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Abstract

Assessing the significance of patterns in presence-absence data is an important question

in ecological data analysis, e.g., when studying nestedness. Significance testing can be

performed with the commonly used fixed-fixed models, which preserve the row and column

sums while permuting the data. The manuscript considers the properties of fixed-fixed mod-

els and points out how their strict constraints can lead to limited randomizability. The manu-

script considers the question of relaxing row and column sun constraints of the fixed-fixed

models. The Rasch models are presented as an alternative with relaxed constraints and

sound statistical properties. Models are compared on presence-absence data and surpris-

ingly the fixed-fixed models are observed to produce unreasonably optimistic measures of

statistical significance, giving interesting insight into practical effects of limited

randomizability.

Introduction

Binary presence-absence datasets encode information on species occurrence over different
sites. The datasets are essentially simple matrices of ones and zeros, but they form the basis for
analyses of more complex phenomena, such as correlation between occurrences of taxa [1],
nestedness [2, 3] or niches [4]. An essential part of quantitative analysis is assessing the statisti-
cal significance of the results. In the case of presence-absence data, the task of significance test-
ing is often difficult due to the high-level structure of the data matrix, described by the row and
column sums. Those sums indicate the number of ones in corresponding rows and columns,
and are collectively referred to asmargin sums. The distribution of margin sums can often be
skewed, which causes problems for typical statistical tests.

Currently ecological literature often suggests that margin sums should not explain interest-
ing patterns, but instead be included in the null model [5–8]. Preservingmargin sums retains
differences of species richness over sites and occurrence frequencies among species [9]. The
way in which null models should be constructed to preservemargin sums has been in the cen-
ter of the debate since the null model approach was introduced by [10]. For a good overviewof
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the debate, the reader is referred to [5, 8, 11]. The challenge of margin sum aware significance
testing has lead to a wide collection of suggested null models [2, 3, 9, 12–16].

Analysis

Null model tests for presence-absence data follow the idea of classical statistical randomization
tests. Adapting from [9], the practical steps could be summarized as:

1. Define a measure that with a single number (statistic) describes the strength of pattern in
matrix (e.g., co-occurrences)

2. Measure the actual (observed)data matrix

3. Randomize the data matrix using the null model and measure it again

4. Repeat step 3 many times to generate a set of statistics from randomized data (null
distribution)

5. Use statistical inference to interpret the original statistic against the set of statistics from
randomized data

If the original statistic is similar to the randomized counterparts, then the result is not con-
sidered significant.

Fixed-fixed models and checkerboard units

For significance testing that takes row and column sums into account, an obvious null model is
to preserve the sums while randomly permuting the ones inside the matrix. This so-called
fixed-fixedmodel (fixed row sums, fixed column sums, FF) is widely adopted in presence-
absence studies. Randommatrices that satisfy fixed-fixed constraints can be produced with a
sequential swap procedure. The procedure starts with the originalmatrix and performs swaps
of cell values to produce a new randommatrix.

Swaps operate on row and column pairs with a specific organization of values, shown in
Fig 1. These row and column pairs are called checkerboard units or switch boxes [17, 18].
Given matrixM, checkerboard units are formalized by Definition 1.
Definition 1. Denote values on a pair of rows and a pair of columns with a =M(i1, j1), b =M

(i1, j2), c =M(i2, j1) and d =M(i2, j2). A pair of rows (i1, i2) and a pair of columns (j1, j2) contain
a checkerboard unit if and only if a = d, b = c and a 6¼ b.

Ryser, among others, has shown that all matrices with identical margin sums can be pro-
duced with swap operations [19]. When the sequential swap procedure is implemented cor-
rectly, the consecutivematrices form a Markov Chain that has uniform stationary distribution
[11, 20]. To summarize, the sequential swap procedure is a goodway of sampling matrices at
random from the uniform distribution of all matrices that have identical margin sums.

Fig 1. Checkerboard units of 2 × 2 values with ones shown in black and zeros shown in white. The

schematic description shows how by swapping elements inside the unit it is possible to switch between the

two units without changing margin sums.

doi:10.1371/journal.pone.0165456.g001
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It has been argued by several authors that limiting the randomization process to strictly
same margin sums might not give realistic results [5, 21–23]. If only few perturbations are pos-
sible, then the significance test will compare against randomizedmatrices which are very simi-
lar to the original one and results of the test will be extremely conservative.

The concern of insufficient perturbation is especially valid when the sequential swap proce-
dure is applied to nested data. Definitions of nestedness vary in details, but all share the basic
idea of all columns (and rows) having a superset-subset relationship [3, 24].

Every checkerboard unit is a breach of the subset-superset pattern: if a checkerboard unit
exists for rows (i1, i2) of matrixM, there cannot be subset-superset relationship betweenMði1 ;�Þ
andMði2 ;�Þ

, and this holds for columns also. If all rows (and columns) are perfectly nested in the
sense of superset-subset relationships, then the matrix cannot contain any checkerboard units
and it is not possible to permute it with swap operations.

Properties of fixed-fixed models

The fixed-fixedmodels are implemented with the sequential swap procedure, which produces
randommatrices with strictly same margin sums. Given row sums R and column sums C, the
sequential swap procedure samples in random from the set of matricesMR;C. However, not
much is known about the set matricesMR;C, such as the number of matrices in the set. As dis-
cussed, there are concerns that matrices inMR;C resemble the original matrix toomuch.
Because the space of matricesMR;C is not well understood, it is possible that there are also other
undesirable aspects related to it.

To understand the implications of fixed-fixedmargin sum constraints, the following exam-
ple data matrix is considered.

M ¼
1 0 1

0 1 0

 !

MatrixM has margin sums R =< 2, 1>, C =< 1, 1, 1>. It corresponds to a case where there
are two species, the first of them being present most of the time and the second being absent
most of the time. The three sites have one of the two species present. When asked to produce a
randommatrix that follows this basic pattern, one could argue that a probable outcome could be

M0 ¼
1 1 1

0 0 0

 !

This matrix differs fromM by two cells: the first species is present also on the second site and
the second species is also absent on the second site. These two cells and especially the absence
on second row could be considered as chance occurrences in the originalmatrixM [25].

In the fixed-fixedmargin summodel, matrixM0 has probability zero, becausemargin sums
ofM andM0 differ. The three matrices that have strictly same margin sums all have both of the
unlikely values, but in a different column. Preserving such a quirk of the original dataset would
not necessarily be desirable. Row and column sum constraints are all linked together, creating
situations that could be described as “lock-ins”. It is useful to consider alternative models that
relax strict margin sum constraints and see how “lock-in free” models perform.

Rasch models as alternative

The advantage of fixed-fixedmodel is its simplicity. If one needs to account for margin sums,
then it is easy to justify a model that does not change them at all. The central question in
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designing a relaxed alternative model is: in what way constraints should be relaxed to not intro-
duce any hidden biases? Here a useful tool is the information theoretic concept ofmaximum
entropy principle. The principle states that the null model should maximize entropy within the
given constraints [26]. Maximum entropy distribution could be described informally as the
most random distribution. It is noteworthy that the uniform distribution produced by the
sequential swap procedure is the maximum entropy distribution under fixed-fixed constraints,
or in other words, the procedure is the statistically correct implementation for fixed-fixed
constraints.

The motivation is to find a model that replaces strict constraints with relaxed stochastic
constraints that maintain the margin sums well enough. It is important not to use too relaxed
constraints for the null model, as it leads to abundant false positives [9]. There are various
models for stochastically margin sum constrained randommatrices, most importantly the pro-
portional-proportionalmodels [6, 22]. They are not derived under the maximum entropy prin-
ciple, making them ill-suited for current discussion of properties and for comparison with the
fixed-fixedmodels.

An alternative family of models with stochastic constraints for margin sums are the Rasch
models, which were first widely used in psychometrics. To the author’s knowledge they have
not been applied to ecological presence-absence data before. Raschmodels preserve statistical
expectations instead of exact values: they constrain expectedmargin sums in the null distribu-
tion to equal the margin sums in the originalmatrix. De Bie, among others, has demonstrated
how expectedmargin sums can be formalized to obtain a convenient computational sampling
method [26]. In a Raschmodel, each cell of the matrix is initialized to value 0 and set to value 1
with probability defined by Eq (1).

pi;j ¼
expðlj þ miÞ

1þ expðlj þ miÞ
ð1Þ

In Eq (1), pi, j is the probability for cell in row i and column j to get value 1. The parameters
λj and μi are column and row specific parameters that are fitted to the original data matrix. For
details on parameter fitting, see [26]. Is is easy to see that given λ and μ, cell specific probabili-
ties are independent. Generatingmatrices is straightforward, as parameters need to be fitted
only once and then cell values can be generated independently. Eq (1) is derived from the row
and column sum constraints by using the maximum entropy principle. See, e.g., [26] for
description of the steps needed to turn the constraint equations into Eq (1).

Looking back at example matrixM0, which was not achievable by sequential swap proce-
dure:

M0 ¼
1 1 1

0 0 0

 !

Under the Rasch model, the most likely matrix for margin sums R =< 2, 1 >,
C =< 1, 1, 1 > isM0. All of the matrices that the sequential swap procedure produces have
high probability under the Rasch model, as well.

Properties of fixed-fixed and stochastic constraints

Fixed-fixed constraints can in some cases rule out matrices that are not so distinct from the
other matrices that adhere to the constraints. The important follow-up question is: does this
happen with large datasets and if it does, does it matter for significance testing? To demonstrate
“lock-in” effect in larger matrices, the following experiment is planned. In the experiment a
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sequence of swap operations is performed on a presence-absencematrix calledNOWMN5,
which was extracted from the NOW database of fossil mammals [27]. Please refer to Section
Datasets and methods for details of the NOWMN5matrix.

Correlation analysis is used to demonstrate how the sequence of swap operations breaks the
structures within the matrices. The progress of the sequential swap procedure is tracked by per-
forming swaps and counting strong positive pairwise correlations of sites with the procedure
recommended by [1]. Correlation counts are recorded after every 10 attempted swaps. The
number of correlations is used as a measure for structure, so that low count of correlations cor-
responds to lack of structure. The swap procedure is run for total of 2000 attempted swaps and
total of 10 swap chains are produced.

For comparison, a Raschmodel is initializedwith the NOWMN5matrix and it is used to
generate 10 randommatrices that have same expectedmargin sums as the NOWMN5matrix.
One swap chain is run and recorded for each of those matrices, producing a total of 10 swap
chains. All of the 20 chains are shown in Fig 2.

From Fig 2 it can be seen that the two sets of chains are strikingly different. Chains that
were started from the Rasch randomizedmatrices seem to have correlation counts that

Fig 2. Count of correlations during sequential swaps. Each line shows the fluctuation in correlation count during a single

chain of swaps. Solid lines show swap chains that start from the original dataset on the left and terminate in result datasets on

the right (marked with “o”). Dashed lines show chain of swaps for 10 Rasch randomized datasets (marked with “x”). Correlation

counts were recorded every 10 attempted swaps. Lines are smoothed for readability with moving window of 50 counts.

doi:10.1371/journal.pone.0165456.g002
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randomly wander in close neighborhoodof the original value. Swap operations obviously do
not have any major effect on the matrices generated by the Raschmodel. The result is different
when swap operations are applied to the original NOWMN5matrix. The sequential swap pro-
cedure preserves strict margin sums and one could assume that it would retain more structure
than the Raschmodel. This was not the case, but instead swaps quickly removed structure
from the matrix and converged to a level of less than 5 correlations. For comparison, the initial
Raschmatrices that were produced from the same NOWMN5matrix mostly measured from
10 to 15 correlations. The unexpected observation is that despite more conservative con-
straints, the sequential swap procedure was in practice less conservative. It is also noteworthy
that the sequential swap procedure converged to a different level when it was started from the
original NOWMN5matrix, compared to being started from Rasch randomizedmatrices,
which have similar margin distribution. This observationwill be examined further in the next
experiment.

The visual observations from Fig 2 can be validated using the non-parametric Kolmogorov-
Smirnov two sample test to compare distributions. The three distributions compared are:
swapped distribution (“o” symbols on the right), Rasch distribution (“x” symbols on the left)
and swapped Rasch distribution (“x” symbols on the right). The null hypothesis is that samples
are drawn from two different distributions and the null hypothesis is rejected at significance
level p0 < 0.05. To account for multiple comparisons, Bonferroni correction is applied to obtain
significance threshold of p< 0.05/3 = 0.017. p-values are given in Table 1.

Kolmogorov-Smirnov test betweenRasch and swapped Rasch distributions is the only one
where null hypothesis is not rejected and the assumption of samples coming from the same dis-
tribution is maintained.When the number of correlations is used as a measure of structure,
swap operations on Rasch generatedmatrices do not produce any significant changes to struc-
ture. This conclusion can also be arrived theoretically, as swapping does not change the proba-
bility of matrix under the Raschmodel.

Swapped and swapped Rasch distributions were found to be different, supporting the visual
observation that swaps converged differently, depending on the initial matrices. Finally,
swapped and Rasch distributions were also found different, suggesting that the two methods
produce significantly different results when applied to the original NOWMN5 dataset.

The matrices produced by the sequential swap procedure are a subset of the matrices pro-
duced by a Raschmodel. This fact however tells little about the actual content of the matrices.
The bulk of the probability mass under Raschmodel can be located in matrices that are not
produced by the fixed-fixedmodel. The correspondence between constrains of a model and the
null distribution it produces can run against intuition. Generalizability of this observation is
studied next, as well as the potential causes for the unexpectedbehavior.

Datasets and methods

It was shown that fixed-fixedmodels can be less conservative than Raschmodels. To check if
this observation can be generalized to a larger number of datasets and statistics, the models are
next used for significance testing on presence-absence datasets.

Table 1. p-values for Kolmogorov-Smirnov tests between the pairs of distributions. Significance

threshold is 0.017.

Rasch and swapped Rasch p = 0.313

swapped and swapped Rasch p = 0.001

swapped and Rasch p = 0.001

doi:10.1371/journal.pone.0165456.t001
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Three different datasets are used in the experiment: NOW, NOWMN5 and Vanuatu. Data-
sets NOW and NOWMN5 are imported from the NOW database of fossil mammals [27]. The
database was chosen as previous experiments with it sparked the concerns about undesired
performance. Besides the whole NOW dataset, sites fromMN zone 5 only are selected to pro-
duce NOWMN5 dataset without the strong global time dependent structure of the whole
NOW database [1]. Furthermore, NOW datasets are harmonized by including only large land
mammals and excluding species with less than 10 occurrences.

Dataset Vanuatu is the classic Vanuatu (formerly New Hebrides) avifauna dataset that is
used for comparison. The data matrix is available in a table form from the original publication
of [28]. The data table was written down from the journal article and used without any prepro-
cessing. The same dataset was used by [10] when they presented the null model approach for
the first time. They argued against the community rules proposed in [29] and discussed how
similar patterns can be achieved by arranging presences by random and following simple rules
which correspond to fixed-fixed constraints of this manuscript.

The null models are used to derive significancemeasures for a selection of different statis-
tics. The sequential swap implementation is based on the procedure of [17]. During the compu-
tation swaps were attempted 1000 times the number of ones, which is 1000 times more than
[17] recommended as minimum for convergence. The Raschmodel implementation is based
on the procedure of [26].

The significancemeasures are computed for both local and global statistics. Local statistics
measure the strength of local patterns that govern only part of the dataset, where as global sta-
tistics measure the strength of patterns that govern the whole dataset.

Cluster structure and checkerboard unit count are used as global statistics. Clustering of the
dataset was done with K-means method. The number of species clusters k was set to 2, 5 and
10. As a measure of error the sum of distances to cluster centroid is used, separately for all val-
ues of parameter k. The method is robust in a sense that the cluster structure or the corre-
spondingmeasure of error is not dependent of row and column order.

Checkerboard unit count is a concept related to nestedness. Different definitions for nested-
ness have been proposed and currently there is no agreement on the gold standard [3]. Here
checkerboard unit count is used as a proxy statistic for nestedness. It has the advantage of
being robust (not dependent on row and column order) and computationally well defined. For
these reasons, checkerboard units are well suited for repeated randomization tests.

To measure local structure in the datasets, intra-species relationships were analyzed. For
this purpose, the count of pairwise species correlations are measured, including positive, nega-
tive and two-tailed correlations, following [1]. Correlation is decided using Fisher Exact Test.
Significant results are given for p< 10−6 and were not adjusted for multiple hypothesis testing
to keep them comparable. The number of positive, negative and two-tailed correlations are
reported.

Matlab source code for the experiments is distributed under the MIT license and available
from https://github.com/akallio1/marginsums.

Significance testing results

Fixed-fixedmodel and Raschmodel were used for significance testing on presence-absence
datasets. In the experiment, a set of statistics is calculated from presence-absence binarymatri-
ces and compared to values derived from randomized datasets that share the same marginal
sums as the original datasets (n = 1000, repeated for both null models).

Results of the experiment are given in Table 2. When interpreting the results, correlations
counts are measures of structure, i.e., larger value means stronger structure, and all other
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statistics are measures of error, so that smaller values mean stronger structure. Sum of negative
and positive correlation counts is not necessarily equal to the count of two-tailed (negative and
positive) correlations due to the formulation of p-value cutoff: for details we refer to [1].
p-values are defined as the empirical probability of observing structure at least as strong from
the randomized data.

The major trend in p-values is that the two models give very different results, with swaps
being less conservative. Here the same effect is observed as in the previous experiment: when
using statistics as indicators of structure, the fixed-fixedmodel generates randommatrices that
share surprisingly little with the originalmatrix. This observation has two immediate implica-
tions. First, the choice of null model matters, as in most cases the p-value given by a fixed-fixed
model is below the typical threshold of 0.05, where as the p-value given by a Raschmodel is
above. Second, the results would favor the skeptical side on the long running argument initi-
ated by [10]. Connor and Simberloff used the fixed-fixed type of model in their argumentation

Table 2. Statistics for original datasets and randomized datasets with both the fixed-fixed null model and Rasch null model. Median statistic over

all randomizations is reported for randomized data. p-values are defined as the empirical probability of observing statistic at least as extreme from the ran-

domized data. For each dataset dimensions are given together with the fill ratio, i.e., the ratio of matrix cells with value 1.

Dataset NOW MN5

(254 rows and 24 columns with fill ratio of 0.076)

Original fixed-fixed model Rasch model

Statistic Statistic p Statistic p

Checkerboard unit count 54728 53634.5 1 47403 0.982

Correlation count (pos) 23 3 0.001 9 0.013

Correlation count (neg) 0 0 1 0 1

Correlation count (both) 23 3 0.001 9 0.013

Clustering error (k = 2) 331.53 342.61 0.001 329.58 0.562

Clustering error (k = 5) 262.64 292.54 0.001 276 0.108

Clustering error (k = 10) 202.45 242 0.001 225.86 0.01

Dataset NOW

(3207 rows and 223 columns with fill ratio of 0.016)

Original fixed-fixed model Rasch model

Statistic Statistic p Statistic p

Checkerboard unit count 55385342 53819460.5 1 52790464.5 0.998

Correlation count (pos) 2355 233 0.001 370 0.001

Correlation count (neg) 7 0 0.001 0 0.001

Correlation count (both) 2362 232 0.001 370 0.001

Clustering error (k = 2) 10269.63 10521.75 0.001 10459 0.018

Clustering error (k = 5) 9085.61 10040.86 0.001 9998.54 0.001

Clustering error (k = 10) 8209.21 9669.95 0.001 9637.17 0.001

Dataset Vanuatu

(56 rows and 28 columns with fill ratio of 0.564)

Original fixed-fixed model Rasch model

Statistic Statistic p Statistic p

Checkerboard unit count 14702 14065 1 11685.5 0.99

Correlation count (pos) 25 7 0.001 12 0.042

Correlation count (neg) 0 0 1 0 1

Correlation count (both) 21 5 0.001 10 0.054

Clustering error (k = 2) 215.37 216.49 0.108 208.96 0.831

Clustering error (k = 5) 154.88 163.92 0.001 153.7 0.581

Clustering error (k = 10) 110.33 125.94 0.001 116.16 0.159

doi:10.1371/journal.pone.0165456.t002
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to show how random arrangement of values can lead to patterns that follow the assembly rules
[10]. The results in Table 2 indicate that Raschmodels could provide even stronger support for
the case, while fulfilling the requirement of random arrangement by having independent cell
probabilities, given the margin sums.

Looking at Table 2, margin sums explain most of the global structure, nestedness and cluster
structure. Clustering errors in original data and randomized data under either model are rela-
tively close. However the difference is systematically such that original data has stronger struc-
ture. Hence structures are considered significant in most cases with fixed-fixedmodel and in
some cases with Raschmodel. The null models show that data contains a statistically significant
global signal, but it is weak and possibly irrelevant. There is also a difference between the mod-
els: the Raschmodel generates data that resembles original data more closely. For this reason
the Raschmodel is able to discern between different values of k. Results from the Raschmodel
suggest that 2 or 5 clusters cannot capture any significant structure in the NOWMN5 dataset.
NOW dataset has stronger cluster structure, clearly related to different MN zones inside the
dataset. Vanuatu dataset seems to have no strong cluster structure.

Checkerboard unit counts in Table 2 indicate that all datasets are significantly anti-nested.
In all cases the randomized datasets have less checkerboard units, under both models.

Ecologically perhaps the most interesting results in Table 2 are the strong local pairwise cor-
relations, which are not explained by null models.When interpreting the results, one should
note that p-values of 1 are on rows where correlation count is zero in original data, meaning
that they are not relevant. Fixed-fixedmodel considers correlations highly significant, while
Rasch is more conservative, but also suggests that the correlation structure is significant and
strong. For the NOW and NOWMN5 datasets this supports the previous findings: global struc-
ture seems to be explained by margin sums, while there still are significant local structures [1].

Results for dataset NOWMN5 also shed some light on swap chain patterns that were seen
in the first experiment, which was also run with NOWMN5 dataset. In the first experiment we
observedhow swap chains converged differently depending on if they were started from the
original dataset or the Rasch dataset. In Table 2, both fixed-fixed and Raschmodels indicate
that NOWMN5 has significantly high number of checkerboard units. They also show that the
dataset has some significant and strong pairwise positive correlations on columns. For a pair-
wise positive correlation to exist, the two columns in question need to have low number of
checkerboard units. The simultaneous existence of the two contradicting patterns implies that
checkerboard units must be organized in a special way to make room for correlations. Swap
operations shuffle the checkerboard units and quickly remove correlation structure, as can be
seen from Fig 2 of first experiment.When Raschmodel is used to generate a dataset similar to
NOWMN5, it does not have the special organization of checkerboard units and swap opera-
tions do not have any major effect. The purpose of the null model is to preserve the high level
structure of the dataset, as described by the margin sums, so the performance of the fixed-fixed
models are undesirable in this case. The models generate very different null distributions, when
they are given only slightly different margin sums as a starting point.

The general idea of using matrix sum based null models is to test statistical discoveries
against trivial aspects of data. Some sites are more populated than others, as some of the species
are more common than others. One is typically looking for patterns that are not explained by
these simple features, but go beyond it. Highly optimistic figures in Table 2 would indicate that
the fixed-fixedmodel failed to account for some of the margin sum driven features of data.
Most importantly, in the experiment the choice of null model had dramatic effects on measures
of significance. Finally, it is important to note that these experiments do not state that fixed-
fixedmodels always, or even often, display undesired performance. In existing literature fixed-
fixedmodels have been applied successfully in many instances, even with datasets that have
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relatively strong nested structure. The data analyst unfortunately cannot rely on their perfor-
mance without considering the issues pointed out in this manuscript.

Discussion

Using margin sums of a matrix to construct statistical significance tests is a difficult task. The
manuscript discussed the established approach of using fixed-fixedmargin sum constraints via
the sequential swap procedure for significance testing and as an alternative presented stochastic
constraints that constrain expectedmargin sums instead of strict sums. Major characteristics
of both constraint families are summarized in Table 3.

Both families of constraints have correspondingmaximum entropy models that implement
the constraints without additional biases and allow efficient computational implementation.
The sequential swap procedure still has the theoretically unsolved issue of convergence, but
due to abundant availability of computing power, convergence is not of practical significance
for sequential swaps. Both models have been found to be tolerant of noise (data not shown).
Because the computational questions are largely solved, one might argue that the choice
between the constraints seems to be purely ecological: it is up to the ecologist to choose the
type of constraints that are better justified for the task at hand.

Ecological justifications for fixed-fixedmargin sum constraints have been widely discussed
in the literature and many of the original computational challenges have been resolved. The
remaining challenge of judging the ecological implications of constraint family selection how-
ever requires both computational and ecological reasoning. Computational aspects still play a
role because the ecological implications of fixed-fixed constraints cannot be evaluated without
understanding the kind of patterns that are likely to emerge when the constraints are main-
tained. Fixed-fixed constraints have complex internal dependencies and those dependencies
might dictate behavior that is undesired or surprising. The extreme examples are nested matri-
ces, which cannot be permuted at all by the swap operations. Therefore the ecologist should
ask if there are other cases where a certainmatrix sum configuration leads to undesirable
results.

The sequential swap procedure in itself is difficult to analyze closely enough to discover
potential situations of undesirable behavior. However, experiments demonstrated cases where
swaps converged to results that were counter-intuitive, likely due to “lock-in” effect, i.e., the
permutation procedure being limited to a too strict set of matrices. The sequential swap
method was sensitive to small changes in margin sums. With actual presence-absence datasets
swap based tests gave highly optimistic indicators of significance.

The sequential swap procedure has been developed gradually in the context of presence-
absence studies, though it was well known in computational sciences as well. One notable step
of this development was the slightly incorrect original formulation of the algorithm and follow-
ing discussion in literature, which first rejected the whole approach due to the detected bias

Table 3. Summary of characteristics of fixed-fixed constraints and stochastic constraints (Rasch).

Fixed-fixed constraints Stochastic constraints

Maximum entropy model sequential swaps Rasch

Convergence not known trivial

Noise tolerance tolerant tolerant

Limitations nested data none known

Conservative no yes

Applications empirical empirical and analytical

doi:10.1371/journal.pone.0165456.t003
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(see [11] for a recount of the discussion and correct algorithm). One might describe the
approach as bottom up: the model has been refined step by step as problems are discovered.
The alternative approach is to work with a different set of constraints that allow analytical
treatment and lead to a model with more predictable behavior. To that end, stochastic margin
sum constraints were presented. Their computational implementation using the Raschmodel
is more suitable for analysis and has predictable computational implementation. As a conse-
quence, Rasch allows one to derive independent cell specific probabilities and to directly calcu-
late the probability of many patterns. For swaps it is not possible, because cell values are not
independent due to fixed-fixed constraints.

The aspects of swap procedure demonstrated in this manuscript can be considered as a cau-
tionary example about algorithmic null models: ingeniously simple methods can have complex
dynamics and produce surprising results. Ecological reasoning should be the driving force for
model development, but the computational manifestation should be such that it allows to
cleanly express the assumptions without tangling them in to computational details. In practical
terms, such work is often most successfully carried out in a cross-disciplinary collaboration.

Null models are tools for data analysts. The choice of tool always depends on the actual eco-
logical application. To make an informed decision, the data analyst must be capable of under-
standing the implications of each alternative. Statistical tools should have understandable and
predictable behavior. This manuscript demonstrated aspects of the sequential swap procedure
that would surely come as a surprise to the data analyst.
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