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Abstract

Handling our everyday life, we often react manually to verbal requests or instruction, but

the functional interrelations of motor control and language are not fully understood yet,

especially their neurophysiological basis. Here, we investigated whether specific motor

representations for grip types interact neurophysiologically with conceptual information,

that is, when reading nouns. Participants performed lexical decisions and, for words, exe-

cuted a grasp-and-lift task on objects of different sizes involving precision or power grips

while the electroencephalogram was recorded. Nouns could denote objects that require

either a precision or a power grip and could, thus, be (in)congruent with the performed

grasp. In a control block, participants pointed at the objects instead of grasping them. The

main result revealed an event-related potential (ERP) interaction of grip type and concep-

tual information which was not present for pointing. Incongruent compared to congruent

conditions elicited an increased positivity (100–200 ms after noun onset). Grip type

effects were obtained in response-locked analyses of the grasping ERPs (100–300 ms at

left anterior electrodes). These findings attest that grip type and conceptual information

are functionally related when planning a grasping action but such an interaction could not

be detected for pointing. Generally, the results suggest that control of behaviour can be

modulated by task demands; conceptual noun information (i.e., associated action knowl-

edge) may gain processing priority if the task requires a complex motor response.

Introduction

The human hand is an important tool to interact with our surroundings. We often use our

hands to explore and manipulate objects or to reach for, grasp and place objects. Such actions

often require very precise motor control, for example when drinking hot tea from a mug or

when handling multiple objects at the same time. The hand can also be very powerful when

holding heavy objects or providing body support (e.g., holding on tight on the bus or in sports

when making a handstand or climbing [1]). Accordingly, Napier [2] introduced a major
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distinction among grip types, namely, precision and power grips. But, hands are not only effec-

tive for physical interactions. They can also be used for social, communicative and even lin-

guistic functions (i.e., waving, gesturing or sign language, e.g., [3,4]) and these functions may

have co-evolved ([5,6]). That is, the human hand can be an end effector of the language and

the motor control system [7].

Here, we are interested in voluntary actions, specifically in uni manual grasping, without

denying the importance of sensorimotor processes (e.g., for force regulation to avoid object

slipping [8,9]). Such manual movements proceed, generally, in two stages as described in the

two component model which dates back to Woodworth [10,11,12]. This model distinguishes a

planning and a control phase; the former is assumed to be pre-programmed and the latter

under feedback control. The planning component is more susceptible to perceptual and cogni-

tive processes whereas the control component is more closely related to executing and moni-

toring motor commands, cf. [13,14] for review. Besides, voluntary grasping movements are

determined by object features, e.g., [15] and by action plans [16] and goals, i.e., cognitive pro-

cesses and anticipated future states, e.g., [17,18]. Human voluntary actions are oftentimes

guided by verbal processes as in instructions or requests. That is, some form of interactive pro-

cessing between the motor control system and the language system seem to be necessary but

the precise nature of the underlying neurophysiological interaction is not fully understood.

Various frameworks have been proposed on the relationship between language and action,

e.g., [19,20,21] for recent reviews. On the one hand, there are strictly symbolic accounts which

assume an amodel, central processing system for language that is functionally independent

from other cognitive domains. On the other hand, the embodiment framework assumes that

sensory object properties and action features pertaining to the same object share some repre-

sentational aspects with abstract, symbolic representations for objects and actions, specifically,

nouns and verbs, respectively, e.g., [22,21,23]. Accordingly, functional interactions among the

domains of motor control and symbolic word representations can be expected ([24,25] for

similarities in the structures of sentence representations and action sequences).

One can distinguish strong and weak versions of the embodiment approach, cf. [20]. While

strong versions argue that cognitive processes are completely grounded in sensory-motor sys-

tems, weak versions assume that language (usually restricted to comprehension) draws on

both abstract, symbolic and embodied representations. There is accumulating evidence for

embodied processing of verbs (actions) and concrete nouns (objects) in support of weak

embodiment views [20]. In contrast, the processing of abstract concepts and metaphorical

actions are less well-understood and the appropriateness of the embodiment view is still dis-

cussed. Another aspect that is hardly understood according to Horchak et al [20] is “deep com-

prehension,” that is, the activation of inferred knowledge. For example, whether and how

associated knowledge of nouns such as associated actions is activated (by inference or associa-

tion) is not yet fully understood. (As a side note, formally, actions are not part of a noun’s defi-

nition, that is, its semantics; actions are commonly expressed by verbs. Thus, the question

arises whether and how action knowledge can be activated by noun representations?) The

embodiment view serves as a theoretical framework for our project.

The aim of the present study was to test the time course of the potential interplay of sym-

bolic, conceptual (word) representations and concrete, motor commands (part of grip repre-

sentations) to better understand the functional interplay of language and action processes.

Such insights might help to understand whether and when the task has a modulating influence

on behaviour. Participants were asked to read letter strings and, for words, they had to execute

either a power or a precision grip. The words (nouns) could denote larger or smaller objects

that require either a power or a precision grip if grasped. Hence, the conceptual information

conveyed by the nouns was implicit and could be (in)congruent with the grasping action that

ERP Interaction of Conceptual and Motor Representations

PLOS ONE | DOI:10.1371/journal.pone.0165882 December 14, 2016 2 / 28

and analysis, decision to publish, or preparation of

the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.



had to be performed. We recorded event-related brain potentials (ERPs) to determine the time

course of such a neurophysiological interplay and to evaluate the role of conceptual

information.

While there is an on-going discussion about the different sub functions of the neural basis

of grasping and their relations [26], there emerges consensus regarding a parieto-frontal net-

work as the neural underpinning of grasping with evidence from different populations and

methodologies, e.g., [18,27,28,15,29,30,31] but see also [32]. ERPs are well-suited for and have

recently been applied successfully to the examination of overt movements [33,34,35,36,37].

Thus, ERPs with their high temporal resolution can be used to investigate fast neurocognitive

processes of language comprehension and grasp planning/execution. Moreover, ERPs can be

time-locked to the presentation of stimuli or to the (onset of the) movement (response-locked

ERPs). Stimulus-locked ERPs capture in principle perceptual and cognitive brain processes (in

the sense of stimulus processing or evaluation) whereas response-locked ERPs reflect motor-

related brain processes, e.g., [38,39]. Hence, stimulus- and response-locked ERPs may concep-

tually be close to the planning/execution distinction related to the two component model of

voluntary manual movements. To the best of our knowledge, the present ERP study is the first

to investigate noun reading and its associated action knowledge together with the execution of

different grasp types.

Regarding action execution, van Elk and colleagues [40] related recently the N400 ERP

component to action execution. These authors compared meaningful and meaningless actions

by showing pictures of a cup or a magnifying glass. Participants had to perform a grasp-and-

transport action (bringing a cup or a magnifying glass to the mouth or to the eye). Meaningful

actions elicited an increased N400 amplitude (380–450 ms after stimulus onset) which was

interpreted to reflect the retrieval of semantic action information [40]. De Sanctis and col-

leagues [37] reported a sustained, N400-like effect for grasping small objects (precision grip)

compared to grasping large objects (whole hand grip). This N400-like effect was observed for

the time window 400 to 800 ms (beginning already at 300 ms) after stimulus onset. De Sanctis

et al. [37] were interested in the kinematics of reach-to-grasp movement which was recorded

in addition to the EEG signal. Since the ERP analyses were stimulus-locked, the N400-like

effect was interpreted as to reflect the planning of the motor action, that is, the cognitive pro-

cessing aspects. In order to investigate the ERP correlates of motor aspects specifically,

response-locked ERPs would be needed but were not reported. Hence, it remains still difficult

to distinguish between action planning and execution with regard to those ERP measures. In

contrast, response-locked ERP analyses of grasping movements have yielded slow waves at

frontal and posterior electrodes, e.g., [33,41,42] or modulations of the Bereitschaftspotential

(BP [35,43]) which also varied between frontal and posterior electrodes but these grasping

studies did not consider additionally language processes. After all, the time window of the

reported N400-like effect indicating grasp-related information processing is, generally, in line

with the extended durations of slow waves in other ERP studies on grasping [33,35,41,42].

Note that the N400 is also well-investigated in the language domain where it has been

related to meaning processing, e.g., [44,45,46]. Such N400 effects for language processing for

single word processing have been reported in various time ranges and last often up to 650 ms

or longer, especially in action contexts, e.g., [47,34,44] which resemble the above-mentioned

time ranges for grasping-related N400 effects. The N400 can begin as early as 200 ms after

word onset (as a lower limit [48]).

The integrated processing of language meaning and motor control processes has been

investigated neurophysiologically, cf. [49,50] and behaviourally, cf. [51,52]. For example,

action-irrelevant words referring to objects of different sizes (e.g., “apple” or “needle”) influ-

ence the hand shape (maximum grip aperture) when grasping unrelated objects (e.g., wooden
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blocks, cf. [53,13,54]. Similarly, Lindemann and colleagues [55] showed that reading words

such as “mouth” or “eye” facilitated grasping execution when the words matched the to-be-

grasped object (cup or magnifying glass, respectively; see also [56]).

Neurophysiologically, co-activations of the primary and somatosensory motor cortex by

reading were reported very early in the time range of 100 and 200 ms after word onset [49,50]

in line with the embodiment framework as stated by these authors. Similarly, Boulenger et al.

[57] compared the reading of verbs, nouns and consonant strings and whether the reading

impacts the ERPs and the kinematics of reach-and-grasp movements. Interestingly, not only

wrist acceleration was affected by word class, but also the ERP amplitudes differed for verbs

and nouns during the first 350 ms after word onset. This word class effect was interpreted as a

functional distinction that the brain makes due to the action information of verbs. However,

reading consonant strings led to a similar ERP response as reading verbs. But, consonant

strings do not, of course, carry action-related information, that is, they have no (action)

semantics and should thus rather pattern together with nouns and not with verbs which do

refer to actions; this aspect remains unresolved at present. Furthermore, Proverbio and col-

leagues [58] reported access to object affordances (of tool pictures) to take place in the first 250

ms even though the functional properties of the objects were not task-relevant. But note, that

the above-mentioned ERP studies all analysed the ERP signal in a stimulus-locked but not a

response-locked manner. Thus, these studies are limited regarding their implications as to the

planning/execution distinction of (voluntary) manual actions. The early time of occurrence

suggests that relevant information for the current behaviour, whether conveyed by language or

pictorial information, can be processed well before conceptual information as indicated by

N400 effects. That is, it seems to be possible (and worth testing) that a neurophysiological

interaction of language and motor control processes occurs already between 100 and 200 ms

after word onset which would imply the availability of language and action relevant informa-

tion. Note that movement adjustments during the first few hundred ms have been reported for

manual actions (grasping and reaching [59,60]).

In contrast, Amsel et al. [61] argue that action-related information (graspability) becomes

available only after conceptual information (semantic category: living vs. non-living) has been

processed. In a go/no-go paradigm, participants had to judge semantic category membership

and graspability of written nouns via button-press responses. The ERPs suggested that concep-

tual information was processed about 150–200 ms after word onset but graspability affected

the ERP after about 340 ms, i.e., about 190 ms after conceptual information. Hence, action-

related noun information was argued to be secondary to conceptual information.

Given the nature of the task (noun reading/evaluation), Amsel et al. [61], p.9 discuss

whether conceptual information processing is obligatory before action-related information

becomes available. Actually, these authors suggest that the timing of access to conceptual and

action-related information could be variable because processing of conceptual and action-

related information may be situation-specific. That is, their task may have set priority to con-

ceptual information processing due to the reading requirement but did not call for a specific,

complex manual action for which the word would be critical (see also [62]). (Note that grasp-

ability and semantic category information were both conveyed by the words alone in the

Amsel et al. study.) Consequently, we hypothesised that if the reading material were directly

related to an action response, for example, grasping with a specific grip type, the processing

priority may change and, hence, the timing of the neurophysiological processing. In such a sit-

uation, action-related word information may be processed as early as conceptual information

[58,50,57] and in an integrative manner as would be suggested by embodiment frameworks

(for task influence on manual responses see also [63]).

ERP Interaction of Conceptual and Motor Representations
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In the present study, we created a situation in which the words are directly relevant to a

complex, manual response (grasping) even if the words served only as imperative signals.

Here, we investigated the neurophysiological interaction of symbolically coded, conceptual

information (part of lexical representations) with concrete, motor commands (part of grip

type representations) when responding manually. Participants were asked to perform a go/no-

go lexical decision task on letter strings. In response to words, participants had to grasp a cubic

object that required either a precision or a power grip while the electroencephalogram (EEG)

was recorded. The nouns denoted either objects that would be grasped with a power (e.g.,

“apple”) or a precision grip (e.g., “raisin”). That is, the implied conceptual grasping informa-

tion could be congruent or incongruent with the grip type that had to be executed. For pseudo

words, participants withheld their response. Furthermore, we asked if an interaction of con-

ceptual information and motor commands (for grip types) would be specific for grasping by

introducing a control block in which participants pointed at the objects instead of grasping

them. The control block was intended to provide a qualitative comparison to the grasping

block. Even though grasping and pointing movements differ kinematically, we surmised that,

the similar (neurophysiological) effects should be observed for pointing as for grasping if the

potential effects are unspecific (e.g., if they are functionally related to reaching). However, if

the effects are specific for grasping, they should not be found in the pointing block.

Based on findings of integrated processing of language and motor control, e.g., [23,57] and

the findings that nouns can affect manual responses, e.g., [53,55], we expect also neurophysio-

logically an integrated processing of conceptual word information and motor commands dur-

ing grasping behaviour. Such an integrated processing can be expected to arise in the planning

phase of manual action as it has been shown that uni manual grasping interferes with verbal

working memory during the planning rather than during the control component [64]. From

an ecological point of view, optimal behaviour has priority [65,66]. Hence, action-related con-

ceptual information may be processed with priority if the situation requires complex actions

such as grasping. That is, it should be processed earlier in an action situation than in reading

situations. Adapting the cognitive processing to the current task demands might be beneficial

to behavioural control.

According to the theoretical view that planning and online control are distinct stages of

motor actions, e.g., [12,10], we expected a main effect of conceptual information for reaction

times (RTs) as the written words served as the imperative signal [67]. An interaction of con-

ceptual noun information and motor commands (i.e., grip type) would be of interest but previ-

ous related work did not report similar interactions in RTs [68,57,61]. In contrast to RTs,

movement times (MTs) should reflect the grip requirements, i.e., a grip type effect.

Importantly, we predicted an interaction of conceptual information and grip type in the

ERP amplitudes, if motor control and the language system are functionally related [7]. That is,

congruent noun grip combinations should differ from incongruent noun grip combinations.

Such interactions are expected in the stimulus-locked ERPs which reflect perceptual/cognitive

processing. If such an interaction effect is unspecific for grasping, we should also find this

effect also in the pointing task (control block). If, however, it is specific for grasping, no inter-

action is expected in pointing. If behavioural control (the integrated processing of language

and motor control) is not situation-specific, action-related, conceptual information should

affect the ERP only in the time range of the N400, after about 350 ms [40,61]. In contrast, if

behavioural control is situation-specific, we expect an earlier influence of action-related con-

ceptual information on the ERP than in the study of Amsel et al. [61], in particular between

100 and 200 ms [50,49,57].

Furthermore, regarding motor stage processing (related to the online control component),

the response-locked ERPs will be explored as we are not aware of according precursory studies.

ERP Interaction of Conceptual and Motor Representations
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A main effect of grip type can be expected, at least after movement initiation because voluntary

grip type executions should be controlled by partly differing central nervous activity. The

response-locked ERPs may also reveal differences in the Bereitschaftspotential (or similar slow

potential shifts), for example, if motor preparation would differ among conditions, cf. [35]. (A

related motor component is the contingent negative variation; CNV [69]. However, a CNV is

usually obtained in an S1-S2 paradigm with S2 being an imperative signal. Here, we did not

use an S1-S2 paradigm and the letter strings were not imperative signals as pseudo words did

not require a response.) If there would be an interaction of conceptual noun and grip type

information, these response-locked ERPs would provide evidence for an integrated processing

of these information in the online control component.

Materials and Methods

Participants

Twenty-eight, right-handed native speakers of German participated for course credit or mone-

tary compensation. Two participants (m) had to be excluded because too few trials remained

for response-locked ERPs after correction for movement artefacts. The remaining 26 partici-

pants (11 male; average lateralization coefficient 96.7; [70]) were on average 24.7 years of age

(range 20–30). All participants had normal or corrected-to-normal visual and auditory acuity.

Participants gave written informed consent, and the experimental procedure was approved by

the ethics committee at Bielefeld University and adhered to the ethical standards of the latest

revision of the Declaration of Helsinki [71].

Design

The experiment consisted of two blocks; the main experimental block (grasp execution) and a

control block (pointing). Both blocks used a 2×2 within-subjects design. The experimental fac-

tors were action-related conceptual information of the noun (noun concept for short: small vs.

large nouns) and grip type (precision vs. power grip) in the grasping block. In the pointing

block, the factors were noun concept and object size (small vs. large; for pointing). The order of

blocks was counter balanced across participants. Regional factors (anterior-posterior & left-

right) were also included; see below section 2.6). Action type (grasping vs. pointing) was not

included because the two blocks do not constitute independent levels of one variable, e.g.,

[72,73,74]. Furthermore, grasping and pointing movement are not strictly comparable as they

differ kinematically [75,59,76] and seem to rely on non-identical neural networks [31]. The

dependent variables were reaction times (RT), movement times (MT) and mean amplitudes of

the ERPs. RTs (release button response) were measured relative to the noun onset. MTs were

defined as the duration from start button release to object lift.

Stimuli and set-up

Thirty words (concrete object nouns) were collected for each class of implied action (e.g.,

“apple” for nouns implying power grips [henceforth “large” nouns] and “raisin” for precision

grips [“small” nouns]) as critical items (60 in total). Both word lists were matched for word fre-

quency (lemma frequency according to Celex database [77]), length (number of letters), num-

ber of syllables and number of morphemes, proportion of syntactic genders, bigram and

trigram frequencies (according to dlexDB database; http://www.dlexdb.de/ [78]) and concrete-

ness/imagebility (cf. Table 1). As filler items, 30 abstract nouns (e.g., “guaranty”) and 15

pseudo words were selected. Abstract nouns served as distraction from graspability of the tar-

get words (go trials). Pseudo words were created by replacing one vowel of the target words

ERP Interaction of Conceptual and Motor Representations
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leaving the word’s syllable structure intact to closely parallel the word items; all pseudo words

adhered to German phonology. Pseudo words were employed to realise the go/no-go task and

to ensure attentive processing of the visual stimuli, i.e., the active comprehension of the critical

words. The total list contained 57% critical words, 28.5% abstract words and 14.5% pseudo

words (see below). Critical words required in 50% a precision and in the other 50% a power

grip.

The objects for the grasping task were three cubes (length of the edge 25, 50 & 80 mm) with

rounded corners (corner radius 7.5, 15, & 25 mm, respectively). All objects were of the same

weight (100 g) and colour (black). The smallest cube requires a (two finger) precision grip

whereas the largest cube requires a power grip for grasping (due to the object size and by

instruction). The medium sized cube could be grasped in more than one way and served as a

filler object for the action task.

Participants were seated 70–80 cm in front of a monitor. Three squared push buttons

(11 cm length of the edge & 2 cm height with a circular depressible area of 8 cm in diame-

ter) were placed 20 cm in front of the monitor with 3 cm space in between. The target

objects were placed on these buttons. A fourth push button was placed between the middle

target object button and the participant so that the participant could comfortably press and

hold down this start button with her right hand. The whole set-up which is shown in Fig 1

was aligned so that the participant could easily grasp and lift the objects with their right

hand without changing her reclined body posture. The three target buttons were, further-

more, aligned with three grey (rectangular) target areas that would later appear on the

screen. The target areas indicated which object had to be grasped and lifted when a word

appeared in one of these.

Each participant received a different trial order. Each critical word was presented once at

the position of the small and once at the position of the large object. Ten of the critical

words (varied across participants) were also presented at the medium sized object. Abstract

and pseudo words were assigned and distributed in the same ratio. For the two grasping

blocks the letter string-object assignment was reversed. The trial order was pseudo rando-

mised, i.e., letter strings were not immediately repeated and the correct response (position)

would not be repeated more than four times.

Procedure

Participants were seated in a dimly lit, sound-attenuated and electrically shielded booth. They

were instructed to read carefully the stimuli while pressing the start button and respond to

(correctly spelled) German words by releasing the start button, grasping the spatially aligned

object, lift it for about 1–2 seconds, replacing the object and returning to (and pressing) the

start button. For pseudo words, participants had to withhold their response (no-go), i.e., to

keep the start button down until the next letter string appears. The procedure is illustrated in

Fig 2.

Table 1. Stimulus characteristics for nouns denoting small or large objects. Concreteness was rated on a Likert scale (ranging from 1 to 7; abstract,

i.e., filler nouns were rated 3.5). Proportions of syntactic genders are given for feminine / masculine / neuter classes. Stimuli did not differ statistically in any of

these variables.

Noun concept Freq / 1 mill. Let Syll Morph Gender Bigram freq Trigram freq Concrete-ness

Small 38.2 7.1 2.3 1.3 0.6/0.3/0.1 279769 141548 6.8

Large 55.5 6.4 2.2 1.2 0.6/0.3/0.1 278462 155623 6.7

Note: Freq-lemma frequency; Let-number of letters; Syll-number of syllables; Morph-number of morphemes.

doi:10.1371/journal.pone.0165882.t001
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The experiment consisted of a practise block (12 trials which were not used during the

experiment proper), two grasping blocks and one pointing block; pointing had to be done

Fig 1. Setup. The experimental setup, incl. the monitor indicating the boxed areas for the stimulus presentation, the

three objects on pressure-sensitive buttons and a start button (closest to participant). All object positions could be

reached comfortably with the extended arm. The object positions of the large and the small object were counter

balanced.

doi:10.1371/journal.pone.0165882.g001

ERP Interaction of Conceptual and Motor Representations

PLOS ONE | DOI:10.1371/journal.pone.0165882 December 14, 2016 8 / 28



with the fully opened hand (no spacing between fingers). The order of grasping and pointing

was counterbalanced across participants, and within the two grasping blocks, the position of

the small and the large object (left vs right) was also counterbalanced across participants; half

of the participants would start the grasping with the small object on the left and the other half

with the small object on the right position. There was a short debriefing session after the exper-

iment. The whole session lasted approximately 90 min.

The experiment started when the participant pressed the start button. After 500 ms (blank

screen) a fixation cross was shown at the centre of the screen for 500 ms that was then replaced

by three horizontally aligned rectangular white areas (100×200 pixel on a black background) at

medium height of the screen. After a variable interval of 800–1200 ms a letter string appeared

in one of the three areas. For word stimuli, participants had to grasp and lift the assigned

object, replace it after about 1 to 2 sec. and then press and hold the start button until the next

trial began. The inter trial interval was 1,000 ms. No feedback was provided. Stimulus presen-

tation was controlled by the Presentation software (version 14.4, http://www.neuro-bs.com/).

EEG Recordings

The EEG was recorded using a 64 channel amplifier (ANT Neuro). The EEG cap was equipped

with Ag/AgCl electrodes placed according to the 10–10 system [79]. The EEG was low-pass fil-

tered (DC-138 Hz), digitised (512 Hz sample rate) and electronically stored. To control for eye

movements bipolar horizontal and vertical electrooculograms (EOG) were recorded. Electrode

impedance was kept below 5 kΩ and the common reference was used during recording.

Data analysis

The EEGLAB toolbox [80] for MATLAB (version 7.6; http://www.mathworks.co.uk/) was

used for EEG data analysis. The data were band-pass filtered offline (0.1–30 Hz) and re-refer-

enced to the average mastoid activity. Ocular artefacts were corrected using the correction pro-

cedure of Gratton, Coles, and Donchin [81]. For automatic rejection a moving window

approach was used (200 ms extension with a threshold ± 50 μV) and epochs were visually

Fig 2. Trial procedure. Schematic representations of the trial procedure (similar for grasping and pointing). Participants had to

grasp and briefly lift the (spatially) associated object for word stimuli using a precision or a power grip depending on the object

size. Pseudo word constituted no-go trials in which the start button should not have been released. In the pointing block, grasping

and lifting was replaced by pointing at the associated object (with an open hand).

doi:10.1371/journal.pone.0165882.g002
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double-checked. Incorrect responses and epochs that still contained (eye) movements were

also excluded. This procedure resulted in the exclusion of 10.5% of the trials for the stimulus-

locked and 17.0% for the response-locked ERP analyses. All experimental conditions were

affected equally.

The stimulus-locked ERPs were time-locked to the letter string presentation with a 100 ms

baseline before letter string onset. For response-locked analyses, ERPs were calculated relative to

movement onset (i.e., start-button release) with a baseline from -1,300 to -1,100 ms. This baseline

was defined to precede the presentation of the letter strings, cf. [82]. (Note that the response-

locked ERPs did not depend on the specific baseline; an earlier baseline (-2,400 to -2,200 ms)

yielded the same ERP pattern.) Response-locked analyses were performed in order to explore fur-

ther the neurophysiological brain response for the current dual task and, therefore, time windows

for response-locked analyses were based on visual inspection but used the same regions of inter-

est (ROIs; see below) as for the stimulus-locked analyses. Additionally, the response-locked ERPs

of the electrodes C3 (left) and C4 (right) were also tested as typical indicators of activity from (the

vicinity of) the motor cortex, cf. [83,84,85]. Following Hauk et al. [49] Penolazzi et al. [50] and

Boulenger et al. [57], the time window from 100 to 200 ms (stimulus-locked) was defined for test-

ing an early interaction effect of noun concept and grip type, and based on Bach et al. [47], Koester

& Schiller [34] and De Sanctis et al.[37], the time window from 500 to 650 ms was defined for

testing the N400, that is, a late interaction effect (or N400 main effects). Response-locked time

windows were defined on visual inspection of grand ERP averages (exploratory analyses).

The following ROIs were created for the analyses (anterior left: [F5, F3, F1, FC3, FC1]; ante-

rior right: [F6, F4, F2, FC4, FC2]; posterior left: [PO5, PO3 P3, P1, O1]; posterior right: [PO6,

PO4, P4, P2, O2]). The ROIs were arranged in relation to the frontal and posterior ERP effects

in previous work [33,36,41,42,37]. Average ERP amplitudes were calculated separately for each

ROI and for each experimental condition. All statistical analyses were performed using the

software R [86].

Results

Reaction & movement times

Participants showed no difficulties with the experimental task. In the grasping block, the two-

way ANOVA with the factors noun concept and grip type on the log mean reaction times (RTs)

yielded a main effect of noun concept (F1,25 = 4.19; p = .05;Ω2 = 0.0037). Neither the main effect

of grip type nor the interaction of these two factors was significant (both Fs1,25 < 1.13; ns).

Nouns associated with a power grip (“large” nouns) led to faster reactions than nouns with a pre-

cision grip association (“small” nouns; 10 ms difference). The same ANOVA on the log means

of movement times (MTs) yielded only a main effect of grip type (F1,25 = 72.04; p< .0001;Ω2 =
0.6511). Neither the main effect of noun concept nor the interaction of both factors were signifi-

cant (F1,25 < 1; ns). Power grips were executed faster than the precision grips (93 ms difference).

For the according condition-specific values see Table 2.

In the control block (pointing), RTs were also analysed by a two-way ANOVA with the fac-

tors noun concept and object size (the latter corresponding to grip type in the grasping block).

One participant’s data had to be excluded as the mean RTs in this block in one condition were

outside three standard deviations of the condition-specific group means. (The effects for RTs

and MTs of the grasping block did not change when excluding this participant for reasons of

comparability.) Here, noun concept modulated the RTs (F1,24 = 5.95; p< .05;Ω2 = 0.0097), but

object size did not influence the RTs (F1,24 < 1.08; ns). The interaction was also not significant

(F1,24 < 1; ns). Again, large nouns led to faster reactions compared to small nouns (22 ms dif-

ference; see Table 3). Please refer also to S1 and S2 Datasets for RT and MT data.

ERP Interaction of Conceptual and Motor Representations
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Stimulus-locked ERPs

Regarding the ERPs in the grasping block, the potential interplay of noun concept and grip type
information was tested for the time window 100 to 200 ms after letter string onset with a four-

way ANOVA with the factors noun concept, grip type, left vs. right hemisphere (LR) and ante-

rior vs. posterior direction (AP). The main effects of noun concept and grip typewere not signif-

icant (both Fs1,25 < 1, ns) but the interaction of noun concept and grip typewas significant

(F1,25 = 4.37; p< .05;Ω2 = 0.001). Furthermore, the three-way interaction of noun concept, grip
type and AP was marginally significant (F1,27 = 3.61; p< .1; η2 = 0.0029). (For full within-sub-

jects designs with three or more factors, there is no general agreement howΩ2 should be calcu-

lated reliably. As a surrogate generalised η2 is reported here.) In follow-up ANOVAs with

noun concept and grip type for the anterior and the posterior ROI, there were no significant

effects in the anterior ROI (all Fs1,25 < 2.9; ns). However, the interaction of noun concept and

grip typewas significant in the posterior ROI (F1,25 = 9.01; p< .01;Ω2 = 0.0059). No other

effects were significant in this analysis. A follow-up t-test showed that incongruent conceptual

noun information (small noun/power grip & large noun/precision grip) led to a more positive

ERP between 100 and 200 ms compared with the congruent conditions (small noun/precision

grip & large noun/power grip; t25 = 3.00; p< .01;Ω2 = 0.0232; cf. Fig 3 & S1 Fig).

In order to see whether these effects reflect an early onset of processing, the same four-way

ANOVA was performed for the time window 200 to 300 ms post stimulus onset (cf. Fig 4). In

this analysis, no main effect nor any interaction involving the experimental factors were signif-

icant (all Fs1,25 < 1.6; all ps> .23). Only the main effect of noun concept (F1,25 = 2.97; p< .1;

Ω2 = 0.0014) and the noun × AP interaction were marginally significant (F1,25 = 3.08; p< .1;

Ω2 = 0.0004). Separate, follow-up ANOVAs for the anterior and the posterior ROI yielded no

significant effects; the main effect of noun concept in the anterior ROI missed significance

(F1,25 = 4.15; p = .052;Ω2 = 0.0036). Importantly, the interactions of noun concept and grip type
were not significant (both Fs< 1, ns).

Table 3. Pointing (control block): mean reaction times (RT) in ms per experimental condition and the

95% confidence intervals.

RT Cube size

Noun concept Large Small Mean

Large 879 [861, 898] 861 [841, 882] 870 [862, 879]

Small 902 [878, 927] 882 [863, 902] 892 [883, 901]

Mean 891 [873, 909] 872 [854, 890]

doi:10.1371/journal.pone.0165882.t003

Table 2. Grasping: mean reaction times (RT) and movement times (MT) in ms per experimental condi-

tion and the 95% confidence intervals.

RT Grip type

Noun concept Power Precision Mean

Large 844 [835, 854] 835 [827, 844] 840 [835, 845]

Small 850 [841, 860] 850 [841, 859] 850 [845, 855]

Mean 847 [841, 854] 843 [836, 849]

MT

Large 642 [620, 655] 737 [725, 749] 688 [684, 692]

Small 647 [638, 657] 737 [725, 749] 691 [687, 694]

Mean 644 [635, 655] 737 [726, 748]

doi:10.1371/journal.pone.0165882.t002
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Applying the four-way ANOVA to the N400 time window (500–650 ms) yielded a significant

main effect of noun concept (F1,25 = 6.04; p< .01;Ω2 = 0.0093); see Fig 4. Large nouns elicited a

more negative ERP amplitude than small nouns, and the effect had a central maximum. The

main effect of grip typemissed significance (F1,25 = 3.70; p = .066;Ω2 = 0.0027) and no interac-

tion involving the experimental factors reached significance (all Fs1,25 < 2.04; all ps> .16).

In the control block (pointing), the ERPs (see Fig 5) were characterised by a distinct pattern,

i.e., a broadly distributed, sustained, negative slow shift associated with small object size (which

required precision grips in the grasping block). To analyse this slow shift, an ANOVA with the

factors noun concept, object size, LR and AP was performed for the time window 200–800 ms.

The analysis yielded only a main effect of object size (F1,25 = 13.08; p< .01;Ω2 = 0.0013). Nei-

ther noun concept (F1,25 < 1; ns) nor any interaction involving the experimental factors were

significant (all Fs1,25 < 2.08; all ps> .16). Descriptively, this object size effect has a centroparie-

tal maximum with a late right-hemispheric dominance (cf. topographical maps in Fig 5).

Importantly, we tested the specificity of the noun concept-grip type interaction in the grasp-

ing block by analysing the same time window, namely, 100–200 ms in the control block using

the same four-way ANOVA (cf. Fig 5) as for the grasping block. Again, only the main effect of

object size was significant (F1,25 = 5.72; p< .05;Ω2 = 0.0250) but noun concept was not (F1,25 <

1; ns). There was also a tendency for object size to interact with LR (F1,25 = 3.87; p = .06); no

other interaction reached significance (all Fs1,25 < 2.32; all ps> .14). We planned for a concep-

tual (i.e., qualitative) comparison of the ANOVA results for the pointing and the grasping

Fig 3. Stimulus-locked ERP effect of (in)congruence in grasping. Grand average ERPs for the effect of (in)congruence

between conceptual noun information and grip types (congruent–blue; incongruent–red) and the difference wave (black). The

incongruent was more positive than the congruent ERP between 100 and 200 ms. The topographical map (nasion at the top)

shows the (posterior) scalp distribution of the effect (incongruent minus congruent). Note that the scale of the maps varies among

figures to optimally present the distribution, not the size of the effect. Negativity is plotted upwards in this and all subsequent ERP

plots.

doi:10.1371/journal.pone.0165882.g003
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block because the movements differ kinematically [75,59,76]. Including block as an additional

factor leads to further concerns about statistical power. However, if such a five-way ANOVA

(block × noun concept × grip type × LR × AP) is performed for the time window 100–200 ms,

an interaction of block and grip type (F1,25 = 5.579; p< .05;Ω2 = 0.0076) is found together with

a tendency of an interaction for block × grip type × LR × AP (F1,25 = 3.150; p = .088;Ω2 =
0.0017). (A side remark, consistently, including block as a factor in the RT analysis (i.e., in a

three-way ANOVA) yields a main effect of block (F1,24 = 4.329; p< .05;Ω2 = 0.0044) and of

noun concept (F1,24 = 11.920; p< .01;Ω2 = 0.0455) supporting our presumption that the two

blocks do not elicit strictly comparable movements.) Further exploratory ANOVAs (block ×
noun concept × grip type) for each ROI yielded, next to block × grip type interactions main

effects for grip type, a tendency for a block × noun concept × grip type interaction (F1,25 = 3.169;

p = .087; η2 = 0.0087) in the posterior left ROI. The suggestive influence of block is in accor-

dance with the well-supported kinematic (and functional) differences between grasping and

pointing movements, cf. [75,59,76].

To test the N400 time window (500–650 ms¸pointing block), the same four-way ANOVA

was performed on the control block. Again, the main effect of object size was significant (F1,25 =

9.65; p< .01;Ω2 = 0.0047) but noun concept was not (F1,25 < 1; ns). There was a tendency for an

object size × LR interaction (F1,25 = 3.58; p = .07) and a tendency for a noun concept × AP inter-

action (F1,25 = 3.50; p = .073). No other interaction was significant (all Fs1,25 < 2.4; all ps> .11).

Fig 4. Stimulus-locked ERP effect for noun information in grasping. Grand average ERPs for conceptual noun information.

Nouns referring to smaller object (requiring usually precision grips; red lines) showed a reduced N400 effect (500–650 ms)

compared with nouns for larger objects (usually grasped with a power grip; blue lines). The difference wave is also shown (in

black). The topographical map shows the central scalp distribution of the N400 effect (large minus small). Note, N (large); N

(small): conceptual noun information referring to larger or smaller objects.

doi:10.1371/journal.pone.0165882.g004
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Response-locked ERPs

Response-locked analyses may help to clarify the role of perceptual/cognitive vs. motor pro-

cessing aspects, especially for the unexpected sustained negativity for the small object in the

control block (pointing).

The response-locked ERPs in the grasping block show a broadly distributed positive shift

that begun about one second before movement onset and turned into a negative shift akin to

the Bereitschaftspotential (BP [43]) around 500 ms before movement onset. The typical subse-

quent sequence of pre motor positivity, (PMP; negative going) motor potential (MP) and the

movement evoked potential (MEP; extended positivity after movement initiation also known as

reafferent potential) begun about 100 to 50 ms before movement onset (see Fig 6; cf. [87,88]).

Most importantly, in none of the explored time windows, the noun concept × grip type
interaction was significant neither before (all Fs1,25 < 1; all ns) nor after movement onset

(all Fs1,25 < 2.11; all ps > .159). Although significant noun concept ×AP ×LR interactions

were found before movement onset in the time windows from -400 to 0 ms (F1,25 = 8.12;

p< .01; η2 = 0.00013) and from -300 to -100 ms (F1,25 = 10.09; p< .01; η2 = 0.00014), none

Fig 5. Stimulus-locked ERPs in pointing. Grand average ERPs for the four conditions (noun concept × object size) in the

control block. There was a broadly-distributed, long-lasting effect of object size beginning around 200 ms. The topographical map

shows the central scalp distribution of the effect with a late right-hemispheric dominance (small objects minus large objects).

doi:10.1371/journal.pone.0165882.g005
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of the follow-up t-tests for separate ROIs yielded a significant main effect of noun concept
(see S1 Table). (Note that there was also no effect involving any of the experimental factors

between -100 & 0 ms) In contrast, after movement onset, there were significant interactions

of noun concept with AP and LR (all Fs1,25 > 5.25; all ps < .031; all η2> 0.00002) as well as

interactions of grip typewith AP or LR (all Fs1,25 > 4.53; all ps < .043; all η2> 0.00017).

However, follow-up t-tests failed to detect an effect of noun concept but yielded a main effect

of grip type in the left-anterior ROI between 100 and 300 ms after movement onset (t25 =

2.08; p< .05; Ω2 = 0.0041). For the according ERPs, see Fig 7 and for the statistical values

see S1 Table.

The response-locked ERPs for the pointing block show a distinct pattern in comparison to

the response-locked grasping ERPs (similar to the stimulus-locked analyses). Overall, there

was a sustained negative shift for pointing at the small object compared with pointing at the

large object (see Fig 8). Descriptively, this negative shift was broadly distributed with a centro-

parietal maximum and a right-hemispheric preponderance. The ERPs for pointing at small

and large objects started to diverge, again descriptively, around 900 ms before movement

onset. The typical components around movement onset are also pronounced (BP, PMP, MP &

MEP; see above).

As these ERPs show a sustained difference, we decided to explore the ERPs in successive

100 ms time windows beginning 900 ms before movement onset and until 600 ms after move-

ment onset. For each time window, we performed an ANOVA with the factors noun concept,
object size, LR and AP. Critically, there was no significant interaction involving the two factors

noun concept and object size in any of these time windows (all Fs1,25 < 2.55; all ns). Interest-

ingly, all time windows from -600 to 400 ms yielded a significant main effect of object size (all

Fig 6. Response-locked ERPs in grasping. Grand average ERPs for the four conditions (noun concept × grip type). The effect

of grip type was significant in the left anterior electrodes between 100 and 300 ms.

doi:10.1371/journal.pone.0165882.g006
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Fs1,25 > 5.63; all ps< .026; allΩ2> 0.0078) and all time windows from -200 to 600 ms yielded

a significant interaction of object size and LR (all Fs1,25 > 4.73; all ps< .04; allΩ2> 0.0012;

marginally significant for 300 to 400 ms, F1,25 = 3.56; p< .1;Ω2 = 0.0006). For full statistical

details see S2 Table. No other effects showed a consistent pattern of results in these analyses.

Furthermore, the same four-way ANOVA was performed on the response-locked ERPs of

the electrodes C3 and C4 for both blocks (grasping & pointing). There was, again, no interac-

tion of noun concept and grip type (grasping) or noun concept and object size (pointing), nor

was there any interaction involving the two factors (all Fs1,25 < 2.35; all ns). Further statistical

details are provided in the Supplementary information (S3 Table). Please refer also to S3–S30

Datasets for ERP values.

Overall in the grasping block, participants reacted faster to “large” nouns than to “small”

nouns and grasped the large object earlier than the small object. Importantly, the ERPs showed

an interactive processing of conceptual noun information and grip type between 100 and 200

ms after stimulus presentation. Incongruent noun-grip constellations elicited an increased

posterior positivity compared with congruent constellations. There was also an increased neg-

ativity for large compared with small nouns which had a central maximum between 500 and

650 ms. In response-locked analyses, only grip type affected the ERP 100 to 300 ms after move-

ment onset. Precision grips led to a greater negativity than power grips at left anterior elec-

trodes. In the control block (pointing), participants initiated their responses also faster for

large compared with small nouns. The ERPs showed a distinct pattern with a sustained nega-

tivity for pointing at the small vs. the large object (200–800 ms). Consistently, the response-

Fig 7. Response-locked ERP effect for grip types in grasping. Grand average ERPs for the grip types power (blue) and

precision (red) and the difference wave (in black). Precision grips are associated with a more negative ERP than power grips in

the left anterior ROI between 100 and 300 ms. The topographical map shows the left anterior scalp distribution of the grip type

effect during movement execution.

doi:10.1371/journal.pone.0165882.g007
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locked ERP analyses yielded a sustained negativity for the small object (significant between

-600 & 400 ms). Both ERP effects showed a centroparietal distribution with a right–hemi-

spheric preponderance. Importantly, noun concept and grip type did not interact in any time

window in the control block. For a summarised overview, see Table 4.

Discussion

This study investigated the neurophysiological processing of symbolically-coded, conceptual

representations (action knowledge associated with noun representations) and concrete, motor

commands (as part of grip type representations). The main ERP result was an early interaction

of conceptual information and motor commands between 100 and 200 ms after word presen-

tation at posterior electrodes which precedes the typical time window of semantic processing

effects (N400). The findings support our hypothesis that action-related, conceptual informa-

tion may gain priority for behavioural control if required by the task. That is, conceptual infor-

mation may be processed earlier than in tasks with a more cognitive emphasis, cf. [61].

The behavioural data show that action-related, conceptual information affects response

times (RTs) in the grasping block and also in the pointing block. Words that denote larger

objects which require power grips led to shorter RTs than words that denote smaller objects

Fig 8. Response-locked ERP effect for object size in pointing. Grand average ERPs for small (red) and large objects (blue)

together with the difference wave (in black). The effect of object size was broadly distributed and significant between 600 ms

before and 400 ms after movement onset. The effect had a central maximum and did not interact with the ROI factors between

-600 and -200 ms whereas it showed a right hemispheric dominance from -200 to 400 ms as indicated by the topographical maps

(difference: small objects minus large objects).

doi:10.1371/journal.pone.0165882.g008
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which require precision grips. Interestingly, the RT effect of this conceptual information was

independent of the task, i.e., it was found for grasping and for pointing. This result shows that

word reading cannot only pre-activate further perceptual processes as often investigated in

priming paradigms (i.e., a picture primes the perception of another picture) but it can also

influence subsequent motor processes (i.e., a picture influences motor processes; cf. Vainio

et al. [89] for grasp observation).

A behavioural grip type effect was only observed in movement times (MTs; grasping block)

but not in any RT measure. Power grips were executed faster than precision grips, presumably

reflecting the lower precision demands. This result is in accordance with a reduced velocity,

reduced grip aperture and prolonged deceleration phase of precision grips compared with

power grips [90,15,18,37]. Generally, these effects show that the manipulations were effective

and suggest processing benefits when grasping needs less movement precision (power grips)

but also that action-related, conceptual noun information can critically influence processing.

The behavioural results are generally in line with the two component model of voluntary

movements [10,11,12]. In the present go/no-go task, words were relevant for the decision

whether or not to execute a movement (in grasping & pointing). This should mainly influence

the planning of the response and, accordingly, RTs showed a main effect of noun concept in

the grasping and the pointing block but the MTs did not. In contrast, the various grip types

had distinct movement requirements and, consistently, the MTs (i.e., durations) differed

between power and precision grips but not the RTs. That is, the execution but not the planning

component was apparently affected by grip types in support of the planning control distinction

of the two component model.

As predicted, the stimulus-locked ERP analyses revealed an interaction of conceptual noun

and grip type information between 100 and 200 ms after word onset in the grasping block.

Incongruent combinations of noun and grip type elicited a more positive going ERP amplitude

than congruent combination at posterior electrodes (cf. Fig 3). An early posterior positivity for

incongruent human actions beginning 170 ms after picture presentation has been reported

before (actions were semantically incongruent with the context or world knowledge [91]).

However, this study is not strictly comparable to the present work as Proverbio and Riva [91]

Table 4. Summary of main results for both blocks (grasping & pointing) and both analysis types (stimulus- & response-locked). The main statistical

effects are given for reaction and movement times and mean ERP amplitude values. (ERP time windows are given in ms.)

Analyses

Stimulus-locked Response-locked

RT MT

Block main effect noun main effect grip type

Grasping ERP

100..200 500..650 100..300

interaction/ main effect main effect

congruency noun grip type

(posterior) (left anterior)

RT –

main effect noun

Pointing ERP

200..800 -600..-200 -200..400

main effect main effect main effect

object size object size object size

doi:10.1371/journal.pone.0165882.t004
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investigated postures of the whole body in more or less natural environments but the early

ERP effect was interpreted to reflect visual semantic scene recognition (incl. the action).

Many ERP components in the time range of 100 to 200 ms, such as P1/N1/P2 were con-

cerned with auditory or emotional processing. These components are oftentimes functionally

related to (spatial or selective) attentional processing [92,93,94,95] but only the P1 component

showed an increased positivity for attended stimuli ([96,94] posterior P2 effects are hardly

investigated). More interestingly, there have been a number of studies that report an early

influence of linguistic variables or language context on visual word recognition in such an

early time range (without a direct connection to motor control processes). Sereno et al. [97]

showed that already the P1 component (beginning 100 ms after stimulus presentation) was

affected by word frequency, lexicality and regularity which is related to spelling (i.e., grapheme

to phoneme conversion). Furthermore, Dambacher et al. [98,99] report early ERP amplitude

modulations of word predictability (of word forms) that begin no later than 90 ms after stimu-

lus presentation (other investigated variables include word length and position in the carrier

sentence). Such effects reflect in influence of context information which serves as a basis for

predictions, e.g., [100]. These studies suggest that the early congruency effect of nouns and

required grip types may well reflect a modulation of lexical processing. Apparently the incon-

gruity required additional processing capacity. Whether the congruency effect reflects facilita-

tion for congruent or interference for incongruent conditions cannot be decided with the

present data.

The early time window of the interaction is in line with ERP findings which showed an

influence of language on the activity in the motor system in this early processing stage, e.g.,

[50,49,57]. More generally, the interaction supports the notion of domain interactions in line

with functional interactions of verbal working memory and grasping [101,102,103,104]. The

present interaction shows that symbolic, conceptual information can be accessible for action

specification together with motor commands and earlier than found in the Amsel et al. study.

Importantly, the occurrence of this interaction (and the congruency effect) strongly sug-

gests an integrated processing of symbolically coded information (nouns) and concrete motor

commands (grip types). To the extent that the interaction reflects integrative processing of

symbolic information and concrete, motor commands, i.e., a functional relation in processing,

this finding supports embodiment views which argue for an integrative processing and against

a strict separation of symbolic and sensory/motor information processing, e.g., [22,21]. More-

over, we believe that this main finding supports rather weak embodiment views [20] because

access of conceptual information (living / non-living distinctions) have been found to precede

the availability of graspability information in other tasks [61].

The early occurrence could be related to the fact that in the current task three potential

responses (grips) might have been planned ahead which could be considered an easy task.

However, response-locked ERPs did not show a difference in the Bereitschaftspotential (BP)

among the experimental conditions. Hence, the preparatory effort as judged by the BP ampli-

tude seems not to differ. This suggestion should be taken with care as the response-locked

ERPs may have been noisier than the stimulus-locked ERPs, but the small response set in our

study can be considered relatively easy in any case (in the sense of three grasping actions vs.

many potential actions in unconstrained, every-day situations). That is, the assumption of pre-

planning the three potential responses in the present set-up seems a plausible possibility.

Importantly, the interaction of conceptual noun information and grip types in the grasping

block (stimulus-locked) is suggestive of a functional relation between noun reading (i.e., asso-

ciated action knowledge) and grasping behaviour.

It should also be noted that no interaction of conceptual information and grip types

occurred in the pointing block (in any ERP analysis). It seems that conceptual information
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and motor commands are only processed together neurophysiologically, if a complex (manual)

response is required and reading is directly related to the motor requirements (object manipu-

lation). As grasping and pointing movements differ kinematically, e.g., [75] it is possible that

the control processes for these movements also differ, cf. [31]. Therefore, pointing may be sub-

optimal as a control condition. Here, we can only state that a neurophysiological interaction

of conceptual information and motor commands occurred for grasping movements. In the

pointing block such an interaction could not be detected. It does, apparently, not suffice if the

words in our study were task-relevant (as an imperative signal) in the pointing block.

Also, in the study of Amsel et al. [61], a cognitive judgement was strongly emphasised by

the task, and action-related information (graspability) was processed only after about 350 ms.

That is, the present neurophysiological interaction of conceptual information and grip type

seems to be task-dependent [61] cf. also [62] and seems not to be related, alternatively, to the

reaching component of the movement. More generally, the cognitive planning (or the antici-

pation of the action goal) seems to have an earlier influence in preparing and/or initiating a

manual action, e.g., [16,17,53,18] when a complex (manual) response is required. That is, this

present experiment constitutes preliminary evidence for the suggestion that the task require-

ments (e.g., complex action vs. cognitive evaluation) modulates the neurophysiological pro-

cessing of behaviour.

Later in processing, conceptual information elicited a reduced negativity (500–650 ms) for

“small” nouns compared to “large” nouns with a central scalp distribution. This reduced N400

may indicate that the actions associated with nouns for smaller objects may be specified in

more motor detail (e.g., exactly two contact points, one for the index finger and one for the

thumb) than actions associated with nouns for larger but still graspable objects since the nouns

were matched for relevant linguistic features. Note that the words denoted objects, not actions,

that is, the N400 effect might be related to the typical use of the objects. A more clearly defined

representation of such action knowledge may be easier to access and could, thus, elicit a

reduced N400 amplitude similar to words that elicited a reduced N400 amplitude compared to

pseudo words, cf. [44,48].

In a related study, van Elk et al. [40] observed a similar N400 effect with a more negative

amplitude for meaningful compared to meaningless manual actions (380–450 ms). Even

though both studies are not directly comparable, it is noteworthy that in both cases the action-

related N400 effects show a more anterior distribution than typically found [44,48] which

might also be related to the involvement of motor processes originating, arguably, partly in

frontal cortices (cf. [34] for anterior N400 effects during overt speech).

Interestingly, the present neurophysiological interaction of conceptual information and

grip types (congruency effect) preceded the N400 effect for conceptual, noun information by

about 300 ms. The time window of the interaction (100–200 ms) does not seem to capture the

onset of an integrated processing step as no effects have been found in the time window 200–

300 ms after word onset. Hence, the early interaction and the N400 effect for nouns seem to

reflect two separate processes. For tasks as the one used here, it seems that motor commands

for grasping can influence processing before language processes indexed by the N400 (i.e., lexi-

cal access or lexical integration, e.g., [44,45,48]).

Regarding the grip types, an ERP (main) effect was only observed in the response-locked

analyses between 100 and 300 ms after movement initiation at left anterior electrodes (cf.

Table 4). Precision grips elicited a more negative ERP amplitude than power grips (see Fig 7).

Since response-locked ERP reflect motor-related brain processing, the grip type effect is sug-

gested to index the control component of voluntary movements. Also, the occurrence of this

grip type effect in the response-locked ERP corresponds to the behavioural grip type effect

which occurred in the movement but not in the reaction times. Thus, this ERP grip type effect
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is in line with the distinction of precision and power grips as distinct grasping actions, e.g.,

[2,72].

Left anterior negativities (LAN) in a comparable time range have been reported before,

albeit for lexical processing and in stimulus-locked ERPs. These LAN effects are commonly

taken to reflect local structural processing (morphosyntax, to be precise); for example, the

structural correspondence between a determiner and a noun’s syntactic gender [105,106] or

between a verb and the sentence subject [107,108]. That is, these LAN effects are related to the

(difficulty of) processing the structure of words in relation to their sequence. For the present

ERP effect of grip type, it could be discussed whether it reflects, in analogy, the processing of

some structural action aspects (of grasping) in a behavioural sequence (reading-reaching-

grasping-lifting-placement in the present case). Such an “action LAN” for precision grips com-

pared to power grips might reflect the control of the pre-shaping of the fingers while the reach-

ing movement began. Or, alternatively, it could reflect the preparation of the final finger

posture when grasping (enclosing the object). The latter could also be equivalent to accessing

the action vocabulary [18], that is, activation of a grip type representation in the service of

movement control (execution). Such common LAN effects for language and grasping would

be suggestive of a domain general, neural sequence processing mechanism [109,110]. Interest-

ingly, Proverbio et al. [58] reported a left anterior negativity in a similar time range (210–270

ms) albeit not for grasping but for the observation of manipulable objects (tools). These

manipulable objects were compared with non-tools raising the interesting possibility that the

LAN effect might reflect the processing of object-related action knowledge (e.g., a motor

schema) with regard to a sequential action aspect. These theoretical considerations need,

clearly, further experimental support.

The ERPs for the pointing block showed, surprisingly, a qualitatively different pattern of

results. Here, a sustained slow negative shift for the small object (which would require a preci-

sion grip) relative to the large object was found in both, stimulus- and response-locked ERPs

(see Figs 5 and 7). These effects were significant between 200 and 800 ms in the stimulus-

locked and also between -600 and 400 ms in the response-locked analyses. Such a qualitatively

difference in the neurophysiological brain response is in line with the argument that reaching

and grasping represent distinct movement [72,73,74] but see [111].

These pointing ERP effects should not reflect the reaching component because reaching

was the same for all objects. Instead, this slow shift could reflect an implicit effort for aiming at

the object. Although participants were not instructed to point precisely, for example, at the

centre of the objects, they may have done so. Imagined aiming with one specific finger, even

though all fingers were physically extended when pointing, may have felt more difficult for a

smaller “target area” (small object) than for a larger one (large object). Precise aiming can be

assumed to involve planning and correct, that is, precise moving of the effector. Thus, it seems

also plausible that a potential neurophysiological effect, the slow negative shift in the pointing

block was found in the stimulus- and in the response-locked ERPs. Further research is needed

to confirm these suggestions.

Although the present work focussed on neurophysiological correlates of the (integrative)

processing of language and motor commands, no interaction was found in RTs or MTs but

only in the ERPs for the grasping block. This leaves the question unanswered how neurophysi-

ological activity relates to the behaviour. Generally, our behavioural and neurophysiological

measures may differ in sensitivity. Other behavioural measures may be better suited such as

kinematic parameters which can better capture the complexity of manual actions. Boulenger

et al. [57], for example, observed interactive processing of language information and grasping

in wrist acceleration but RTs did not show an effect. Similarly, Amsel et al. [61] reported no
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interaction of conceptual and graspability information in their RTs. Future studies may, thus,

benefit from the simultaneous recording of ERPs and kinematic parameters [37].

To summarise, a neurophysiological interaction (congruency effect) of abstract conceptual

noun information (i.e., action knowledge related to the nouns) and motor commands (as part

of different grip types) have been reported in a grasp-and-lift task 100–200 ms after word pre-

sentation. This interaction supports our hypotheses that cortical processes for reading and

(manual) action can become functionally related in an action situation, that is, if a complex

motor response is required, in line with weak embodiment approaches. Furthermore, the

interaction effect was followed by an N400 effect of conceptual noun information (500–650

ms, indicating lexical processing). The interaction suggests that motor commands for complex

(manual) actions can influence processing at the same time as conceptual noun information

and does not have to be processed after lexical access (cf. [61] where the task emphasised cog-

nitive evaluation). The absence of a similar interaction effect in the pointing task tentatively

suggests that the interaction reflects grasp-specific processing. That is, processing may depend

on the nature of the task. In contrast, no interaction effect was obtained in the response-locked

ERP analyses. Hence, the interaction in the stimulus-locked ERPs suggests that the interaction

of conceptual and motor information occurs during the planning component of the move-

ment but not during the execution phase. Consistently, a grip type effect was found in the

response-locked ERP analyses which reflect brain activity that is related to motor execution

processes; that is, the control of the movement (grasping) requirements. Generally, beha-

vioural control may be task-specific. That is, action-related conceptual information seems to

depend on the nature of the task and may gain processing priority (i.e., being processed ear-

lier) when they pertain to a (complex) action requirement. Finally, the present results might

ultimately help to better understand the diverse functions of the human hand ranging from

physical tasks to social and verbal communication, and whether and when the language and

the motor control systems interact in manual actions.
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S29 Dataset. Mean ERP amplitude values for pointing; response-locked -800..-700 ms.
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S30 Dataset. Mean ERP amplitude values for pointing; response-locked -900..-800 ms.

(DAT)

S1 Fig. Grasping (stimulus-locked). Stimulus-locked, grand average ERPs for the four condi-

tions (noun concept × grip type) in the grasping block to illustrate further the interaction of

both factors between 100 and 200 ms; cf. Fig 3.

(TIF)

S1 Table. Grasping. Response-locked ERP results (t-tests) for mean amplitudes of various

time windows before and after movement onset. T-values for 25 degrees of freedom. T-tests

for only Ant/Pos and only for Left/Right were supported by grip type × AP and grip type × LR,

respectively. Significant effects are given in boldface.

(DOCX)

S2 Table. Pointing. Response-locked ERP results (ANOVA: noun × grip × AP × LR) for mean

amplitudes of successive 100 ms time windows (zero indicates response button release). F val-

ues for 1,25 degrees of freedom. Non reported interactions yielded no significant effects (and

no tendencies). Significant effects are given in boldface.

(DOCX)

S3 Table. Both blocks. Response-locked ERP results for mean amplitudes at the electrodes C3

(left) and C4 (right hemisphere). F- and t-values for 1,25 and 25 degrees of freedom, respec-

tively. Significant effects are given in boldface.

(DOCX)
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