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Abstract

Various systems have been proposed to support biological image analysis, with the intent of

decreasing false annotations and reducing the heavy burden on biologists. These systems

generally comprise a feature extraction method and a classification method. Task-oriented

methods for feature extraction leverage characteristic images for each problem, and they

are very effective at improving the classification accuracy. However, it is difficult to utilize

such feature extraction methods for versatile task in practice, because few biologists spe-

cialize in Computer Vision and/or Pattern Recognition to design the task-oriented methods.

Thus, in order to improve the usability of these supporting systems, it will be useful to

develop a method that can automatically transform the image features of general propose

into the effective form toward the task of their interest. In this paper, we propose a semi-

supervised feature transformation method, which is formulated as a natural coupling of prin-

cipal component analysis (PCA) and linear discriminant analysis (LDA) in the framework of

graph-embedding. Compared with other feature transformation methods, our method

showed favorable classification performance in biological image analysis.

Introduction

In biological image analysis, biologists manually identify and/or classify the images captured

via a microscope. However, the data usually comprise a large number of images, and thus the

analysis imposes a heavy burden on biologists, which increases the risk of false annotations.

Therefore, in order to improve both efficiency and accuracy, there is a great demand for devel-

oping a system to support biologists with image annotation.

Recently, many such systems have been proposed [1–5], and some of them are currently

being used in biological and medical research. These supporting systems, which analyze bio-

logical images, are generally constructed based on feature extraction and classification meth-

ods. In those systems, task-oriented feature extraction methods, such as by using the shift-and-

rotation-invariant feature extraction method for classifying biological particles [4], are very

effective [1–4] at improving the classification accuracy. However, the improvement is limited

when the method is applied to an unexpected task (such as when a feature extraction method
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for intracellular particles is applied to an image classification task for tissues) [6], and knowl-

edge of Computer Vision and/or Pattern Recognition is necessary in order to successfully

apply the various feature extraction methods. Unfortunately, few of the primary users of these

systems, the research biologists, specialize in Computer Vision and/or Pattern Recognition.

In recent years, the methods of deep learning such as convolutional neural networks

(CNN) have produced promising performance in many image classification tasks [7, 8]. For

training those CNN-based methods, it is necessary to prepare large-scale datasets as well as

specialized knowledge about the CNN architectures, which however is generally not available

in the field of biological classification. On the other hand, the CNN feature extractors “pre-

trained” on the large-scale data, e.g., ImageNet [9], of different domain are shown to be trans-

ferable by effectively improving, e.g., medical image classification [10]. In that case, it will be

further useful to apply a (semi-) supervised feature transformation method that can automati-

cally adapt the general features to various types of tasks by making these methods available to

biologists lacking in specialized knowledge of feature extraction methods.

Here, we simply define that the feature transformation as the linear mapping of y = ATx, in

which the transformation matrix A is obtained by solving an optimization problem. We can

apply the above feature transformation to obtain classifiable features y from various character-

istics features x by using A without knowing how x is constructed. Therefore, we can regard a

multivariate analysis as the feature transformation.

When we apply the feature transformation to the extracted features in the classification of

biological datasets, the feature transformation method should be applicable to the ill-posed

problem without the specialized knowledge, because the biological dataset is generally small

compared to the dimensionality of the input vector as shown in [11]. In this case, the multivar-

iate analysis method can easily deal with the ill-posed problem by solving a dual formulation.

Principal component analysis (PCA) uses a simple unsupervised feature transformation,

and it is widely used for applications requiring dimensionality reduction and/or feature extrac-

tion [12]. It is essentially the same as the Karhunen-Loève transformation [13], and it is formu-

lated as the problem of estimating the orthogonal transformation coefficients from a given set

of input data by maximizing the variance of the transformed data. Some studies have shown

that when the size of the training dataset is small, PCA can outperform LDA, and in addition,

PCA is less sensitive to differences in the categories [14]. However, in general, (semi-) super-

vised feature transformations perform better than PCA.

Fishers linear discriminant analysis (LDA) [15] is a well-known method for extracting the

features that maximize the discrimination. LDA is formulated as the problem of estimating the

transformation coefficients for labeled input data such that the ratio of the between-class vari-

ance to the within-class variance is maximized. When the label information is available, e.g., in

classification tasks, LDA performs better than PCA [16]. However, especially in the biological

field, it is difficult to prepare many training samples which were given reliable class labels.

When the number of labeled samples is less than the number of dimensions, the covariance

matrix of the classes may not be accurately estimated. In this case, the generalization perfor-

mance for the testing samples cannot be guaranteed. In order to overcome this problem, vari-

ous feature transformation methods have been proposed; these include semi-supervised

discriminant analysis (SDA) [17] and the heuristic fusion algorithm [18].

For biological data such as tissue images, the given class labels are often unreliable, because

objects to be measured inherently contain some physical and biological uncertainty. Moreover,

some given labels might be incorrectly assigned by human intuition. Whereas, reliable labels

would be available for a small portion of the training samples. In such case, the method of

semi-supervised learning is effectively applied to transform the features extracted from the bio-

logical data and/or it.
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SDA is a natural extension of LDA in a graph-embedding framework [19]. The graph-

embedding framework can be considered as a general expression of multivariate analysis, such

as PCA and LDA, in a graph structure. The regularization term in SDA is based on the locality

preserving projections (LPP) [20, 21] and is introduced to deal with the unlabeled training

samples. Thus, it efficiently exploits both labeled and unlabeled data; the labeled data are used

to maximize the discriminating power, while the unlabeled data are used to maximize the

locality preserving power. When applied to actual data, especially when applied to biological

microscopic images, it is difficult to determine the optimal similarity measure for the regulari-

zation term, because this depends on the characteristics of the sample.

In this paper, we propose semi-supervised component analysis (SCA), a method for trans-

forming features in order to improve the classification accuracy and the usability of image

analysis in biological fields. Our method is formulated in the framework of semi-supervised

learning, directly incorporating PCA and LDA via a graph-embedding expression; a discrimi-

nant criterion is added to the PCA when there are labeled training samples. This is not the

same as the fusion algorithm [18], which heuristically and individually mixes the coefficients

estimated by LDA and PCA, and this ensures that our proposed method performs at least as

well as either PCA or LDA. In addition, our method does not require a priori knowledge of

similarity, as does SDA. Furthermore, we also present a kernel-based method (similar to those

used in [19–21]) to deal with ill-posed problems.

A preliminary version of the proposed SCA has been published [22]. In the present paper,

we propose a refined version and discuss its formulation. In addition, we introduce a scaling

parameter to the definition of the SCA in order to improve the cooperation between PCA and

LDA.

Methods

In this section, we briefly review PCA and LDA expressed by the graph-embedding frame-

work, and we then present SCA.

Principal component analysis

PCA is a linear transformation method that is widely used to estimate the orthogonal bases so

as to maximize the variance of projected data. Suppose X = [x1 . . . xn] 2 <m×n be an input data-

set, where xi is an m-dimensional vector for the i-th feature. PCA constructs a linear mapping

A 2 <m×r from the input vector x to a new feature vector y of lower dimensionality (r<m), as

follows:

y ¼ ATx: ð1Þ

The optimal transformation matrix A� is obtained by maximizing the following objective

function:

A� ¼ arg max
A

trðATSAÞ ;

s:t: ATA ¼ I ;
ð2Þ

where

S ¼
1

n

Xn

i

ðxi � μÞðxi � μÞT; ð3Þ

n is the number of samples, and μ is the sample mean vector. In the graph-embedding
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framework, the covariance matrix S can be reformulated as follows [19]:

S ¼
1

n
X I �

1

n
eeT

� �

XT

¼ XLtXT;

ð4Þ

where e = [1 . . . 1]T is an n-dimensional vector, and Lt is the Laplacian matrix for the total

covariance. From Eqs (2) and (4), A� can be obtained by solving the following eigenvalue

problem:

XLtX
TA ¼ AL ; ð5Þ

where Λ = diag(λ1,. . ., λr) is a diagonal matrix of eigenvalues.

Linear discriminant analysis

Fisher [15] proposed LDA, which determines the subspace that maximizes the ratio of the

between-class variance to the within-class variance.

Let X be a training dataset, such that x belongs to one of the k classes {c1, . . ., ck}, and sup-

pose that each member of X is labeled according to the class to which it belongs. Then, LDA

constructs the linear transformation given in Eq (1).

Based on the discriminant criterion, the optimal transformation matrix A� is obtained by

maximizing the following objective function:

A� ¼ arg max
A

trððATSwAÞ
� 1ATSbAÞ ;

s:t: ATSwA ¼ I;
ð6Þ

where

Sw ¼
1

n

Xk

q

Xnq

i

ðxqi � μqÞðxqi � μqÞ
T
; ð7Þ

Sb ¼
Xk

q

nq
n
ðμq � μÞðμq � μÞT; ð8Þ

nq is the number of samples in the q-th class, xqi is the i-th input vector in the q-th class, and μq
is the mean vector of the q-th class. In the graph-embedding framework, the within-class

covariance matrix Sw and the between-class covariance matrix Sb can be reformulated as fol-

lows [19]:

Sw ¼
1

n
Xdiag I �

1

n1

e1e1
T; . . . ; I �

1

nk
ekek

T

� �

XT

¼ XLwXT;

ð9Þ

Sb ¼ S � Sw

¼ XðLt � LwÞXT

¼ XLbXT;

ð10Þ

where eq = [1 . . . 1]T is an nq-dimensional vector, and Lw, and Lb are the Laplacian matrices for

the within-class covariance and for the between-class covariance, respectively. From Eqs (6),
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(9) and (10), A� can be obtained by solving the following generalized eigenvalue problem:

XLbX
TA ¼ XLwX

TAL : ð11Þ

Semi-supervised component analysis

We propose an efficient method for transforming features; it is based on PCA, which directly

uses a discriminant criterion for labeled input data. Our method, SCA, can be formulated as a

natural coupling of PCA and LDA via a graph-embedding expression; the graph structure is

directly determined from the distributions of the labeled and unlabeled samples. The objective

function of SCA is essentially expressed by the sum of the Laplacian matrices which are

defined in the functions of PCA and LDA. Where, the Laplacian matrices are the graphs of the

total variance for unlabeled samples and the between-class covariance for labeled samples as

shown in the next section. Those variance and covariance are calculated referring to the mean

vector which averages the labeled and unlabeled samples. SCA proposes a semi-supervised fea-

ture transformation, and it is not necessary that all training samples have class labels in order

to obtain an appropriate feature transformation matrix.

Suppose we have an input dataset X = [Xl Xu] 2 <m×n, such that n = nl + nu, where l and u
denote the labeled set and the unlabeled set, respectively. Then, SCA constructs the linear

transformation shown in Eq (1), and the optimal transformation matrix A� can be obtained by

maximizing the following objective function:

A� ¼ arg max
A

trðATXLXTAÞ; ð12Þ

s:t: a
nu
n
ATAþ

nl
n
ATXL̂wX

TA ¼ I; ð13Þ

where α is a scaling parameter. From Eq (12), A� can be obtained by solving the following gen-

eralized eigenvalue problem:

XLXTA ¼ a
nu
n
I þ

nl
n
XL̂wX

T
n o

AL: ð14Þ

The Laplacian matrix for the within-class covariance L̂w in Eq (12) is calculated from only

the labeled input samples, based on Eq (9). The Laplacian matrix L in Eq (12) is constructed

from Eqs (4) and (9), and it is defined as follows:

L ¼
Lll Llu

Llu Luu

" #

¼ Lt �

nl
n
Lw 0

0 0

2

4

3

5

¼
1

n

�
1

n
elel

T þ diag
1

n1

e1e1
T; . . . ;

1

nk
ekek

T

� �

�
1

n
eleu

T

�
1

n
euel

T I �
1

n
eueu

T

2

6
6
6
4

3

7
7
7
5
;

ð15Þ

where el and eu are components of eT = [elT euT]. From Eq (15), the sample variance matrix
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XLXT and the within-class variance matrix XL̂wXΤ in SCA are reformulated as follows:

XLXT ¼ ½Xl Xu �

Lll Llu

Lul Luu

2

4

3

5½Xl Xu �
T

¼ S �
nl
n

Sw

XL̂wXT ¼ ½Xl Xu �

Lw 0

0 0

2

4

3

5½Xl Xu �
T

¼ XlLwXl
T

¼ Sw

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

; ð16Þ

where XlLwXl
T ¼ 1

nl

Xk

q

Xnq

i2Cq

ðxqi � μqÞðxqi � μqÞ
T

is the within-class covariance matrix for the

labeled samples, Cq is the labeled subset in the q-th class, and nl ¼
Xk

q

nq.

The difference between the scales of the first and second terms in Eq (13) is likely to cause

the feature transformation to be unstable in terms of the classification accuracy. When the

within-class covariance matrix Sw is the same as the identity matrix, it is reasonable to set

α = 1. However, it is impossible to determine whether the within-class covariance matrix is

similar to the identity matrix for the raw data.

Here, we rewrite the constraint of SCA in Eq (12) as follows:

a
nu
n
ATAþ

nl
n
ATXLwX

TA ¼
nu
n
ATðaI � SwÞAþ ATSwA; ð17Þ

and when (αI − Sw) is approximated as Sb, the first term of right-hand equation satisfies the

positive definiteness. Then, the weighted identity matrix αI can be approximated as following

equation:

aI ffi Sb þ Sw

¼ St ffi S
; ð18Þ

where S is the total covariance matrix.

Based on the above discussion, we determined the scaling parameter to be α = tr(S) / m in

order to achieve a scale-invariant feature transformation.

From the above definitions, it can be seen that SCA is equal to LDA when all of the training

samples are labeled (nl = n), and it is equivalent to PCA when all of the training samples are

unlabeled (nu = n).

Discussion of SCA

In this section, we discuss SCA. It is worth pointing out that the covariance matrix XLXT in

Eq (12) can be represented by a linear combination of a between-class scatter matrix for the

labeled samples Sb and a total scatter matrix for the unlabeled samples Su, when the scatter is

Semi-Supervised FT for Tissue Image Classification
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defined relative to the total mean vector, as follows:

Sb ¼
Xk

q

nq μq � μ
� �

μq � μ
� �T

¼
Xk

q

nqμqμq
T �

Xk

q

nqμμq
T �

Xk

q

nqμqμ
T þ

Xk

q

nqμμ
T

¼
Xk

q

Xnq

i2Cq

xi

0

@

1

A
Xnq

j2Cq

1

nq
xj

T

0

@

1

A

8
<

:

9
=

;
�

Xn

i

1

n
xi

 !
Xnl

j2l

xj
T

 !

�
Xnl

i2l

xi

 !
Xn

j

1

n
xj

T

 !

þ nl
Xn

i

1

n
xi

 !
Xn

j

1

n
xj

T

 !

¼ ½Xl Xu �

diag
1

n1

e1e1
T; . . . ;

1

nk
ekek

T

� �

þ
� 2nþ nl

n2
elel

T � nu
n2

eleu
T

� nu
n2

euel
T nl

n2
eueu

T

2

6
6
6
6
4

3

7
7
7
7
5
½Xl Xu �

Τ
;

ð19Þ

Su ¼
Xnu

i2u

xi � μð Þ xi � μð Þ
T

¼
Xnu

i2u

xixi
T �

Xnu

i2u

xiμ
T �

Xnu

i2u

μxi
T þ

Xnu

i2u

μμT

¼
Xnu

i2u

xixi
T �

Xnu

i2u

xi

 !
Xn

j

1

n
xj

 !T

�
Xn

j

1

n
xj

 !
Xnu

i2u

xi

 !T

þ nu
Xn

i

1

n
xi

 !
Xn

j

1

n
xj

 !T

¼ ½Xl Xu �

nu
n2

elel
T � nþ nu

n2
eleu

T

� nþ nu
n2

euel
T I þ

� 2nþ nu
n2

eueu
T

2

6
6
6
4

3

7
7
7
5
½Xl Xu �

Τ
:

ð20Þ
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From Eqs (15), (19) and (20), the covariance matrix XLXT in Eq (12) can be rewritten as fol-

lows:

XLXΤ 1

n
½Xl Xu �

�
1

n
elel

T þ diag
1

n1

e1e1
T; . . . ;

1

nk
ekek

T

� �

�
1

n
eleu

T

�
1

n
euel

T I �
1

n
eueu

T

2

6
6
6
6
4

3

7
7
7
7
5
½Xl Xu �

Τ

¼
1

n
½Xl Xu �

diag
1

n1

e1e1
T; . . . ;

1

nk
ekek

T

� �

þ
� 2nþ nl þ nu

n2
elel

T � nu � nþ nu
n2

eleu
T

� nu � nþ nu
n2

euel
T I þ

nl � 2nþ nu
n2

eueu
T

2

6
6
6
6
4

3

7
7
7
7
5
½Xl Xu �

Τ

¼
1

n
½Xl Xu �

diag
1

n1

e1e1
T; . . . ;

1

nk
ekek

T

� �

þ
� 2nþ nl

n2
elel

T � nu
n2

eleu
T

� nu
n2

euel
T nl

n2
eueu

T

2

6
6
6
6
4

3

7
7
7
7
5
½Xl Xu �

Τ

þ
1

n
½Xl Xu �

nu
n2

elel
T � nþ nu

n2
eleu

T

� nþ nu
n2

euel
T I þ

� 2nþ nu
n2

eueu
T

2

6
6
6
6
4

3

7
7
7
7
5
½Xl Xu �

Τ

¼
1

n
Sb þ Suð Þ:

ð21Þ

From the above analysis, we see that by centering the total sample mean, SCA maximizes

the between-class discrimination of the labeled samples and minimizes the information loss of

the unlabeled samples.

Kernel extension for ill-posed problems

Suppose that a feature transformation method is applied to a dataset that is small compared to

the dimensionality of the input vector (e.g., text mining or image recognition using raw data).

In this case, it is necessary to extend the SCA to include a nonlinear method in order to make

the problem feasible, resulting in a dual formulation [19–21].

In SCA, letΦ(X) denote the input feature matrix in the Hilbert space, where X = [Xl Xu]

andΦ(X) = [φ(x1) . . . φ(xn)]. The generalized eigenproblem in the Hilbert space can be written

as follows:

Φ Xð ÞLΦ Xð ÞTA ¼ a
nu
n
I þ

nl
n
Φ Xð Þ

Lw 0

0 0

" #

Φ Xð ÞT
( )

AL: ð22Þ

We formulate the nonlinear case in a way that uses the dot product exclusively. Therefore,

we consider the expression of the dot product on the Hilbert space, as given by the following

kernel function:

K xi; xj
� �

¼ φ xið Þ
Τφ xj
� �

; ð23Þ

because the eigenvectors in Eq (22) are a linear combination of a =Φ(X)b, and K =Φ(X)TΦ
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(X). By simplifying the notation, we obtain the following generalized eigenvalue problem:

KLKTB ¼ a
nu
n
K þ

nl
n
K

Lw 0

0 0

" #

KT

( )

BL: ð24Þ

Results

Comparative evaluation of SCA

In order to confirm the effectiveness of our proposed method, SCA, we conducted experi-

ments to compare the relative accuracy by using well-known machine learning repositories

[23]. Table 1 shows a summary of the datasets in the repository: Satimage, Shuttle, Optdigits,
Pendigits, and Isolet [23]. The training data and the test data were sampled according to the

indicated distributions.

The classification accuracies were evaluated on the given train/test splits in each of the data-

sets. In the training dataset, the ratio of unlabeled samples, denoted by β, is changed in {0, 0.01,

0.02, . . ., 0.99, 1}. The training dataset was randomly split into labeled and unlabeled samples

at {β | 0< β< 1}, which was repeated ten times. We evaluate the classification performance by

using the mean recognition rates and the standard deviations over the ten times trials.

The classification accuracies for test datasets were calculated by applying the instance-based

classifier, namely the nearest-neighbor (NN) classifier, with all the labels of training samples in

the transformed feature space and using full-rank coefficients in order to fairly compare the

feature transformation methods.

We confirmed the performance of SCA in which α was set to {α | 0.01, 0.1, 1.0, 10.0, tr(S) /

m}. Table 2 shows the highest mean recognition rates and the standard deviations at each α in

the range of 0.01� β� 0.99. For the datasets excluding Isolet, the SCA by setting our proposed

parameter, α = tr(S) / m, shows the best classification performances. For Isolet, the mean rec-

ognition rates at all α were over 0.92. From the results, our proposed method is useful because

it derives better recognition rates without the parameter search for α.

We also compared the stability of the features transformed by SCA at each α. Fig 1 shows

the mean recognition rates in the range of 0.01� β� 0.99, and the experimental setting was

same as Table 2. For almost all datasets, the SCA by setting our proposed parameter produced

the more stable changes of mean recognition rates than that by other α. For Isolet, the mean

recognition rates produced by SCAs (α was set to 0.01, 0.1, and tr(S) / m) unfortunately

decreased around β = 0.10, when the other SCAs (α was set to over 1.0) produced the stable

changes. However, the proposed parameter was able to reduce this decreasing in comparison

with the parameters which was set to 0.01 and 0.1, and our proposed SCA produced the best

results of Satimage. From the results, our proposed SCA achieves the relatively stable feature

transformation compared with the SCAs by setting to the given α.

Table 1. Benchmark datasets for classification.

# of class # of training # of test # of attribute

Satimage 6 4,435 2,000 36

Shuttle 7 43,500 14,500 8

Optdigits 10 3,823 1,797 64

Pendigits 10 7,494 3,498 16

Isolet 26 6,238 1,559 617

doi:10.1371/journal.pone.0166413.t001
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We can perceive that the results in Table 2 and Fig 1 have a tendency of which the mean

recognition rates increase in proportion to α and β. The tendency suggests that a distinguish-

ability of all samples may be more effective than the within-class coherency in the classification

by using the NN classifier, because we can interpret that the distinguishability is proportional

to α and β as shown in Eq (17). From the discussion, SCA and also PCA would produce the

better recognition rates than LDA, when we solve the classification problems based on NN.

To confirm the above discussion, SCA was compared to the other feature transformation

methods based on the multivariate analysis methods; PCA [12, 13], LPP [20, 21], LDA [15],

Table 2. Recognition rates with benchmark dataset at each α.

Satimage Shuttle Optdigits Pendigits Isolet

α = 0.01 0.7809

(± 0.0146)

[β = 0.99]

0.9992

(± 0.0000)

[β = 0.33]

0.9693

(± 0.0015)

[β = 0.88]

0.9723

(± 0.0001)

[β = 0.01]

0.9210

(± 0.0059)

[β = 0.01]

α = 0.1 0.8429

(± 0.0091)

[β = 0.99]

0.9992

(± 0.0000)

[β = 0.04]

0.9784

(± 0.0019)

(β = 0.99)

0.9723

(± 0.0001)

[β = 0.01]

0.9239

(± 0.0053)

[β = 0.01]

α = 1.0 0.8879

(± 0.0055)

[β = 0.99]

0.9992

(± 0.0000)

[β = 0.03]

0.9817

(± 0.0015)

[β = 0.97]

0.9738

(± 0.0007)

[β = 0.93]

0.9317

(± 0.0024)

[β = 0.01]

α = 10.0 0.8969

(± 0.0023)

[β = 0.99]

0.9992

(± 0.0000)

[β = 0.01]

0.9827

(± 0.0009)

[β = 0.75]

0.9759

(± 0.0006)

[β = 0.99]

0.9373

(± 0.0034)

[β = 0.01]

α = tr(Σ) / m 0.8985

(± 0.0008)

[β = 0.90]

0.9992

(± 0.0000)

[β = 0.01]

0.9827

(± 0.0007)

(β = 0.68)

0.9774

(± 0.0001)

[β = 0.82]

0.9259

(± 0.0045)

[β = 0.01]

doi:10.1371/journal.pone.0166413.t002

Fig 1. Recognition rates in UCI machine leaning repository. The results for (a) Satimage, (b) Shuttle, (c)

Optdigits, (d) Pendigits, and (e) Isolet. The lines show the classification accuracies in the transformed feature

spaces for each method. The colors indicate the transformation methods, as shown in the legend.

doi:10.1371/journal.pone.0166413.g001
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and SDA [19]. Where PCA and LPP are the unsupervised methods, LDA is the supervised

method, and SDA, and also SCA, are the semi-supervised methods. In this experiment, PCA,

LPP, and LDA were applied to the datasets to confirm the baselines of recognition rates pro-

duced by the unsupervised methods and the supervised method.

The similarity measures used for LPP and SDA were the same as those used in [21] and

[17], respectively. The hyper parameters in LPP and SDA were tuned by a grid search with five-

fold cross validation (CV) with training dataset. The grid was set to {2−15, 2−14, 2−13, . . ., 215}.

For the unsupervised methods, PCA, LPP, and SCA (β = 1), the transformation matrices were

estimated by using the training samples without class labels. The transformation matrices by

LDA, SDA (β = 0), and SCA (β = 0) were estimated by using the all labeled training samples. In

those cases, we reported the classification accuracies on the given train/test splits. When β was

set in the range from 0.01 to 0.99, the results of semi-supervised methods, SDA and SCA, were

the mean recognition rates and standard deviations as with Table 2.

Table 3 shows the recognition rates for the PCA, LPP, LDA, and shows the highest recogni-

tion rates and the standard deviations for each of the semi-supervised methods. For all data-

sets, the SCA produced the highest recognition rates. Almost all the results of LPP, especially

for Satimage and Isolet, produced the lowest recognition rates in each of the methods. The

results of LPP might be cause by the similarity measure which was not suitable for these data-

sets. The results of SDA had the comparable or better recognition rates than those of LDA, and

the graph of SDA for unlabeled samples was based on the similarity measure which was not

same as LPP. These results of LPP and SDA suggest the difficulty of the similarity measure

selection in the classification tasks. For Satimage and Pendigits, the ratios of unlabeled samples

in SCA were over 0.8, and the PCA produced the higher recognition rates than other methods

excluding SCA. On the other hand, for Shuttle and Isolet, the LDA and SCA (β = 0) produced

the best recognition rates. From the results, the size of β in SCA indicates the effectiveness of

distinguishability in the classification based on NN.

These results suggest that the proposed SCA is likely to transform the data into discriminat-

ing features those are useful for classification tasks.

Application to tissue image classification

We applied our proposed SCA to three tissue image classifications; we used the Image Infor-

matics and Computational Biology Unit (IICBU) 2008 dataset [24], which has been proposed

as a benchmark for testing and comparing the performance of analysis methods for biological

imaging. This database contains eleven subsets, each representing a different classification

Table 3. Recognition rates with benchmark dataset.

Satimage Shuttle Optdigits Pendigits Isolet

PCA

[β = 1]

0.8925 0.9989 0.9977 0.9771 0.8698

LPP

[β = 1]

0.5500 0.9809 0.9254 0.9731 0.2996

LDA

[β = 0]

0.8330 0.9992 0.9572 0.9523 0.9384

SDA 0.8861

(± 0.0021)

[β = 0.01]

0.9992

(± 0.0001)

[β = 0.84]

0.9664

(± 0.0014)

[β = 0.15]

0.9665

(± 0.0035)

[β = 0.97]

0.9321

(± 0.0021)

[β = 0.05]

SCA 0.8985

(± 0.0008)

[β = 0.90]

0.9992

[β = 0]

0.9827

(± 0.0007)

[β = 0.68]

0.9774

(± 0.0001)

[β = 0.82]

0.9384

[β = 0]

doi:10.1371/journal.pone.0166413.t003
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problem; the Liver gender (caloric restriction; CR), Liver gender (ad libitum; AL), and Liver
aging datasets pose particularly difficult problems [5] for tissue image classification. Table 4

presents a summary of these datasets, and examples of tissue images are shown in Fig 2. We

applied the various feature transformation methods to these difficult problems.

When we directly classify images by using a classifier, it is generally difficult to achieve a

favorable classification performance. In order to overcome this problem, various feature

extraction methods have been proposed in Computer Vision, and we may improve the classifi-

cation accuracies by transforming the extracted features into the discriminating features. The

Table 4. Tissue image datasets in IICBU 2008.

# of samples (images) # of class Image format

Liver aging 529 4 1,388 × 1,040 RGB TIFF,

12 bit color channel

Liver gender (CR) 303 2 1,388 × 1,040 RGB TIFF,

12 bit color channel

Liver gender (AL) 265 2 1,388 × 1,040 RGB TIFF,

12 bit color channel

doi:10.1371/journal.pone.0166413.t004

Fig 2. Examples of tissue images. (a) Tissue image for a 24-month-old female mouse on an ad libitum diet.

(b) Tissue image for 6-month-old female mouse on a calorie-restricted diet.

doi:10.1371/journal.pone.0166413.g002
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gist global descriptor [25], simply called “GIST”, is one of the popular feature extraction meth-

ods. The GIST showed better recognition performances than other state-of-the-art methods

such as the bag of features (BOF) [26]. The GIST extraction software in [26] is available online

[27], and we can readily apply this software to extract the GIST from the color image. In this

paper, we extract the GIST from each of the tissue images, and the feature transformation

methods were applied to those GISTs.

In the experiments described below, the GIST was directly extracted from each of the color

images. The given parameters of GIST were set to the defaults of software [27], resulting a

960-dimensional feature vector. The classification accuracies were evaluated by using the strat-

ified five-fold CV. In each validation set, the extracted GISTs were transformed by using the

kernel SCA (KSCA) and the other feature transformation methods; kernel PCA (KPCA), ker-

nel LPP (KLPP), kernel DA (KDA), and kernel SDA (KSDA), those were conducted in the lin-

ear space by solving the dual formulation to deal with the ill-posed problem. The settings for

the classifier, the similarity measures for KLPP and KSDA, and the method for determining

the parameters in each of validation sets were the same as in the previous section.

Table 5 shows the mean recognition rates and the standard deviations for the KPCA, KLPP,

KDA, and shows the highest mean recognition rates and the standard deviations for each of

the semi-supervised methods, in which those were evaluated by using the stratified five-fold

CV. Fig 3 shows the mean recognition rates at each β. For KDA in Fig 3, the labeled samples

from the result of random splits were used for the training at each β. KSCA produced the best

recognition rates excluding the result for Liver gender (AL). For Liver gender (AL), the recogni-

tion rates by KPCA and KSCA show 0.925, and are better results than those by the other fea-

ture transformation methods, but the best recognition rate is the result of directly using the

GIST. These would be caused from a decreasing of classification performance due to the exces-

sive dimensionality reduction, because the transformed features, especially in the transforma-

tion by KDA, were low-dimensional vectors compared with the input features.

In the classification, KDA generally produces higher recognition rates than KPCA. How-

ever, in Table 5 and Fig 3, KPCA, and also KSCA, produced the better recognition rates than

KDA. These results would be caused by the instance-based classifier. To confirm the effects of

classifier on the tissue image classifications, we conducted the experiments only replacing the

NN classifier with the nearest mean (NM) classifier which is one of the simple model-based

classification methods. The NM classifier can reduces the computation time comparing with

the NN classifier.

Fig 4 shows the classification accuracies, and the experimental setting in Fig 4 was same as

that in Fig 3 except that the test datasets in each of validation sets was classified by using the

Table 5. Recognition rates with IICBU 2008 by calculating NN classifier.

Liver aging Liver gender (CR) Liver gender (AL)

GIST 0.873 (± 0.042) 0.925 (± 0.024) 0.997 (± 0.007)

GIST + KPCA

[β = 1]

0.873 (± 0.042) 0.997 (± 0.007) 0.925 (± 0.024)

GIST + KLPP

[β = 1]

0.669 (± 0.067) 0.871 (± 0.059) 0.857 (± 0.035)

GIST + KDA

[β = 0]

0.785 (± 0.039) 0.963 (± 0.040) 0.860 (± 0.046)

GIST + KSDA 0.860 (± 0.040)

[β = 0.14]

0.983 (± 0.018)

[β = 0.33]

0.883 (± 0.032)

[β = 0]

GIST + KSCA 0.875 (± 0.036)

[β = 0.98]

1.000 (± 0.000)

[β = 0.79]

0.925 (± 0.024)

[β = 0.99]

doi:10.1371/journal.pone.0166413.t005
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NM classifier. Table 6 shows the highest mean recognition rates and the standard deviations

for each the method in Fig 4.

The KDA and KSCA produced the better recognition rates than the unsupervised methods

when β was set in the range from 0.0 to about 0.9 as shown in Fig 4, and the results of KDA,

KSDA and KSCA had better recognition rates than those of other methods as shown in

Table 6. These results are consistent with the sample distributions in the transformed feature

spaces as shown in Fig 5. From the results, the model-based classifier shows the favorable

Fig 3. Recognition rates in IICBU 2008 by using NN classifier. The results for (a) Liver aging, (b) Liver

gender (CR), and (c) Liver gender (AL). The lines show the classification accuracies in the transformed

feature spaces for each method. The colors indicate the feature transformation methods, as shown in the

legend.

doi:10.1371/journal.pone.0166413.g003
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classification results when we want to keep the consistency between the recognition rate and

the sample distribution.

The results of KSCA had the best recognition rates for all datasets in Table 6, and the results

of KSCA in Table 6 had the comparable or better recognition rates than those in Table 5.

Moreover, as shown in Figs 3 and 4, KSCA produced the comparable or better classification

Fig 4. Recognition rates in IICBU 2008 by using NM classifier. The results for (a) Liver aging, (b) Liver

gender (CR), and (c) Liver gender (AL). The lines show the classification accuracies in the transformed

feature spaces for each method. The colors indicate the feature transformation methods, as shown in the

legend.

doi:10.1371/journal.pone.0166413.g004
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accuracies than KDA without depending on the ratio of unlabeled samples in training data.

From the results, the distinguishability in our proposed method would improve the classifica-

tion accuracy regardless of the classifiers.

These results suggest that our proposed method with a discriminating feature transforma-

tion method results in more accurate tissue image classification than do the various other mul-

tivariate analysis methods.

Table 6. Recognition rates with IICBU 2008 by calculating NM classifier.

Liver aging Liver gender (CR) Liver gender (AL)

GIST 0.690 (± 0.069) 0.834 (± 0.032) 0.770 (± 0.032)

GIST + KPCA

[β = 1]

0.690 (± 0.069) 0.834 (± 0.032) 0.770 (± 0.032)

GIST + KLPP

[β = 1]

0.613 (± 0.072) 0.901 (± 0.051) 0.845 (± 0.030)

GIST + KDA

[β = 0]

0.881 (± 0.035) 0.993 (± 0.008) 0.932 (± 0.026)

GIST + KSDA 0.841 (± 0.070)

[β = 0.06]

0.890 (± 0.035)

[β = 0.50]

0.868 (± 0.0231)

[β = 0.03]

GIST + KSCA 0.884 (± 0.040)

[β = 0.03]

1.000 (± 0.000)

[β = 0.06]

0.937 (± 0.016)

[β = 0.13]

doi:10.1371/journal.pone.0166413.t006

Fig 5. Examples of transformed feature spaces for test samples in the Liver aging data. The feature

spaces as transformed by (a) KPCA, (b) KLPP, (c) KDA, (d) KSDA (β = 0.06), and (e) our proposed KSCA (β
= 0.03). The x- and y-axes show the transformed first and second components, respectively, of a validation

set in Table 6. The colors indicate the class labels, as shown in the legend.

doi:10.1371/journal.pone.0166413.g005
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We also applied our proposed SCA to other biological image dataset, MITOS-ATYPIA-14,

which was released in the MITOS & ATYPIA Contest [28]. This dataset contains the breast

cancer biopsy slide images which were scanned by two slide scanners: Aperio Scanscope XT

(Aperio) and Hamamatsu Nanozoomer 2.0-HT (Hamamatsu). The annotation for the images

represents the two-class classification problem; “Mitosis” or “Not mitosis” as shown in Fig 6.

In this paper, we used MITOS-ATYPIA-14 to evaluate the classification accuracies from the

precise annotation, though the dataset had been released to evaluate detection accuracies in

the MITOS & ATYPIA Contest. Table 7 shows the summary of this dataset for classification.

In the experiments described below, the setting of evaluation for classification accuracies,

the similarity measures for LPP and SDA, and the method for determining the parameters in

each of validation sets were the same as in the above experiments, while applying the NN clas-

sifier. The classification accuracies were measured on the stratified five-fold CV. The sample

images (image size: 128 × 128 pixels) were cropped from the scanned images as shown in Fig

6, and the 960-dimensional GIST features were extracted from each of the cropped images.

The parameter setting of GIST was the same as in the above experiments.

Table 8 shows the highest mean recognition rates and the standard deviations for each of

the semi-supervised methods, and shows the mean recognition rates and the standard devia-

tions for the other methods. In each of the scanners, LPP (for Aperio) and SDA (for Hamama-
tsu) produced the best recognition rates than other feature transformation methods,

respectively. However, the recognition performances by LPP for Hamamatsu and SDA for

Aperio decrease by about 0.03 which is larger than those by the methods. These would be

caused by the similarity measure, and these results imply the difficulty of similarity measure

selection as is the case with the results in Table 3. In contrast, SCA produced the better

Fig 6. Examples of Mitosis and Not mitosis images. (a) The cropped image for “Mitosis” scanned by

Aperio. (b) The cropped image for “Not mitosis” scanned by Aperio. (c) The cropped image for “Mitosis”

scanned by Hamamatsu. (d) The cropped image for “Not mitosis” scanned by Hamamatsu.

doi:10.1371/journal.pone.0166413.g006

Table 7. Tissue image datasets in MITOS-ATYPIA-14.

Scanner # of scanned images Scanned image size # of cropped images

Aperio 1,200 1,539 × 1,376 pixels 749 (Mitosis)

2,884 (Not mitosis)

Hamamatsu 1,200 1,663 × 1,485 pixels 753 (Mitosis)

2,891 (Not mitosis)

doi:10.1371/journal.pone.0166413.t007
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performances than PCA and LDA with slightly changing recognition rates for each scanner.

These results suggest that SCA can produce the favorable feature transformation performance

in disregard of the scanner types.

From the above experiments, we presented that SCA, and also the other feature transforma-

tion methods, can improve the classification accuracies by combining with GIST. SCA would

improve the classification accuracy without depending on types of feature extraction methods

and slide scanners. To confirm this claim, we further conducted the following experiments

changing the feature extractor from GIST to CNN.

Table 9 shows the highest mean recognition rates and the standard deviations for SCA, and

shows the mean recognition rates and the standard deviations for direct classification by using

CNN features, in which those were evaluated by using the stratified five-fold CV with the NN

classifier. We used the Alex CNN model [29] and employed as feature extractors FC6 layer of

the CNN pre-trained on the ImageNet dataset [9]. The sample images (image size: 256 × 256

pixels) were cropped from the scanned images, and the 4096-dimensional CNN features were

extracted from each of the cropped images. The dimension of CNN features in MITOS-ATY-

PIA-14 is larger than the number of samples. To deal with this ill-posed problem, we applied

KSCA as shown in the method section. The direct classifications by CNN features show the

better recognition rates than those by GIST features, and SCA further improved the classifica-

tion accuracies as shown in Table 9. These results suggest that SCA can improve the classifica-

tion accuracies without depending on the types of feature extraction methods and slide

scanners.

Conclusion

We proposed a semi-supervised feature transformation method, and we applied it to the classi-

fication of tissue images. Our proposed method, semi-supervised component analysis (SCA),

was inspired by PCA and LDA in the graph-embedding framework. SCA produced better clas-

sification performances than did other feature transformation methods for the benchmark

Table 8. Recognition rates with MITOS-ATYPIA-14 by using GIST features.

Aperio Hamamatsu

GIST 0.675 (± 0.017) 0.659 (± 0.010)

GIST + PCA

[β = 1]

0.676 (± 0.015) 0.658 (± 0.009)

GIST + LPP

[β = 1]

0.794 (± 0.001) 0.763 (± 0.016)

GIST + LDA

[β = 0]

0.747 (± 0.026) 0.730 (± 0.019)

GIST + SDA 0.760 (± 0.012)

[β = 0.02]

0.791 (± 0.002)

[β = 0.99]

GIST + SCA 0.754 (± 0.008)

[β = 0.24]

0.749 (± 0.011)

[β = 0.06]

doi:10.1371/journal.pone.0166413.t008

Table 9. Recognition rates with MITOS-ATYPIA-14 by using CNN features.

Aperio Hamamatsu

CNN 0.718 (± 0.012) 0.723 (± 0.008)

CNN + KSCA 0.776 (± 0.015)

[β = 0.03]

0.775 (± 0.012)

[β = 0.02]

doi:10.1371/journal.pone.0166413.t009
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datasets from the UCI machine learning repository. Furthermore, the kernel extended SCA

contributed better classifications of tissue images in the IICBU 2008 and the MITOS-ATY-

PIA-14.
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