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Abstract

We apply game theory to a vehicular traffic model to study the effect of driver strategies on

traffic flow. The resulting model inherits the realistic dynamics achieved by a two-lane traffic

model and aims to incorporate phenomena caused by driver-driver interactions. To achieve

this goal, a game-theoretic description of driver interaction was developed. This game-theo-

retic formalization allows one to model different lane-changing behaviors and to keep track

of mobility performance. We simulate the evolution of cooperation, traffic flow, and mobility

performance for different modeled behaviors. The analysis of these results indicates a

mobility optimization process achieved by drivers’ interactions.

Introduction

The dynamics of vehicular traffic, independently of its type (urban, freeway, one car system,

mono-laned, multi-laned), is a paradigmatic example of a complex adaptive system [1–5]. As

such, it is difficult to model. The principal paradigm that has been used to model vehicular traffic

is as a physical flow of objects–vehicles–that interact in different ways. It is this paradigm that is at

the heart of most academic studies and, indeed, the different techniques and technologies for the

design of Traffic Control Systems (TCS)[6–9]. These physics-based models focus their attention

on the interactions vehicle-TCS, or physical interactions between vehicles, assuming semi-ideal-

ized driver behavior, disregarding human unpredictability and behaviors that may help to self-

organize other drivers [4]. In short: they do not account for the fact that vehicles are controlled by

drivers, who make decisions and adopt different strategies in order to achieve their goals. Of

course, representing the appropriate degree of heterogeneity among drivers is a difficult modeling

problem. Too little will lead to limited results by oversimplifying the drivers’ behavior. The per-

formance of Traffic Control Systems (TCS) based on studies with limited results, due to the over-

simplification of drivers, may be affected by perturbations caused by real drivers’ behavior.

Studying vehicle-vehicle interactions implicitly, i.e., induced by the decisions they make, is

not trivial, offering an open field for answering questions such as: How is the efficiency of
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already proposed TCS solutions affected by perturbations caused by drivers’ behaviors? What

is the nature of the interactions between drivers? Are we able to model a more realistic

behavior?

There are some traffic models that tackle some “social” (driver-driver interactions) aspects.

The Wastavino et al. crossroad model [10] analyzes, among other important issues, the differ-

ent effects that drivers may cause by cautiously or aggressively crossing an intersection. The

MOBIL lane-changing model [11] includes a politeness factor that dictates how much drivers

will care about the conditions of the other drivers while lane changing thus influencing the

rate of lane changes. There are some studies, like the one performed by Nakata et al., about a

Prisoner’s Dilemma-type game structure within the traffic flow [12]. The results of these con-

tributions highlight the importance of including a more realistic representation of drivers’

behavior in traffic models.

An important step in including driver-driver interactions and the associated heterogeneity

is choosing an appropriate framework. Here we will develop and use an agent-based/game the-

ory approach. Decades ago, game theory was created as a tool to help us to understand deci-

sion making processes [13][14]. It has been used to study very particular decision making

processes, such as auctioning or the formation of oligopolies, voting systems [15], fair division

[16], war strategy [17], animal communication[18], animal mobbing behavior [19], etc. It has

also been used as a framework in which to understand more generic phenomena associated

with decision making, such as the evolution of fairness [20], evolution of cooperation[21], evo-

lutionary dynamics of social dilemmas [22] and governance of risky commons [23]. There

exist many game-theoretic studies that focus their attention on the decision-making processes

involved in urban traffic [24,25], from macro policies analysis (between authorities, between

drivers and authorities, and between drivers) to micro behavior descriptions (between drivers

and authorities, and between drivers).

Driving can clearly be described as a decision-making process. Once a vehicle moves, the

driver takes multiple decisions, such as when to change lane, when to brake, and when to wait

or cross a yield signaled intersection [10]. There are studies focused on describing many of

these decisions using the game theory paradigm and applying these descriptions to autono-

mous vehicles [26] and vehicle to vehicle (V2V) communication [27] scenarios. These types of

models generally assume agents with perfect rationality, capable of determining which action

will lead to an optimal payoff for her and the other drivers with whom she is interacting. For

autonomous vehicle scenarios, defining which actions will lead to optimal benefits for every

participant is an important task. However, scenarios involving human drivers may need

another approach. It has been pointed out [25] that the behavior of human drivers may take

into account other factors besides rationality and also drivers may not have all the information

needed to calculate an optimal payoff while driving.

The use of agents with complete rationality may have another drawback [25]: In order to

obtain optimal solutions, these models use powerful but computationally expensive algo-

rithms. These kind of models also suffer the, already mentioned, difficult modeling problem of

representing an appropriate degree of heterogeneity among drivers. Too much will lead to

overly complicated, difficult to interpret models, e.g. sometimes the models must be simplified

to make them computationally practical [27] and offer results. This characteristic prevents this

type of models from being used as the basis for real time TCS.

Our goal is to analyze the impact of different drivers’ behaviors on traffic performance. On

the one hand, we have models with semi-idealized drivers’ behavior with possibly limited

results. On the other hand, we have models with completely rational drivers that may not rep-

resent real drivers and that use computationally expensive algorithms. To achieve our goal, we

need models that balance the two types of model characteristics already discussed. In this
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paper, we present a model that falls into this description. It consists of agents with bounded

rationality that are able to choose between two possible behaviors (cooperative or defective)

while driving on a freeway. Such a model could help us to identify which drivers could be

doing something “right” and those which could be doing something “wrong”. Thus, we can

understand and try to change what is wrong and analyze if it is possible to translate what are

they doing right to other scenarios, which could include autonomous vehicles.

In the next section (Development of the new model) we will discuss the conceptualization

of how to integrate the evolution of cooperative behavior in a constant population of agents, as

described in [28], to a traffic simulator that includes lane-changing maneuvers [29]. These

agents are capable of self-organizing themselves to demonstrate the evolution of cooperation,

as achieved by the life-cycle based agents of [21]. The result is a traffic simulator that includes

lane-changing behavior that is based on the evolution of cooperation that, in turn, lets us study

the performance of different modeled behaviors with additional information.

In the Method section we specify all the modifications made to state of the art traffic models

[29] to obtain our new model. We also specify all the parameter values used to obtain the

results shown in this paper. In the Results section we compare the performance of the original

model [29] against the performance associated with the different behaviors introduced in this

paper. In the last section, results are discussed in terms of traffic performance and in terms of

the evolution of cooperation.

Development of the New Model

Many correct driving behaviors (using designated lanes, crossing signaled intersections only

when the green light is lit, using directional lights at lane changes, facilitating other’s lane

changes, etc.) may be labeled as cooperative interactions in which one driver pays a cost (time,

speed, space) and another driver receives a benefit [21]. Drivers avoid crashing most of the

time because of these interactions.

This characterization of driving could help us to create a game-theoretic framework in

which to model and study different phenomena while taking into account human factors.

Also, the creation of this framework could open new possibilities for the application of game-

theoretic models to spatial problems.

In order to create the framework in which we will study the impact of driver decision mak-

ing on the dynamics of a given traffic scenario, we need to implement a traffic model. As we

pretend to model and study drivers’ interactions, a microscopic traffic model, such as the

NaSch model [1], is appropriate. It is known that this cellular automaton model replicates the

fundamental diagram for a single lane freeway by defining key vehicle drivers’ behaviors, i.e.,
acceleration, braking and random braking. Although this is a powerful model, we need a more

realistic representation of the drivers if we want to define a cooperative characterization of the

driving process for example.

Considerable effort has been invested in the development of more realistic cellular autom-

ata models [30]. These models include limited deceleration capacity [31], limited capabilities

of acceleration and deceleration, realistic safe distances between following and leading vehicles

[32] (hereafter referred as the LAI model) and lane changing interactions between heteroge-

neous vehicles [29] (hereafter referred as the GLAI model).

The GLAI model [29] brings together all of these realistic features with a simple list of key

variables (Fig 1).

Using information from other vehicles (velocity and position), each vehicle calculates

threshold distances that dictate in which circumstances a vehicle may accelerate, has to keep

its speed, has to brake or must use the emergency brakes [32].
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Both key variables and threshold distances are necessary when a vehicle is going to change

lane [29]. A lane change will take place when a vehicle determines that the conditions are bene-

ficial (incentive conditions). For example: (1) while driving on the right lane, if the conditions

of the lane dictate that the vehicle has to keep its speed but the conditions of the left lane are

favorable for accelerating; (2) While driving on the right lane, if the conditions of the lane dic-

tate that the vehicle has to brake, or must use emergency braking, but the conditions of the left

lane are favorable for at least maintaining its speed; (3) While driving in the left lane, whenever

the conditions of the right lane make it possible.

Once a vehicle determines that conditions are favorable, it changes lane only if the safety

condition is met, i.e. the gap between the vehicle changing lane and the vehicle in the other

lane and behind must be larger than the distance that the vehicle in the other lane and behind

will travel using emergency braking.

As it may be observed, the GLAI model abstracts a two-lane freeway with asymmetric lane

changes (left lane change incentive conditions are different from the right lane change incen-

tive conditions) without collisions using the cellular automata paradigm. Taking advantage of

the similarity between cellular automata models and agent models we merge the GLAI model

with a game-theoretic agent model [28] in which the agents adapt themselves to their social

environment. Another important reason to use the GLAI model, besides the fact that it suc-

cessfully models safe distances between vehicles based on their relative velocity and realistic

acceleration/deceleration rates, is that the GLAI model has incentive and safety conditions for

lane changes that include variables that facilitate the addition of new elements which can be

used to include decision-making elements in the sections of the simulator that are related to

lane change maneuvers. The agents may choose to be more cooperative or to be more selfish

depending on the payoff obtained, while iteratively playing games proposed for the study of

the evolution of cooperation [21]. We choose to label the actions of the drivers as cooperative

(cautious behavior or behavior with strict adherence to regulations) or defective (risky

Fig 1. Key variables for vehicle n during a lane change. (a) On a left-lane-change a vehicle n must consider the vehicle in front of it f, the vehicle in

front and at left lf and the vehicle behind and at left lb. (b) On a right-lane-change a vehicle n must consider the vehicle in front of it f, the vehicle in front

and at right rf and the vehicle behind and at right rb.

doi:10.1371/journal.pone.0165381.g001
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behavior or behavior with loose adherence to regulations) to be consistent with the rules

whose behavior we are going to analyze. Theses labels may be changed to other ones though

we believe this labeling is useful since many regulations are based on the fair use of traffic

infrastructure.

In these games (Fig 2), as explained in [21], the players who choose to cooperate are going

to pay a cost (c) that the other player is going to receive as a benefit (b). In our model, the val-

ues for c and b are given by the velocity increase or decrease that is generated as a result of a

vehicle lane change. Each rule focuses on a particular feature and explains how this feature

favors the evolution of cooperation.

Kin Selection: With this rule, the feature under analysis is “genetic” relatedness (r). While

the probability of being genetically related to another player increases, so will the cooperative

tendency of the whole population. The idea behind this mechanism is that cooperation is more

likely between “relatives” rather than “non-relatives”. In [21] “relatives” refers to a pair of agents

that share a gene. Mapping this scenario to freeway traffic situations, “relatives” may refer to

social acquaintances (coworkers, neighbors, friends). The concept of “relatives” may differ

between cultures; highly cooperative cultures may recognize any other fellow citizen as a “rela-

tive” given the premise that each citizen has the same right to make use of the freeway. Follow-

ing this thinking, different cultures may have different relatedness probability values (r).
Direct Reciprocity: For this mechanism, the memory of the agents is taken into account.

The players born as cooperators are going to implement a tit-for-tat behavior, cooperating on

the first move. The players born as defectors always defect. With these conditions, the proba-

bility of playing again with a particular agent (w) becomes a key feature for the evolution of

cooperation. Mapping this situation to a freeway traffic context seems to be pointless as the

probability of the same two drivers playing (interacting in a lane change) is very low, except

during high density situations (jam phase). However, it has been demonstrated that during

high density situations few lane changes occurs [29], we therefore decide not to map this sce-

nario in our model.

Indirect reciprocity: In this case the feature that promotes the evolution of cooperation is

the social acquaintanceship (q) of the players’ acts. Players born as defectors will always defect.

Players born as cooperators are going to try to identify their game partner as a cooperator or as

a defector. The probability of the cooperators successfully identifying their game partners is

equal to the fraction of the population able to perceive their actions (social acquaintanceship).

If a cooperator successfully identifies the other as a defector then the player will defect, other-

wise cooperators will always cooperate. On a freeway, drivers can categorize the behavior of

Fig 2. Three mechanisms for the evolution of cooperation described as a payoff matrix specifying the

conditions in which cooperation is an evolutionary stable strategy (ESS), risk dominant (RD) or

advantageous (AD) in comparison to defection.

doi:10.1371/journal.pone.0165381.g002
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other drivers as cooperative or defective by observing the interactions of such drivers with oth-

ers. Although this identification is useful for a short time, it may be that under other conditions

(traffic in small communities) it may be useful for longer periods. Also this rule could be easily

adapted to represent V2V communication scenarios where the communications could be

modeled by the social acquaintanceship. For this reason we consider it interesting and we

include it in our studies.

Note that in the three original rules [21], players are born as cooperators or defectors. They

cannot change their affiliation between games. They are alive for a certain amount of time and

then they die, leaving offspring that receive their affiliation as inheritance and with a given

probability that this affiliation may mutate. This formulation for the evolution of cooperation

does not seem that suitable for freeway traffic situations however, and a more straightforward

approach may be more useful.

In [28] we have the same rules (Kin Selection, Direct Reciprocity and Indirect Reciprocity),

applied over a constant number of players who start with a certain degree of attachment for

cooperation or defection and who may change this degree according to their convenience.

Players also start with a certain amount of an abstract resource that may be lost or gained in

each game. Each agent tries to maximize this resource by applying simple local rules: (1) if a

player has more resources at the end of a game than at the beginning, then the player will

increase the attachment to the chosen behavior for that game. (2) If a player has less resources

at the end of a game than at the beginning, then the player is going to decrease the attachment

to the chosen behavior for that game. For example, if a player chose to cooperate and lost

resources, then that player is going to decrease her cooperative attachment.

Players randomly choose their behavior each game by comparing the value of a random

variable [0, 1] and their cooperative attachment [0.01,0.99]. If the value of the random variable

is greater than the value of the cooperative attachment, the player defects. As it may be noted,

the cooperative attachment can be used for labeling players as cooperators (cooperative attach-

ment> = 0.5) or defectors (cooperative attachment < 0.5). Under certain conditions (parame-

ter values), this model [28] exhibits an evolution of cooperation that is similar to the Kin

Selection, Direct Reciprocity and Indirect Reciprocity models shown in [21].

We use two of these game-theoretic rules [28] and merge them with the lane-change free-

way traffic model [29]. The merging process consists in replacing some of the abstract concepts

of the game-theoretic models with information given by the freeway model: (1) Using the

incentive and safety conditions we were able to create different behaviors that may be labeled

as cooperatives or defectives; (2) In our model a game corresponds to the interaction between

two drivers when one of them, at least, tries to perform a lane change; (3) We link the original

abstract payoffs to “physical” measures that appear in the freeway traffic model dynamics. (4)

We consider the two selected game-theoretic rules mentioned above as “behavior rules” and

also added two more: one for describing what we think happens during a common lane change

and another one considering cooperative ideas expressed in [21]. All technical aspects are

detailed in the Methods section.

Methods

The agent-based lane-changing behavioral model presented in this paper (Fig 3) can be seen as

a modification of the GLAI model. Our model preserves many of the main characteristics and

variables of the LAI [32] and GLAI [29] models. We made modifications to the lane-changing

behavior section, i.e. instead of using probabilities to increase or decrease the lane-changing

rate, the drivers increase or decrease this rate by being cooperative (more cautious incentive

and safety conditions) or defective (bolder incentive and safety conditions). This means that

Traffic Games: Modeling Freeway Traffic with Game Theory
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all parameters that make simulations realistic are those that appear in the original GLAI model

validation [29], except for the lane-changing probabilities to left and right and the road length.

Thus, we are making the same assumptions made by the original GLAI model (safe distances

between vehicles based on their relative velocities, realistic acceleration/deceleration rates and

incentive and safety conditions for lane changes based on the already mentioned safe dis-

tances) with the difference that in our model the lane-changing rates are entirely a conse-

quence of the decisions made by the drivers.

To be congruent with the GLAI model, our traffic model has a freeway defined by a lattice

of length L with a discretization parameter (Δx) that indicates the cell length in meters. Each

vehicle is defined by an agent that may move over the freeway cells arranged in a ring topology.

Unlike the GLAI model, vehicles may move in cell fractions. The speed of each vehicle can

take values from the set [0, . . ., vmax], but vehicles may have different vmax. At initialization, an

average |vmax| and a standard deviation are given as parameters to a normal distribution that

randomly assign a vmax value to each vehicle. The vmax value of a vehicle may differ from |vmax|

up to four times the value of Δv, i.e. a vehicle’s vmax can take values from the set [|vmax|–(x Δv)],

where x 2 [0,. . .,4] and Δv denotes the magnitude of the increase/decrease in velocity of a vehi-

cle in one time-step under normal situations and is defined as: Δv = [2.5m / Δx]. In this model,

all vehicles have the same length of 5m that also includes the space between the front bumper

of the vehicle and the rear bumper of the vehicle ahead.

The vehicle density remains constant over time and every vehicle has a cooperative proba-

bility (pc), as in the models presented in [28]. This variable represents the drivers’ attachment

to a cooperative behavior and may have a value from the set [0.1, . . ., 0.99]. We exclude pc val-

ues 0 and 1 because they force agents to always defect and always cooperate, respectively. Such

behaviors correspond to unrealistic circumstances and also lead the evolution of cooperation

to dynamics that differ from those reported in [21]. All drivers with pc> 0.5 are labeled as

cooperators and all drivers with pc< = 0.5 are labeled as defectors. This distinction among

drivers is necessary because at initialization the fraction of cooperative drivers in the popula-

tion is a relevant parameter. Also, an initial-pc-for-cooperative-drivers and an initial-pc-for-
defective-drivers are required as two different parameters. These parameters are required

Fig 3. 3D view (left) and steps (right) of the presented model. The model is available for running on a

browser and downloading (source code included) at https://sourceforge.net/projects/traffic-games/.

doi:10.1371/journal.pone.0165381.g003
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because, as reported in [33], the initial values of pc may have important consequences in the

evolution of cooperation.

The pc is a key variable in the model’s dynamic. It may be noticed that cooperative drivers

do not always cooperate. Depending on their cooperative attachment, players will overcome

adverse circumstances to cooperate with others. Using pc and a random variable, we try to

simulate this phenomenon. It is important to note that people may have different coopera-

tive attitudes in different decision-making situations, i.e. people may have multiple pc val-

ues, one for each decision-making situation. In this model we consider only lane-changing

decisions.

So far we have just enumerated some similarities/dissimilarities between the original

GLAI model and our model, and we have also enumerated all parameters needed. Next, we

are going to detail the merging point between the GLAI model and the evolution of cooper-

ation models and some minor changes to the original GLAI model for adapting it to an

agent-based model.

Original GLAI variables and parameters

We made an agent-based implementation of the GLAI model that preserves all aspects taken

into account by the original model. GLAI parameters and variables may be found in Tables 1

and 2 respectively.

Modification to the original GLAI update steps

At each time step, the model updates all vehicles. An update is performed in two sub-steps,

each one of them affecting all vehicles in parallel:

1.- Exchange: in this sub-step, the two lanes of the freeway exchange vehicles according to

the lane-changing rules, which are detailed below.

2.- Single lane update: each of the freeway lanes is considered as independent single-lane

LAI model. This sub-step operates on the resulting configuration of the exchange sub-step.

For any arbitrary configuration of this sub-step, one update consists of the following (as may

be seen in [32]:

S1. Safe following distances. Obtain the value for ddec = ddec(vn(t), vn+1(t)), dacc =

dacc(vn(t), vn+1(t)), and dkeep = dkeep(vn(t), vn+1(t)), that are the minimum required

distance for a vehicle to drive at velocity vn behind its preceding vehicle (n+1) in a

safe way. The original definition of these distances can be found in [32]. Here we

present modified rules that allow vehicles to move in fractions of a cell.

Table 1. GLAI and LAI model parameters.

Parameter Description

vmax Maximum velocity.

vs Slow velocity.

ls Vehicle length (in cells).

M Maximum decrease of velocity in one time step.

Rs Random slowing down probability.

Ra, R0, Rd Acceleration probabilities.

Our model inherits these variables.

doi:10.1371/journal.pone.0165381.t001
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daccðtÞ ¼ ½ððvnðtÞ þ DvÞ=MÞ þ 1�½vnðtÞ þ Dv� � ½M=2�½ððvnðtÞ þ DvÞ=MÞ þ 1�½vnðtÞ þ DvÞ=M��

½ððvnþ1ðtÞ � MÞ=MÞ þ 1�½ðvnþ1ðtÞ � MÞ� þ ½M=2�½ððvnþ1ðtÞ � MÞ=MÞ þ 1�½ðvnþ1ðtÞ � MÞ=M�

dkeepðtÞ ¼ ½ðvnðtÞ=MÞ þ 1�½vnðtÞ� � ½M=2�½ðvnðtÞ=MÞ þ 1�½vnðtÞ=M� � ½ððvnþ1ðtÞ � MÞ=MÞ þ 1�

½ðvnþ1ðtÞ � MÞ� þ ½M=2�½ððvnþ1ðtÞ � MÞ=MÞ þ 1�½ðvnþ1ðtÞ � MÞ=M�

ddecðtÞ ¼ ½ððvnðtÞ � DvÞ=MÞ þ 1�½vnðtÞ � Dv� � ½M=2�½ððvnðtÞ � DvÞ=MÞ þ 1�½vnðtÞ � DvÞ=M��

½ððvnþ1ðtÞ � MÞ=MÞ þ 1�½ðvnþ1ðtÞ � MÞ� þ ½M=2�½ððvnþ1ðtÞ � MÞ=MÞ þ 1�½ðvnþ1ðtÞ � MÞ=M�

The modification consists of the replacement of the function X div y that denotes the integer

division, X div y = [X/Y], where “/” denotes normal division and [z] is the floor function. Instead,

a normal division is indicated with “/”. This change allows one to express the safe distances in

fractions but also allows negative values. To avoid negative values it is important to use the

expression dx = max (0, dy), where dy represents the respective calculated safe distance (i.e. Dacc,

Dkeep or Ddec) and dx represents the variable where the value of the respective safe distance is

going to be stored. Another option is to verify the values of the safe distances during the imple-

mentation of the incentive and safety conditions. This option consists in identifying when safes

distances have negative values and then handling these events.

S2. Slow to accelerate. This step simulates the slow reaction time of drivers. The stochastic noise

parameter Ra, dependent on the vehicle’s speed vn is determined according to equation:

Ra ¼ minðRd;R0 þ vnðtÞ � ðRd � R0Þ=vsÞ

where vs is a constant parameter slightly above 0, 0< Ra� 1 and 0< R0< Rd� 1. The sto-

chastic parameter Ra linearly interpolates between R0 and Rd (R0< Rd) if vn is smaller than a

slow velocity vs. The stochastic parameter Ra indicates the probability of accelerating based on

the vehicle’s velocity: slow vehicles (vn< vs) have to wait longer before they can continue their

travel.

Table 2. Variables used for incentive and safety criteria in the GLAI model.

Variable Description

vn Velocity of a vehicle considering a lane change.

dn Gap of the n-vehicle considering a lane change relative to its leader vehicle in the same

lane.

vn+1 Velocity of the same-lane leader vehicle of vehicle n.

vsucc Velocity of the succeeding vehicle (the follower) of vehicle n on the target lane. The follower

is the nearest vehicle on the target lane with x < xn.

dsucc Spatial-gap of the succeeding vehicle on the target lane relative to vehicle n.

vpred Velocity of the preceding vehicle (possible new leader) on the target lane. The leader on the

target lane is the nearest vehicle with position x > xn.

dpred Gap of vehicle n to the preceding vehicle (possible new leader) on the target lane.

dacc(vn, vpred) Safe following distance from vehicle n to the preceding vehicle that allows to vehicle n to

accelerate without collision risk.

dkeep(vn,

vpred)

Safe following distance from vehicle n to the preceding vehicle that allows to vehicle n to

keep its velocity without collision risk.

ddec(vsucc, vn) Safe following distance from the succeeding vehicle to the vehicle n that dictates to the

succeeding vehicle to decelerate to avoid collision risks.

Our model inherits these variables.

doi:10.1371/journal.pone.0165381.t002
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S3. Velocity update. The velocity of all vehicles is updated simultaneously following the rules:

S3a: Acceleration. If dn(t)� daccn, the velocity of vehicle n increases randomly by one unit (one

Δv) with probability (Ra), i.e.:

vnðt þ 1Þ ¼
minðvnðtÞ þ Dv; vmaxÞ if randf ðÞ � ðRaÞ

vvðtÞ otherwise

(

Where randf() 2 [0, 1] denotes a uniform random number and Δv is the maximum magni-

tude in cell fractions to accelerate/decelerate a vehicle under normal circumstances. It is

defined as follows:

Dv ¼ ½2:5m=Dx�

S3b: Random slowing down. If daccn> dn(t)� dkeepn, the velocity of vehicle n is decreased with

a probability Rs, i.e.:

vnðt þ 1Þ
maxðvnðtÞ � Dv; 0Þ if randf ðÞ � ðRaÞ

vnðtÞ otherwise

(

S3c: Braking. If dkeepn> dn(t)� ddecn, and vn(t)> 0, velocity of vehicle n is reduced by one Δv:

vnðt þ 1Þ ! maxðvnðtÞ � Dv; 0Þ

S3d: Emergency braking. If vn(t)> 0 and dn(t)< ddecn(t), velocity of vehicle n is reduced by M,

provided it does not go below zero:

vnðt þ 1Þ ! maxðvn � M; 0Þ

Where M is the maximum decrease of velocity in one time-step.

S4. Vehicle movement. Each vehicle moves forward according to its new velocity defined by

rules S3a-S3d:

xnðt þ 1Þ ! xnðtÞ þ vnðt þ 1Þ

Where xn(t) and vn(t) denote the position and the velocity, respectively, of vehicle n at time-

step t.
Assuming that vehicle n + 1 precedes vehicle n, the space gap between vehicle n and vehicle

n + 1 (the distance from front bumper of vehicle n to the rear bumper of vehicle n + 1) is

defined as dn(t) = xn+1(t)–xn(t)–ls; where ls denotes the vehicle length in cell fractions.

Original GLAI lane-changing rules

These rules represent a decision that most drivers make to change lanes or not. This decision

implies an incentive criterion (identify the need for a lane change), i.e. the driver expects a util-

ity or benefit from the lane change; and a safety condition (opportunity check), i.e. in order to

receive the benefit drivers must avoid collisions as a consequence of the lane change. The
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original GLAI rules can be seen in detail in [29] but for the convenience of the reader they are

presented here as well.

right!left

Incentive criterion

ðic1Þ : if ððdkeepðvn; vnþ1Þ � dn < daccðvn; vnþ1ÞÞandðdpred � daccðvn; vpredÞandðvn < vmaxÞÞÞ

Or

ðic2Þ : ðdn < dkeepðvn; vnþ1Þandðdpred � dkeepðvn; vpredÞÞÞ

Safety criterion

ðsc1Þ : dsucc � ddecðvsucc; vnÞ

left! right

Incentive criterion

ðic10Þ : ðdn � dkeepðvn; vnþ1ÞÞandðdpred � dkeepðvn; vpredÞÞ

Safety criterion

ðsc1Þ : dsucc � ddecðvsucc; vnÞ

All variables are detailed in Table 2.

The logic behind the lane-changing rules is the following: The safety criterion (sc1) consid-

ers the effect of the lane-changing vehicle on the future follower in the target lane; if dsucc<
ddec(vsucc, vn) then the lane change will provoke a collision, i.e. the safety criterion guarantees

that the lane change is possible regardless of whether the future follower vehicle will need to

use emergency braking, normal braking, will keep its velocity, or will continue accelerating

after the lane change.

The existence of two different incentive rules agrees with regulations for lane usage that

apply on Mexican and European highways: One is the right-lane preference that compels driv-

ers to use the right lane as much as possible (ic1’) in conjunction with a right-lane overtaking

ban. Both the GLAI model and our agent based implementation use asymmetric rules that pro-

mote left overtaking (ic1) rather than fully banning right lane overtaking.

In the lane changes from left to right, if a vehicle is driving on the left, then as soon as

possible it will attempt a change to the right lane, i.e. as soon as it’s safe following distance

with respect to the vehicles ahead in both lanes is large enough to maintain its current

speed.

In lane changes from right to left, if a driver wishes to improve her velocity with respect to

the velocity conditions in the current lane, i.e. if the vehicle’s safe following distance to the pre-

ceding vehicle in the same lane is enough to maintain its speed, while the lane change would

imply the chance to accelerate (ic1) or the vehicle’s safe following distance with respect to the

preceding vehicle in the current lane implies that it will decelerate in the next time step, but on

the other lane could at least maintain its current speed (ic2).

Creation of new behaviors by modifications of the lane-changing rules

Changing the lane-changing rules results in changes in the drivers’ behavior. For example, if

we replace ddec(vsucc, vn) with dkeep(vsucc, vn) in the safety criterion (sc1), drivers will change

lanes only if the succeeding vehicle in the target lane can maintain its velocity after the lane

change.
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New safety criterion

ðsc10Þ : dsucc � dkeepðvsucc; vnÞ

This new behavior (in the model) may be labeled as “cautious” (as avoiding the use of brak-

ing ensures avoiding collisions provoked by the lane change). In accord with Nowak’s descrip-

tion, we can also describe this behavior as cooperative. If a driver finds incentive conditions,

she will check the safety criterion (sc1’) to finally decide if she will change lanes or not. If dsucc
< dkeep(vsucc, vn) then she is not going to execute the lane change. However, it may be that dsucc
� ddec(vsucc, vn) (sc1 is satisfied), so she will be paying the cost of not improving her driving

conditions and the succeeding driver will be receiving the benefit of, at least, maintaining her

velocity. In general, a cooperative driver (the ones that use sc1’) will have less probability of

executing a lane change, but all the succeeding drivers will have a greater probability of main-

taining their driving conditions.

Establishing the new lane-changing behavioral model

In the model we allow drivers to randomly choose between a cooperative and a defective

behavior.

Cooperative right!left

Incentive criterion

ðic1Þ : if ððdkeepðvn; vnþ1Þ � dn < daccðvn; vnþ1ÞÞandðdpred � daccðvn; vpredÞandðvn < vmaxÞÞÞ

Or

ðic2Þ : ððdn < dkeepðvn; vnþ1ÞÞandðdpred � dkeepðvn; vpredÞÞÞ

Safety criterion

ðsc10Þ : dsucc � dkeepðvsucc; vnÞ

Defective right!left

Incentive criterion

ðic1Þ : if ððdkeepðvn; vnþ1Þ � dn < daccðvn; vnþ1ÞÞandðdpred � daccðvn; vpredÞandðvn < vmaxÞÞÞ

Or

ðic2Þ : ðdn < dkeepðvn; vnþ1Þandðdpred � dkeepðvn; vpredÞÞÞ

Safety criterion

ðsc1Þ : dsucc � ddecðvsucc; vnÞ

The incentive criterion for right! left lane change is the same for both cases (cooperative

and defective) and is the same incentive criterion as for right! left lane changes in the GLAI

model. The only change between cooperative and defective behavior is that cooperators use

the second version of the safety criterion (sc1’) and defectors use the original version. The

logic behind this, as mentioned earlier, is that cooperative drivers will pay the cost of having

less probability of changing lane for the succeeding vehicles will have a higher probability of

maintaining their driving conditions, while defective drivers will take any opportunity of

improving their driving conditions regardless of the consequences for other drivers (as long as

collisions are avoided).
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As we are working with a model that is in accord with the regulations used on Mexican and

European highways, we have the corresponding asymmetric lane changes rules:

Cooperative left! right

Incentive criterion

ðic10Þ : ðdn � dkeepðvn; vnþ1ÞÞandðdpred � dkeepðvn; vpredÞÞ

Safety criterion

ðsc10Þ : dsucc � dkeepðvsucc; vnÞ

Defective left!right

Incentive criterion

ðic1Þ : if ððdkeepðvn; vnþ1Þ � dn < daccðvn; vnþ1ÞÞandðdpred � daccðvn; vpredÞandðvn; vmaxÞÞÞ

Or

ðic2Þ : ðdn < dkeepðvn; vnþ1Þandðdpred � dkeepðvn; vpredÞÞÞ

Safety criterion

ðsc1Þ : dsucc � ddecðvsucc; vnÞ

The cooperative criteria almost agree with the original left!right criteria of the GLAI

model, but we make it more cautious, i.e. cooperative drivers are going to return to the right

lane as soon as possible (ic1’), ensuring thereby not to alter the driving conditions of the suc-

ceeding vehicle in the target lane (sc1’). Defective drivers, on the other hand, will use the left

lane as much as they want (ic1’ is omitted as part of the incentive conditions), they will be

more likely to use the right lane to overtake (ic1 and ic2), and they only will avoid collisions as

a consequence of the lane change (sc1).

In real life, there are other actions that may be labeled as cooperative or defective. We con-

sider two such actions to better model the consequences for being defective or cooperative.

Directional signals: in most countries, drivers are required to use directional signals to

indicate the intention of changing lanes. In Mexico and other countries this is commonly

disobeyed, especially during traffic jams where the use of directional signals carries adverse

consequences, as drivers may try to obstruct others from changing lane. To simulate these

actions we give the drivers the ability to choose between displaying directional signals

(cooperative) or not (defective). Right after checking the incentive criterion, if the driver

has chosen to cooperate and the incentive criterion is satisfied, then the driver will display

directional signals indicating her intention to change lane. Right after the driver checks the

safety criterion: if it is satisfied then the lane change will take place, but if the safety criterion

is not satisfied then the driver will keep the directional signal activated and continue nor-

mally with the rest of the sub-steps. The only cases in which a driver will turn off the direc-

tional signal are: (1) a subsequent incentive criterion is not satisfied; and (2) the lane

change was successfully executed.

Facilitate lane changes: when a driver activates her directional signal, it is supposed that

the future succeeding driver in the target lane will acknowledge the first driver’s intentions

and will take precautionary measures if needed, i.e., if the future succeeding driver foresees

that the lane change will take place then a precautionary measure could be to start generat-

ing a safe distance for the future preceding vehicle. This can be achieved by not accelerating
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or by gradually slowing down. Frequently in Mexico, when a driver acknowledges the lane-

change intentions of other drivers she doesn’t facilitate the lane change and maintains her

velocity or even accelerates.

We model these lane-changing behaviors by letting the drivers randomly choose, with the

help of pc, between facilitating the lane change (cooperative) or continue driving, ignoring

the lane change intentions of the others (defective). When a driver cooperatively attempts to

change lane, the future succeeding driver in the target lane (target vehicle) decides if she will

have a cooperative or a defective behavior. If she decides to be cooperative, she tries to facili-

tate the lane change by not accelerating or by braking if needed. To do this we have modified

the S3c conditions of the Velocity update section of the Single lane update sub-step:

S3c’: Braking’.
If [(cooperative-target? = = true and directional-signals-detected? = = true) and (dkeep-pred’

> dpred’(t)� ddec-pred’, and vn(t)> 0)]

or [(dkeepn> dn(t)� ddecn,) and (vn(t)> 0)], velocity of vehicle n is reduced by one Δv:

vnðt þ 1Þ ! maxðvnðtÞ � Dv; 0Þ

Where cooperative-target? is a tag indicating that driver n chose to be cooperative and she

could be the succeeding driver of another driver with lane-change intentions; directional-
signals-detected? indicates that the driver with lane-change intentions is a cooperator and

that her directional signal is on; dpred’(t) is the spatial gap of target vehicle n to the preceding

vehicle (possible new leader) on the same lane of vehicle n; and dkeep-pred’ is the safe follow-

ing distance from vehicle n to the preceding vehicle (possible new leader) that allows vehicle

n to keep its velocity without collision risk.

This covers the cases in which the target driver slows down in order to facilitate the lane

change, but where, in many cases, to stop accelerating is enough. To model this, we have

modified the S3a conditions of the Velocity update section of the Single lane update sub-step:

S3a’: Acceleration’.
If (target? = = false or cooperative-target? = = false or (cooperative-target? = = true and

directional-signals-detected? = = false))

and (dn(t)� daccn), the velocity of vehicle n increases randomly by one unit (one Δv) with

probability (Ra), i.e.:

vnðt þ 1Þ ¼
minðvnðtÞ þ Dv; vmaxÞ if randf ðÞ � ðRaÞ

vvðtÞ otherwise

(

The first part of the conditional indicates the cases in which the drivers will accelerate as

usual: target? = = false indicates that drivers in front of driver n on the other lane don’t have

lane-change intentions; cooperative-target? = = false indicates that driver n is the target

future succeeding vehicle of another driver but driver n has chosen to be defective; and,

finally, (cooperative-target? = = true and directional-signals-detected? = = false) indicates

that driver n is participating in a lane change, driver n has chosen to be cooperative, but as

the lane changing vehicle has chosen to be defective (not using her directional signals)

driver n was unable to react properly. As a result of the exclusion of the (cooperative-target?
= = true and directional-signals-detected? = = true) case, when these conditions are met the

driver will not accelerate.
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Evolution of cooperation dynamics

As in previous work [28], each agent has a cooperative probability that defines their attach-

ment to a cooperative behavior. At the beginning of a lane-change decision (right before

checking the incentive criterion), each driver decides if she is going to exhibit a cooperative or

a defective behavior according to:

behaviorn ¼
cooperative if randf ðÞ � pcn
defective if randf ðÞ > pcn

(

Where randf( ) 2 [0,1] denotes a uniform random number.

In the model implementation, once an active driver finds incentive conditions to change

lane, she will track down the corresponding probable future-succeeding driver (target driver)

and mark her as a game partner. Once a target driver is marked as a game partner, she will

decide which behavior to exhibit. Note that an active driver may have only one game partner

but target drivers could have more than one game partner. If a target driver is marked by mul-

tiple active drivers, she only will decide which behavior to exhibit once and will keep that deci-

sion through the complete time-step.

Once the drivers have decided which behavior to exhibit, the steps of the GLAI model are

executed with the modifications already mentioned. Right before the “vehicle movement sec-

tion” of the single lane update sub-step, each driver will acknowledge the consequences of

their decisions by recognizing the costs paid and the benefits gained. In general, drivers will

consider each loss of velocity as a cost and every velocity increase as a benefit. Nevertheless, we

implemented different cost-benefit notions to study the impact of different behaviors (cooper-

ative/defective) in conjunction with different cost-benefit notions (behavior rules). These rules

let us easily add different elements to the bounded rationality of the agents by modifying the

pay-off tables and without the need of making major modifications to the model dynamics.

For implementation, it is required to introduce a parameter to choose between the rules. We

create the following rule cases (Fig 4):

Natural behavior: with this case we represent what seems to occur during lane changes. In

the cases where the active driver accomplishes the lane change, she always receives a benefit,

given the nature of the incentive criterion (lane change to improve or at least maintain driving

velocity conditions). Given the different conditions present in the freeway (different densities)

and the different behaviors of target drivers, they may continue accelerating, maintain velocity,

slow down or use emergency braking.

In other cases the active driver will not be able to accomplish the lane change. In these cases

the active driver may continue accelerating, maintain her velocity, slow down or use emer-

gency braking. In the cases in which the target driver is a defective driver, the chances for the

active driver to slow down or use emergency braking will increase.

In a strict sense, the natural behavior payoff table only reports to the driver the gains or

losses that she gets as a consequence of her participation in a lane change, which is used to

change her cooperation probability in further lane change attempts.

Nowak’s cooperative behavior: this is a modified version of the natural behavior. In all of

the rules for the five mechanisms for the evolution of cooperation studied by Nowak [21], for

the cases in which both players cooperate, the expression b-c implies that the impact of the

benefit and the cost affect them. This could represent, in lane changes, empathy between driv-

ers. A target driver cooperating could compensate her velocity decrease with an emotional

reward and in the same way as a cooperative active driver could not completely enjoy her

velocity increase due to a negative emotion. We cannot confirm whether this happens during
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Fig 4. Cost-benefit notions (behavior rules) described as payoff matrixes specifying the interactions between drivers.

doi:10.1371/journal.pone.0165381.g004
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actual lane changes, especially the last situation mentioned, but we included this behavior in

this study in order to explore the consequences of this behavior.

Kin selection: we model this case because it may represent some actual driving circum-

stances. In [21], kin selection is explained as the manner in which natural selection favors

cooperation. While the relatedness probability (probability of sharing genes) increases, so does

the probability of cooperating. While driving, this may be understood as a circumstance in

which the other driver participating in the lane change is related to us. A genetic relation is not

necessary, it is sufficient that drivers are acquainted (such as a coworker [including profes-

sional drivers], neighbor, friend, etc). Each case will have a different relatedness value accord-

ing to how kindred each agent is to the other driver.

It is important to mention that the model supposes a uniform relatedness probability

among all drivers. Also, we did not consider cases where recognition could actually trigger an

aggressive behavior, e.g. between taxi and Uber drivers.

Indirect reciprocity: as in the models of [21] and [28], reputation (social acquaintanceship

of our actions) is the key feature for the evolution of cooperation. As may be seen in the corre-

sponding row of Fig 4, reputation will compensate cooperative behaviors and will punish

defective behaviors.

As in the models of [21] and [28], cooperative drivers only cooperate when they acknowl-

edge another cooperative driver. Drivers will have a chance to recognize the other driver as a

defector, if randf() < = q, and then exhibit a defective behavior with that driver. If randf() > q,

the driver fails to recognize the defective driver and will exhibit a cooperative behavior.

Cooperative probability update

Finally, after estimating the consequences of their decisions (payoff of the last game played);

drivers decide whether they maintain, increase, or decrease their attachment to a cooperative

or defective behavior. Like the agents of the models presented in [28], drivers update their pc
using the expression:

pcn ¼ pcn þ Dpcn

Where Δpcn is calculated as follows:

Dpcn

þ0:01 if ðbehaviorn ¼¼ cooperativeÞand ðpayoffnðt � 1Þ < payoffnðtÞÞ

þ0:01 if ðbehaviorn ¼¼ defectiveÞand ðpayoffnðt � 1Þ > payoffnðtÞÞ

� 0:01 if ðbehaviorn ¼¼ defectiveÞand ðpayoffnðt � 1Þ < payoffnðtÞÞ

� 0:01 if ðbehaviorn ¼¼ cooperativeÞand ðpayoffnðt � 1Þ > payoffnðtÞÞ

0 otherwise

8
>>>>>>><

>>>>>>>:

where payoffn(t-1) denotes the payoff calculated in the time-step previous (t-1) to the actual

time-step (t) following the corresponding payoff (Fig 4) for driver n and payoffn(t) represents

the payoff calculated in the actual time-step (t).
After an update, each driver must verify that she doesn’t reach an invalid pc value:

if (pc < = 0.00){
pc = 0.01

}
else{

if (pc > = 1) {
pc = 0.99

}
}
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This also helps us to simulate the fact that even extremely attached cooperators or

defectors may have situations in which they will choose actions opposed to their beliefs,

e.g. by distraction.

Parameter values used in our analysis

Since experimental data for cooperative rates is lacking, we simply swept the parameter space

to understand the potential dynamics. All results were obtained by averaging the outcome of

10 simulations with the same initial parameter values. Standard deviations were so low (maxi-

mum 0.02%) that they were omitted. Each of these 10 outcomes consists of calculating the

average of the last 10,000 values of the observed variables. For each simulation, 30,000 itera-

tions were executed prior to the observation in order to avoid measuring transient states. Each

iteration represents one second, thus the observation period has a duration of 2.7 hrs and was

preceded by an 8.3 hrs period for relaxation of the system.

For the GLAI section of the model, we used the following parameter values: L = 120 (cells),

Δx = 5.0m (resulting in a two-laned one-way freeway with cyclic boundaries and a length of

600m for each lane), car size = 5m, Rd = 1.00, R0 = 0.8, Rs = 0.01. We did not consider larger

lane lengths due to the games used in drivers’ interactions, in particular, Kin Selection and

Indirect Reciprocity. Even though it is possible to implement these games on longer freeways,

it is difficult to imagine that drivers at the beginning of a freeway are aware of the behavior of

other drivers that are located more than 5 km away (in this paper we are not considering V2V

communication scenarios). Also, we performed simulations with L = 120, 240 and 300 cells

that showed no significant differences in terms of traffic performance and in terms of the evo-

lution of cooperation.

For density, we explored the following values: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,

0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26,

0.27, 0.28, 0.29, 0.30, 0.35, 0.40, 0.45, 0.50 and 0.60. These values correspond in veh/km to: 2, 4,

6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,

60, 70, 80, 90, 100 and 120. All vehicles were placed randomly along the freeway avoiding colli-

sions (fractions of two different vehicles occupying the same space). For the implementation

of heterogeneously maximum velocities we used a Gaussian distribution with a standard devia-
tion of 0.7 and a |vmax| = 6 cells/tick (equivalent to 30 m/s or 108 km/hr). In order to avoid col-

lisions, all vehicles start the simulation with v = 0 cells/tick.

For our first evolution of cooperation description, we want to define the impact of the ini-

tial fraction of cooperative drivers. We used an initial-pc-for-cooperative-drivers = 0.99, initial-
pc-for-defective-drivers = 0.45 and we varied the initial–fraction-of-cooperative-drivers with the

values: 0%, 25%, 50%, 75%, and 100%. The values for the initial cooperative probabilities were

chosen taking into account the results showed in [33].

Once we found that the evolution of cooperation follows the same pattern regardless of the

initial fraction of cooperators, in the following, we used the same initial cooperative probabili-

ties values already mentioned and an initial–fraction-of-cooperativ e-drivers = 50%.

For the study of the impact of the feature exploited by the behavior rules (Kin Selection and

Indirect Reciprocity) we obtained the evolution of cooperation for different values for r and q
respectively. The values explored were: 0.25, 0.5, 0.75 and 1.

Mobility index

We introduce a mobility index calculated by the following expression:
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8
>>>>>>><

>>>>>>>:

We assume that drivers have a starting and a destination point. Thus, they have a distance

to travel (t) and they have a time deadline (td) to cover that distance. For the experiments we

used t = 1.2 km and td = 500 s. Using the instant velocity (v) of a vehicle at a given moment

and the already traveled distance (ted), we calculate how many time steps the driver will need

to complete her travel. We add that expected time to the current time step (ts) to obtain an

expected total travel time. We then compare the expected total time with the time deadline

and finally we obtain the proportion of that difference regarding the time deadline.

When a driver finishes a trip, she immediately starts a new one (1.2 km). To maintain the

time variables relative to the current trip, we take into account the starting time step (st) of

each trip.

All calculations mentioned above are valid when v>0 but a zero division will arise when

v = 0. To overcome this, we use a different expression for a stopped vehicle. We start by check-

ing for the difference between the time deadline and the time already consumed by the driver,

the proportion between this difference and the time deadline is obtained and that will give us a

notion of how much time the driver has left. As time passes this factor will decrease. Finally,

the decreasing factor is multiplied by the proportion of the travel that has already been

completed.

In both cases, the resulting value is evaluated using the tanh(x) function to obtain a sigmoi-

dal characterization and the 2.5 coefficient is utilized to fix the graphic in the [–1,1] interval,

being mobility = 1 circumstances in which the driver arrived early at her destination, mobil-
ity = 0 for circumstances in which the driver arrived just in time to her destination and mobil-
ity = -1 circumstances in which the driver arrived late to her destination.

Results

We performed a series of simulations to study the evolution of cooperation in a game-theo-

retic/agent framework and the corresponding traffic performance. As we lack real data for

which fractions of drivers exhibit cooperative or selfish (expected to vary across cities), and

considering that in practice these probabilities can vary contextually for the same drivers, we

swept the parameter space to explore all possibilities. Changes are gradual, but it is easier to

understand extreme cases, and these are the ones we focus on. For traffic performance com-

parison we aggregate the results obtained by an original GLAI model implementation [29]

which was inspired by observational studies [32].

As can be seen in Fig 5, we found that the evolution of cooperation follows the same pattern

regardless of the initial fraction of cooperative drivers. As a next phase, we analyzed the impact

of the feature exploited by the behavior rules that, in our opinion, could be better adapted to

real traffic situations: Kin Selection and Indirect Reciprocity. For these we explored different

values (0.25, 0.5, 0.75 and 1) for r (relatedness probability for Kin Selection) and q (social

acquaintanceship for Indirect Reciprocity).

As may be observed in Figs 5–8, there is a recognizable evolution of cooperation pattern for

densities in which synchronized flow occurs. Because of the use of an evolution of cooperation
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approach, we expected to find conditions in which cooperation prevails. Even though the

behavior of the found pattern differs from our expectations, we found it interesting. It suggests

that there are conditions for driver’s self-organization to achieve the evolution of cooperation

and to optimize mobility despite the greedy nature of the lane-changing rules and the payoff

tables that drivers are following at a local level (drivers seek to obtain more velocity or to main-

tain it, they are “rewarded” for doing so and are “punished” for slowing down). As an attempt

to explore this phenomenon, we obtained the average velocity for the empirical behavior with

50% of initial cooperators and using the parameters already mentioned.

If we focus on Fig 5 and Fig 9, it is noticeable that as the difference in velocity between

defectors and cooperators decreases, the fraction of cooperators among the population

increases. This inverse proportionality is well illustrated by the significant cooperators velocity

decrease for densities around 34 veh/km. This fall causes a big difference between the velocity

of defectors and cooperators which leads to a fall in the population’s cooperative fraction. We

find it interesting that this proportionality is only valid for density values in which synchro-

nized flow occurs (Fig 10 and Fig 11).

At densities between 10 and 20 veh/km we observed a decrease in cooperators velocity.

This decrease is due to many factors: First, at low densities there are few cooperative vehicles,

thus velocity variations are more significant; another factor is that vehicles do not have the

same maximum velocity (vmax). The lowest possible value is vmax = 81km/hr. Also, while facili-

tating lane changes, cooperators slow down (we observed that vehicles may slow down up to

45 km/hr while facilitating lane changes).

Fig 5. Results of the evolution of cooperation for different densities and different initial fractions of cooperative drivers.

doi:10.1371/journal.pone.0165381.g005
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For densities near 40 veh/km in Fig 7 it could be possible to identify coherent moving state

conditions [34]: cooperators and defectors have the same velocity despite the fact that vehicles

of both groups have heterogeneous vmax values.

In order to verify that a coherent moving state is occurring, we evaluated our proposed

mobility index. The values of this index are in the interval [–1, 1], with mobility = 1 signifying

circumstances in which the driver arrived early at her destination, mobility = 0 for circum-

stances in which the driver arrived in time to her destination, and mobility = -1, signifying cir-

cumstances in which the driver arrived late to her destination.

Fig 12 and Fig 13 show that at densities for which cooperators and defectors have the same

velocity (Fig 9), drivers indeed have the best mobility index confirming the maximization

nature of the game performed by the drivers.

Trying to confirm the coherent movement state, we explore the spatiotemporal shapes of

the original GLAI model and different behaviors implemented in our model with different

density values. In Fig 14 we present the different states of traffic flow (free flow, synchronized

flow and wide moving jam) for our model with “Natural” behavior. Each horizontal row of

squares represents the instantaneous position of the vehicles moving towards the right. Succes-

sive rows represent the position of the same vehicles at successive time-steps. Darker squares

represent vehicles closer to v = 0.

In Fig 15 we present the spatiotemporal shapes for a high cooperation behavior (Indirect

Reciprocity with q = 1), the original GLAI model behavior and the behavior with improved

mobility (the one we labeled as “Natural”) for the same density value (d = 50 veh/km). It may

Fig 6. Kin Selection evolution of cooperation as density and relatedness probability are increased.

doi:10.1371/journal.pone.0165381.g006
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be appreciated that the high cooperation behavior (the one with worst mobility index in Fig

12) presents both lanes in jammed conditions (Fig 15A and 15B). The original GLAI model

behavior (average mobility index in Fig 12) presents its left lane with jammed conditions (Fig

15(C)) and its right lane is in synchronized flow (Fig 15(D)). While the behavior that we

labeled as “Natural” (the one with best mobility index in Fig 12) presents both lanes in condi-

tions that may be identified as a transition between the synchronized phase and the jammed

phase (Fig 15E and 15F). It is worthy to mention that this conditions (Fig 15E and 15F) repre-

sent better traffic performance that those obtained by the other two behaviors (Fig 15A–15D).

The results reflected in the spatio-temporal shapes agreed with the results shown in the funda-

mental diagrams of Fig 10.

In order to prove or disprove the existence of a coherent movement state we obtain the

average standard deviation of the average velocity of all vehicles for each studied density value

for the high cooperation behavior (Indirect Reciprocity with q = 1) and the behavior with the

improved mobility (labeled as “Natural”) (Fig 16). For density values corresponding to the

beginning of the synchronized phase, the graphic shows values very similar to those found in

the free flow phase. As density increases the standard deviation, values increase as well. This

means that, as the fundamental diagram implies, the synchronization between vehicles’ veloc-

ity start to fade as the density values approach to the jammed phase.

The results in Fig 16 show that, once the synchronized phase starts, the high cooperation

behavior has a larger standard deviation than the behavior with improved mobility and this

characteristic remains even during the jammed phase. The effect of the Natural behavior rules

Fig 7. Indirect Reciprocity evolution of cooperation as density and social acquaintanceship are increased.

doi:10.1371/journal.pone.0165381.g007
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over the vehicles’ velocity standard deviation has a notorious impact, precisely, at the end of

the synchronized phase (density values between 40 and 50 veh/km) where the difference

between vehicles’ velocity standard deviation of the two behavior rules is about twice. This

proves that, the Natural behavior rule favors the emergence of a coherent movement state by

reducing the vehicles’ velocity standard deviation and thus improving mobility.

In a different matter, many traffic regulations promote safe behaviors (e.g. use of directional

signals and facilitate lane changes for vehicles with directional signals). As we include some of

these behaviors (labeled as cooperative behaviors) we expect that behavior models with high

cooperation rates (e.g. Indirect Reciprocity with q = 1) present better safety conditions. As

there are no accidents in our model, in order to measure the safety of different driving behav-

iors, we calculated the probability of emergency brakes caused by a lane change. The rationale

is that more emergency breaks increase accident incidence. Fig 17 shows this probability for

Indirect Reciprocity with q = 1 (more cooperators) and for Natural (less cooperators).

The results show that, even though, the Natural behavior rule has an improved mobility

(thanks to the reduced vehicles’ velocity standard deviation) it has a bigger emergency break-

ing probability and thus it does not guarantee safer driving conditions. The behavior that pro-

duces safer driving conditions (lower emergency braking probability) is the high cooperation

behavior (Indirect Reciprocity with q = 1), because most of the drivers exhibit a cooperative

behavior and they do not change lane if they are going to cause other drivers to break.

Fig 8. Comparison between different behaviors. As explained in the Evolution of Cooperation subsection of Methods, each behavior corresponds to a

different payoff matrix.

doi:10.1371/journal.pone.0165381.g008
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Discussion

Model Novelty

In this paper a novel approach for studying freeway traffic was presented. This game theoretic

approach allowed us to model different behaviors using well-studied games and rules [21]. By

merging these games and rules with an agent based implementation of a realistic freeway traf-

fic model [29], we were able to categorize agents (drivers) into two groups (cooperators and

defectors), assign them characteristic behaviors and let them choose which behavior they want

to exhibit more frequently to maximize their individual performance. We consider it relevant

to remark that this type of model combination may be useful for other spatial systems. The

process implies a detailed understanding of the phenomena to be modeled, to identify behav-

iors that may have an impact on the system’s performance and values generated by the system

that may be used as payoffs for the games.

In the model that we studied, freeway lane changing interactions, the lane-changing rules

were modified to create different behaviors. This was because the rules were based on distance

and velocity and the payoff tables make use of drivers’ velocities values.

Merging game-theoretic models with spatial models may not be trivial, but given the deci-

sion-making formal description of game theory, the resulting model provides relevant infor-

mation about the interactions among the agents. This information can lead to a better

understanding of the phenomena studied.

We consider this approach to have applications to systems with a strong human compo-

nent, such as pedestrian movement or social networks.

Fig 9. Velocities of cooperative and defective drivers.

doi:10.1371/journal.pone.0165381.g009
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Evolution of cooperation

The results of our model for the evolution of cooperation (Fig 5 to Fig 8) show that cooperative

behavior may succeed only for certain values of the traffic density. It is worth noting that for

many of the behaviors modeled these density values correspond to those in which the synchro-

nized flow phase takes place (Fig 10). It is important to remember that unlike other models

[11], the cooperative or politeness degree exhibited by the drivers is internally and individually

chosen by the agents themselves. There is no global variable, nor parameter, to guide their

behavior. The coincidence between the large increase in the fraction of cooperators for certain

density values implies that only during the synchronized phase are conditions for drivers’ self-

organization present. Despite the selfish nature of the payoff matrices (drivers are rewarded by

increasing their speed and punished by slowing down) the drivers found a circumstance in

which not pursuing a velocity increase (cooperative behavior) ended up rewarding them. This

can be seen as an example of the slower-is-faster effect [35].

There are behaviors (Kin Selection, Indirect Reciprocity and Nowak’s Cooperation) in

which the evolution of cooperation also occurs during the jammed phase. The evolution of

cooperation results reflect the fact that the map between driver environment and driver behav-

ior is complex, as different environments may lead to the same global behaviors, while differ-

ent perceptions of drivers may produce different global behaviors.

We can explain this evolution of cooperation behavior occurring in the synchronized phase

and in the moving jam phase as being due to the fact that these phases are highly related to the

amount of interactions (lane changes) occurring for each density value. In the moving jam

Fig 10. Fundamental diagram for each of the behaviors studied. A detailed view of the synchronized flow phase can be seen in Fig 11.

doi:10.1371/journal.pone.0165381.g010
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phase there are few spaces that may be used by drivers to perform lane-changing maneuvers,

leading to less interaction between drivers and reducing the effect of cooperative or defective

lane changes. Free flow conditions also lead to low levels of interactions due to large spaces

between vehicles. These large spaces allow agents to use the road more freely, i.e. without tak-

ing into account the behavior of other drivers. Also, these large spaces prevent the propagation

of cost (c) among vehicles. During the synchronized phase the cost paid by a target vehicle

(vehicle that will became the new follower of a lane changing vehicle), probably, is going to be

propagated among many vehicles. This happens when a lane changing vehicle forces the target

vehicle to brake and, due to the spaces between vehicles in the target lane, many other vehicles

will brake too.

Taking into account the previous reasoning, we argue that traffic phases have more impact

on the evolution of cooperation than the other way around. In the particular case of the syn-

chronized phase, it is because of the amount of vehicles and the amount of free space that driv-

ers increase their lane-changing rate. And it is this increase that generates the promotion of

cooperation. At any density, a particular target vehicle (vehicle that will became the new fol-

lower of a lane-changing vehicle) may obtain four possible payoffs: a decrease of 5 m/s (emer-

gency braking), a decrease of 2.5 m/s (normal braking), neither increase nor decrease (lane

change with enough space or lane change not executed) or an increase of 2.5 m/s (lane chang-

ing with enough space or lane change not executed). Velocity increases will promote the action

(cooperate or defect) while the decreases are responsible for the promotion of cooperative

behavior. A cooperative target driver will stop accelerating or even braking to help the other

Fig 11. Detailed view of synchronized flow phase of the fundamental diagram (Fig 10).

doi:10.1371/journal.pone.0165381.g011
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driver to execute the lane change maneuver. This means that if she decides to cooperate she

will have a pay-off of -2.5 m/s or 0 m/s that is going to be preferred more than getting a pay-off

of -5 m/s as provoked by an emergency braking necessarily executed for trying to prevent the

lane change of the other driver.

Mobility optimization

We hoped to find optimal behaviors in terms of traffic performance, but as we found out, the

best behaviors depend on the density, i.e. there is no single optimal behavior for all traffic situ-

ations. If we analyze traffic performance by observing the flow during the synchronized phase

(Fig 11), we notice that the behaviors with the worst results (lowest flow) are those in which

the evolution of cooperation was very successful (Fig 8). The model with the best results is the

stochastic lane-change behavior model embedded in the GLAI model. Analyzing the results

using our mobility measure (Fig 13) we found that our natural behavior model has a better

performance. If we focus on its evolution of cooperation results, it has a medium performance.

This means that always cooperate or always defect are not efficient driving policies. In other

words, we can say that the evolution of cooperation provides adaptation which increases the

value of our mobility measure for a given density. This is what we call mobility optimization.

We saw that, during the synchronized phase, there are conditions in which cooperation is a

better choice for the agents and other conditions in which agent defection leads to better per-

formance. Paying attention to the lane-changing behavior model section, we can see that

defective behavior leads a driver to a greedy space-consumption policy, i.e., defectors

Fig 12. Results for the mobility index for each of the behaviors studied. A detailed view of the synchronized flow phase can be seen in Fig 13.

doi:10.1371/journal.pone.0165381.g012
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frequently try to cover distances in the shortest time. On the contrary, cooperative behavior

leads drivers to a moderate space-generation policy by frequently maintaining velocity or slow-

ing down while facilitating lane changes. By choosing their cooperation probability agents can

find a space-generation rate that is sufficient to be exploited by greedy space-consumers, but

not enough to form an obstacle for faster vehicles.

Following this reasoning, always defect leads to a fast jam conformation when an obstacle

appears on the freeway and always cooperate leads to the generation of big spaces not being

utilized.

In cities, traffic rules and norms try to promote or enforce cooperative behavior. However, as

we saw, cooperative behavior does not always provide the most efficient mobility. Still, there are

reasons for promoting cooperation, such as safety [36] (Fig 17) and psychological health [37].

It is also arguable that a cause of the mobility optimization is the mean velocity‘s standard

deviation reduction found during the synchronized phase (Figs 9 and 15). However, it seems

that this reduction is a consequence of the drivers’ adaptation to their social environment.

Finding some insight about why those cooperative rates arise (i.e. probabilities of the different

payoffs for cooperators and defectors) could give us the answer as to what is exactly causing

this mobility optimization.

Finally, it is important to mention that all behavior models have the same (poor) flow and

mobility performance during the jammed phase, notwithstanding the success of the evolution

of cooperation. Because of this, it can be argued that even when driving behaviors are relevant,

limiting the number of cars on the streets is even more important for an efficient mobility.

Fig 13. Detailed view of the mobility index in the synchronized flow phase for the different behaviors (Fig 12).

doi:10.1371/journal.pone.0165381.g013
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Future work

The results shown in this paper focused on measures at a global (system) scale. Still, the local

(individual) scale is also relevant to complement the ideas discussed above. Obtaining results

Fig 14. Spatiotemporal shapes of the proposed model with the behavior that presents improved mobility. (a, b) Free flow, d (density) = 10 veh/km,

(c, d) synchronized flow, d = 40 veh/km (e, f) and jammed d = 80 veh/km. The left (right) image corresponds to the left (right) lane.

doi:10.1371/journal.pone.0165381.g014
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at a local scale is work in progress and is focused on the value of the payoffs that drivers may

get on the games and the probability of obtaining a specific payoff. This could give us enough

information to perform a Bayesian game-theoretic formalization of the games and also

Fig 15. Spatiotemporal shapes for (a, b) Indirect Reciprocity with q = 1 (highly cooperative lowest mobility behavior), (c, d) original GLAI model (stochastic

middle mobility behavior) and (e, f) the behavior we labeled as “Natural” (highly adaptive, highest mobility behavior) for the same density values (d = 50 veh/

km). The left (right) image corresponds to the left (right) lane.

doi:10.1371/journal.pone.0165381.g015
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enlighten us about some of the phenomena reported in this paper: the self-organization occur-

ring during synchronized phases, the conditions that allow the emergence of coherent move-

ment states, and their relation to mobility optimization.

In the context of autonomous vehicles, it would be interesting to define a hybrid balancing

strategy between cooperate and defect which would take the best of both extremes (space gen-

eration by slower vehicles and space consumption of faster vehicles) to optimize autonomous

urban traffic flow.

It is important to mention that although the obtained results are promising we will not go

as so far as to label the behavior of the agents of our model as “realistic”. More complex scenar-

ios have been left out of the scope of this paper (like freeways with more than two lanes, free-

ways with on-ramps and off-ramps) due to limitations of the GLAI model. We believe that it

was convenient to start working with the GLAI model even with its limitations rather than to

work with another traffic model because many of the internal variables (Dacc, Dkeep, Ddec, lf, rf,
lb and rf) facilitate the integration with the evolution of cooperation framework. The model

discussed in this paper may be used as a ground model and improve the scope of the original

GLAI model; for example, for tail-gating, more than two lane roads, off-ramps/on-ramps, or

crossroads. We will work on widening the scope of the GLAI model, as we hypothesize that

drivers will display different behaviors in different segments of the same freeway, i.e. a driver

will behave differently (in evolution of cooperation terms) if she is in a straight segment or if

she is in an on-ramp/off-ramp segment.

Fig 16. Mean velocity standard deviation obtained to every density value studied for two different behavior rules, Indirect Reciprocity with q = 1

(high cooperation behavior) and Natural (behavior with improved mobility).

doi:10.1371/journal.pone.0165381.g016
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