risen to 0.300, and the fraction

of low values had dropped to 0.818, while the greatest diversity value for a single site was 0.8.

The values for the TYMS and RL11 datasets closely followed those for the ATPA dataset. To

gauge the impact of limiting character diversity to 0.75 at a given site (corresponding to 3 out 4

possible nucleotides), with no limit the dCITE score for 200 taxa in the ATPA data was 656.13;

with a diversity cap in place the score fell to 642.11 (a difference of 2.1%).

Experiment 2

Fig 4 is a plot of Path Difference scores (shown in blue) and Matching Split scores (shown in

red), together with dCITE scores (shown in black), all compared with diminishing sequence

length. Robinson-Foulds Distance and Quartet Distance are not shown; Robinson-Foulds Dis-

tance is relatively insensitive, while Quartet Distances produces very large values, though both

measures tell essentially the same story as the other two measures. Each of the distance metrics

should be 0 for identical trees, and minimal when comparing very similar trees. In this case,

the metrics are minimal when many of the original amino acid sites remained and dCITE

scores were high, but as the number sites declined below a threshold the level of dissimilarity

Fig 2. Experiment 1. Plot of dCITE score, minimum bootstrap count and model of the distribution. For the

ATPA-98 dataset, the plot of dCITE score (black solid line) and Minimum Bootstrap Count (for trees created

using the Majority Rule Extended consensus rule, shown as a blue . — . — line) versus the counts of taxa. A

horizontal green line marks the first “level patch”, i.e. where the sum of the differences between adjacent

dCITE scores over 10 counts of taxa is no more than 15.

doi:10.1371/journal.pone.0166991.g002

dCITE, Cladistic Information, Polytomy Artefacts

PLOS ONE | DOI:10.1371/journal.pone.0166991 November 29, 2016 11 / 19



with the True Tree increased markedly. What is also not shown in Fig 4 is the fact that, under

Majority Rule Extended consensus method, the degeneracy of the consensus tree was 0 for all

the sequence sets, apart from the last, 24aa set, when the degeneracy climbed to 2. This is in

keeping with what was seen in Experiment 1. (Results for a second synthetic dataset based on

the ATPA tree can be found as Fig D in S1 File.)

Fig 3. Experiment 1. Plot of dCITE score and degeneracy of corresponding trees. For the ATPA-98 dataset, the plot of dCITE score (solid black line)

plotted against counts of taxa. The dashed black line next to the dCITE score graph is the graph of the corresponding CITE scores. Based on the Y

axis on the right hand side there are the plots of degeneracy scores for Strict consensus trees (shown in red in red using a . — . — line), Majority Rule

consensus trees (shown as a blue . — . — line) and Majority Rule Extended consensus trees (shown shown as a - - - - purple line at the bottom of the

graph). For the Strict consensus trees and the MR trees linear models (dashed red and blue lines, respectively) are also shown. For each of the linear

models, the slope Degeneracy (D) with the counts of taxa (Ntaxa) is also noted.

doi:10.1371/journal.pone.0166991.g003
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Experiment 3

For each of the partitioned analyses—glyS+pher, lon+rpsA and MLST—two consensus trees

were computed using MrBayes: an Allcompat tree, equivalent to Majority Rule Extended, and

a Halfcompat tree, equivalent to using the Majority Rule. Table 1 lists, for the 6 combinations

of sequence set and consensus-forming rule, the number of leaves in the tree, the tree CIC and

the degeneracy of the tree. The dCITE, Δmin and TotalCIC scores for the underlying multiple

Fig 4. Experiment 2. dCITE score for input multiple sequence alignment, and Matching Split and Path Difference scores for computed consensus tree

versus True Tee, plotted against sequence length. For the 50 taxon ATPA-98 dataset, the plot of dCITE score (solid black line) plotted against length of the

input multiple sequence alignment. Also plotted against the length of the multiple sequence alignment are the Path Difference (blue . — line) and Matching

Split (red . — line) scores for the difference between the Majority Rule Extended consensus trees and the True Tree.

doi:10.1371/journal.pone.0166991.g004
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sequence alignments are also listed. What is worth noting here is that, while degeneracy scores

of 1 are to be expected for Majority Rule Extended, the greater the cladistic information, by

whichever measure, the less the degeneracy under Majority Rule and the smaller the drop in

tree CIC scores from the MRE tree to the MR tree.

Table 2 comes in two parts. In the top three rows, for each sequence set the distance is com-

puted between the Majority Rule Extended tree and the Majority Rule tree, with the ideal

being that each of the distance scores should be 0 (indicating no difference). The results mirror

the results observed in Table 1, where the greater the level of cladistic information the smaller

the difference between the MRE tree and the MR tree. (The different tree metrics are entirely

consistent on this.) In the lower 6 rows, MR and MRE trees computed from the different

sequence sets are compared using TreeCmp. TreeCmp is able to deal with trees with overlap-

ping sets of taxa by facilitating pruning of nodes and branches that are unique to one or other

input tree. The comparisons show that the trees computed by the two pairs of sequences are

more compatible than the either of those tree when compared with the MLST tree. The differ-

ence is even larger when one takes into account the larger number of nodes (and therefore

branches) shared by the glyS+pheT and lon+rpsA trees, so the larger number of ways they

could differ. Snapshots of the three MR trees, visualised using FigTree http://tree.bio.ed.ac.uk/

software/figtree/ can be found as Figs E-G in S1 File.

Discussion

Deflated Cladistic Information based on Total Entropy (dCITE) provides an easily computed

metric based that can be used to decide which combination of genes provides the most cladis-

tic information to enable a robust phylogenetic tree to be computed. This minimum cladistic

information has been called necessary cladistic information, and can be estimated by

Table 1. Tree degeneracies, CIC scores, dCITE,Δmin and TotalCIC scores for different sequence combinations and consensus tree forming rules.

Tree Leaves CIC Degeneracy dCITE Dmin TotalCIC

MLST_MRE 64 347.6 1 480.85 1064 24570

MLST_MR 64 320 14

lon+rpsA_MRE 77 440.1 1 1059.76 2546 67378

lon+rpsA_MR 77 427.5 8

glyS+pheT_MRE 76 432.9 1 1648.4 4272 98162

glyS+pheT_MR 76 427.4 4

doi:10.1371/journal.pone.0166991.t001

Table 2. Distances between pairs of trees based on Robinson-Faults Distance (R-F), Bogdanowicz et al Matching Split Distance (M-S), Steel and

Penny’s Path Difference Distance (P-D) and Estabrook’s Quartet Distance.

Tree1 Tree2 Ntaxa Distances dCITE

R-F M-S P-D Quartet

glyS+pheT_MRE glyS+pheT_MR 76 1.5 12 38.16 1,461 1,648.40

lon+rpsA_MRE lon+rpsA_MR 77 3.5 33 71.87 15,557 1,059.76

MLST_MRE MLST_MR 64 6.5 109 140.87 17,001 480.85

glyS+pheT_MR lon+rpsA_MR 75 32.5 165 162.55 91,948

glyS+pheT_MRE lon+rpsA_MRE 75 35 178 192.13 87,314

lon+rpsA_MR MLST_MR 63 35 197 202.29 115,381

glyS+pheT_MR MLST_MR 64 32.5 202 224.97 115,483

lon+rpsA_MRE MLST_MRE 63 43 214 202.50 109,037

glyS+pheT_MRE MLST_MRE 64 39 215 230.17 110,230

doi:10.1371/journal.pone.0166991.t002
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progressively adding taxa and finding the count where the the dCITE scores level off. Trying

to resolve more than that number of taxa will be more likely to result in polytomies, as evi-

denced by the increased rate of degeneracy seen in the last tranche of taxa sets versus the first

tranche (Fig 3 and Fig C in S1 File). This saturation of cladistic information also underlies the

results of Experiment 2. With the full-length alignment, there was ample cladistic information

so there were few polytomies. However, as sites were deleted there were, initially, few differ-

ences with the True Tree, suggesting that the remaining sites were, in effect, buffering the cla-

distic information, e.g. via sites with duplicated splits. Eventually, that redundancy was

depleted and the number of polytomies begins to rise steeply. In other words, whether one

views the phenomenon from the point of view of adding further taxa or deleting sites, poly-

tomies result when there is insufficient cladistic information to distinguish the set of taxa.

Secondly, while the trade-off between freedom from polytomies and level of support for the

different clades is well known, what this study shows is that greater cladistic information, as

evidenced by greater dCITE scores (or the other metrics), results in lower degeneracy, i.e.

fewer polytomies, for a given level of support, e.g. Majority Rule. The study also indicates that

after an initial period, degeneracy scores rise approximately linearly with increasing numbers

of taxa; comparison of the ATPA, TYMS and RL11 datasets also suggests that the lower the

dCITE score the greater the rate of increase in degeneracy with added taxa (closer to a slope of

1, at which point every additional sequence causes an additional or an expanded polytomy).

Thirdly, the results from the second experiment suggest that, even though the Majority Rule

Extended consensus method produces trees that are free from degeneracy (i.e. polytomies),

reflecting the low dCITE scores, the trees are likely to be significantly different from the True

Trees. In summary, taken together, Experiments 1 and 2 suggest that low dCITE scores com-

puted from input data indicate a shortage of cladistic information and will result in computed

trees containing artefacts.

The applications of the dCITE method discussed in this paper have focused on protein

sequence data. However, the dCITE method can be equally well applied to nucleotide or

encoded phenotypic data. As mentioned in the Introduction, for protein-coding nucleotide

data, while the protein translations may often be preferred, there are circumstances where

nucleotide based methods may be more appropriate, e.g. for genes from slowly evolving or

recently diverged species. However, the dCITE method can be used to inform the decision

about which data type to use. The results suggest that the potential weakness in the dCITE

method identified earlier—sites containing the entire alphabet in approximately equal propor-

tions—does not occur (some character states are not represented). More importantly, the

number of sites containing more than 75% of the alphabet is very low so their impact will be

limited. Finally, now that the cost of genome sequencing is comparable to use of MLST prim-

ers followed by fragment sequencing, the results from Experiment 2 suggest that it is appropri-

ate to use a method, such as dCITE, to find more informative sequence combinations than

MLST upon which to base phylogenetic tree computations.

Conclusions

The paper has discussed Deflated Cladistic Information based on Total Entropy (dCITE), a

novel reworking of previously described metrics for computing the cladistic information con-

tent in the multiple sequence alignments that will be used to create phylogenetic trees. The

method does not attempt to provide guidance about which taxa are to be included in the phy-

logenetic reconstruction. Rather, dCITE aims to provide guidance about whether there is suffi-

cient information for a robust tree to be computed, i.e. a tree without artefactual polytomies.

The dCITE method requires as input nothing more than a multiple sequence alignment; In
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particular, the method does not require a priori knowledge of the phylogenetic relationships

between the taxa (or at least a subset of the taxa).

The first conclusion is that the greater the dCITE score the greater the likelihood of com-

puting a robust, well-supported tree. Secondly, cladistic information saturates, beyond which

little additional cladistic information can be obtained by adding additional sequences. Muta-

tional saturation, where present, can be modelled by excess character diversity and can be

excluded from dCITE scores. The experiments reported here suggest that, for a given set of

taxa, data sets with sufficient cladistic information from highly expressed genes are likely to

produce comparable phylogenetic trees. Finally, now that the cost of genome sequencing is

comparable to use of MLST primers and fragment sequencing, it is appropriate to use more

informative combinations of whole sequences. Future work will be toward implementing tests

based on dCITE to indicate when a dataset lacks the necessary cladistic information from

which to compute a robust, fully resolved tree. One possibility, suggested by Experiment 1,

particularly Fig 2, is to compute something akin to rarefaction curves used by ecologists (see

review [53]). That is, by looking at the cladistic information content, via dCITE scores, for

samples of sequences one will be able to see whether cladistic information is showing signs of

saturating.

Supporting Information

S1 File. The Supporting Information S1 File contains Figs A-C and Table A, supporting

Experiment 1, Fig D supporting Experiment 2 and Figs E-G and Tables B-C supporting

Experiment 3.

(PDF)

Acknowledgments

I would like to thank Dr Tanya Golubchik for the many discussions we had in the early stages

of this paper, which ultimately shaped my thinking about the topic.

Author Contributions

Conceptualization: MJW.

Formal analysis: MJW.

Methodology: MJW.

Software: MJW.

Validation: MJW.

Visualization: MJW.

Writing – original draft: MJW.

Writing – review & editing: MJW.

References
1. Woese CR, Fox GE. Evolution Phylogenetic Structure of the Prokaryotic Domain: The Primary King-

doms. Proc Natl Acad Sci USA. 1977; 74:5088–5090. doi: 10.1073/pnas.74.11.5088 PMID: 270744

2. Eisen JA. The recA Protein as a Model Molecule for Molecular Systematic Studies of Bacteria: Compar-

ison of Trees of recAs and 16S rRNAs from the Same Species. J Mol Evol. 1995; 41:1105–1123. doi:

10.1007/BF00173192 PMID: 8587109

dCITE, Cladistic Information, Polytomy Artefacts

PLOS ONE | DOI:10.1371/journal.pone.0166991 November 29, 2016 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0166991.s001
http://dx.doi.org/10.1073/pnas.74.11.5088
http://www.ncbi.nlm.nih.gov/pubmed/270744
http://dx.doi.org/10.1007/BF00173192
http://www.ncbi.nlm.nih.gov/pubmed/8587109


3. Penny D, Hendy MD, Zimmer EA, Hamby K. Trees from Sequences: Panacea or Pandora’s Box? Aust

Syst Bot. 1990; 3:21–38. doi: 10.1071/SB9900021

4. D’Erchia AM, Gissi C, Pesole G, Saccone C, Arnason U. The Guinea-Pig is not a Rodent. Nature. 1996;

381:597–600. doi: 10.1038/381597a0 PMID: 8637593

5. Rokas A, Williams BL, King N, Carroll SB. Genome-Scale Approaches to Resolving Incongruence in

Molecular Phylogenies. Nature. 2003; 425:798–804. doi: 10.1038/nature02053 PMID: 14574403

6. de Queiroz A, Gatesy J. The Supermatrix Approach to Systematics. Trends Ecol Evol. 2006; 22:34–41.

doi: 10.1016/j.tree.2006.10.002 PMID: 17046100

7. Zhang J, Yang JR. Determinants of the Rate of Protein Sequence Evolution. Nat Rev Genet. 2015;

16:409–420. doi: 10.1038/nrg3950 PMID: 26055156

8. Glenner H, Hansen AJ, Sørensen MV, Ronquist F, Huelsenbeck JP, Willerslev E. Bayesian Inference

of the Metazoan Phylogeny: A Combined Molecular and Morphological Approach. Curr Biol. 2004;

14:1644–1649. doi: 10.1016/j.cub.2004.09.027 PMID: 15380066

9. Telford MJ, Wise MJ, Gowri-Shankar V. Consideration of RNA Secondary Structure Significantly

Improves Likelihood-Based Estimates of Phylogeny: Examples from the Bilateria. Mol Biol Evol. 2005;

22:1129–1136. doi: 10.1093/molbev/msi099 PMID: 15689526

10. Koonin EV, Makarova KS, Aravind L. Horizontal Gene Transfer in Prokaryotes Quantification and Clas-

sification. Annu Rev Microbiol. 2001; 55:709–742. doi: 10.1146/annurev.micro.55.1.709 PMID:

11544372

11. Keeling PJ, Palmer JD. Horizontal Gene Transfer in Eukaryotic Evolution. Nat Rev Genet. 2008; 9:605–

618. doi: 10.1038/nrg2386 PMID: 18591983

12. Maddison WP. Gene Trees in Species Trees. Syst Biol. 1997; 46:523–536. doi: 10.1093/sysbio/46.3.

523

13. Doolittle WF. Phylogenetic Classification and the Universal Tree. Science. 1999; 284:2124–2128. doi:

10.1126/science.284.5423.2124 PMID: 10381871
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