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Abstract

This work proposes channel impulse response (CIR) prediction for time-varying ultra-wide-

band (UWB) channels by exploiting the fast movement of channel taps within delay bins.

Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to

approximate the high temporal resolutions of UWB channels. A recursive least square

(RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the

future WB-CIR tap of window wk, three RLS filter coefficients are computed from the

observed WB-CIRs of the left wk−1, the current wk and the right wk+1 windows. The filter

coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate

our proposed prediction method, UWB CIRs are collected through measurement cam-

paigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight

(NLOS) scenarios. Under similar computational complexity, our proposed method provides

an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS sce-

narios compared with a conventional method.

Introduction

Channel predictions are applied in wireless communication systems with fast time-varying
channels because the channel state information (CSI) obtained through channel estimations
becomes outdated shortly after its acquisition [1–3]. The prediction of wireless channels consti-
tutes an important building block of advanced wireless mobile transceivers [4,5]. In adaptive
orthogonal frequency divisionmultiplexing (OFDM) systems, for instance, the predicted CSI is
used to determine the guard time interval of OFDM sub-channels for the upcoming transmis-
sion frame [6]. In [7], a predictionmethod for flat fading channels using only the important
scattered characteristics was developed. Prediction techniques for OFDM systems were investi-
gated in [8]. Whereas OFDM is an efficientmodulation scheme for broadband communica-
tions [9,10], the OFDM sub-channels are assumed to be flat fading [11]. In [12], a channel
predictor was proposed that consists of an envelope predictor to trace the slow envelope
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variation and a phase slope detector to follow the phase changes for each multipath cluster.
Studies on predicting wireless channels with large system bandwidths were considered in [13–
15]. A comparative study of time domain prediction techniques for wideband systems was per-
formed in [13]. For ultra-wideband (UWB) channels, the work of [14] reported that UWB
channels are predictable, and their proposed prediction algorithm has been shown to achieve
more than 70% of the matched filter output energies for line-of-sight (LOS) and 40% for non-
line-of-sight (NLOS) scenarios.

In this work, a predictionmethod for UWB channels is developed by considering the fast
movement of channel impulse response (CIR) taps across delay bins and the sparsity of UWB
channels. This predictionmethod is used to predict the CIR tap in the time domain based onmea-
surements in an outdoor environment. The predictionmethod applies non-overlapping timing
windows to group the CIR delay bins and break the rapid channel variation across delays, hence
reducing the complication of the prediction. Each window is then represented using only one
channel tap called a window tap. The strongest channel tap among all grouped taps in the window
is selected as the window tap. We refer to this CIR as window-basedCIR (WB-CIR). Considering
the channel tap correlation across window delay bins, the prediction of the futureWB-CIR tap in
window k (i.e.,wk) beginswith the computation of three recursive least square (RLS) filter coeffi-
cients. The three coefficients are computed independently using the observedWB-CIR channel
taps from the leftwk−1, the currentwk and the rightwk+1 windows. The filter coefficientwith the
lowest RLS error and its corresponding observedwindow taps are used to predict the future
WB-CIR tap of window k. Note that our predictionmethod is general in the sense that other
adaptive filters can also be applied. To evaluate our proposedmethod, the prediction errors
between the predicted and measuredWB-CIRs from field test measurements are presented.

The rest of this paper is organized as follows; the channel model is described in Section 2.
The proposed predictionmethod is presented in Section 3. The measurement setups are
described in Section 4. Section 5 provides the evaluation criterion. Section 6 gives details of a
complexity evaluation. The results and analysis are discussed in Section 7. The limitation and
future work are given in Section 8. Finally, we conclude the paper in Section 9.

Channel Model

The impulse response of UWB channels is represented using a tap delay line model [14,16]:

hðtÞ ¼
XL

i¼1

aidðt � miÞ; ð1Þ

where ai andmi are the i-th path gain and delay, respectively. For time-varying channels, (1)
can be modified as [14]:

hðt; tÞ ¼
XL

i¼1

aiðtÞdðt � miðtÞÞ; ð2Þ

where t is either the time or the spatial location. Assuming that the transmitter moves at a con-
stant velocity away from the receiver, we can convert between the time and spatial location.
The time and spatial location are used interchangeably in this work. For real communication
systems, the space and delay must be sampled. By applying the transformation t = pΔd, (2) in
discrete form can be expressed as:

hðpDd; lTsÞ ¼
XL

i¼1

aiðpDdÞdðlTs � miðpDdÞÞ; ð3Þ
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where l is the delay index from 1,2, . . ., L, and TS is the sampling period over the delay. In addi-
tion, p 2 [1,2,. . .,P] is the position or location index for the transmitter or receiver antenna
movement, and Δd is the sampling distance of the antennas. Using shorthand l = lTs and p =
pΔd for simplification, the discrete UWB channel model in (3) becomes:

hðp; lÞ ¼
XL

i¼1

aiðpÞdðl � miðpÞÞ ð4Þ

Proposed Prediction Method

We consider the problem of modeling the evolution of UWB channels in (4). Specifically, the
aim is to model and predict the CIR at the next Tx–Rx location index p + 1, givenM observed
CIRs at location indexes p, p − 1,. . ., p −M + 1.

Our proposed predictionmethod is described as follows: We first group the delay bins using
K non-overlapping windows. For UWB channels with high temporal resolutions, some of the
resolvable delay bins are empty; hence, the delay bins containing multipath components
(MPCs) are interspersed with empty delay bins, which leads to a sparse CIR [17,18]. Consider-
ing the sparsity of the UWB channel, we simplify the CIR of (4) by approximating the grouped
taps in each window using only one tap (called the window tap) with the delay parameter of
the last bin in the window (called the window delay). Among all channel taps grouped in each
window, the strongest tap gain is selected as the window tap. As a result, the UWB channel in
(4) can be simplified as:

hðp; lÞ � hwðp; lÞ ¼
XK

i¼1

awiðpÞdðl � mwi
ðpÞÞ; ð5Þ

where awi andmwi
are the wi-th window tap gain and delay, respectively. We refer to (5) as the

window-based channel impulse response. The way to calculate the K parameter is discussed as
follows. If the total number of bins in a particular CIR is L and the size of each window is s = 1/
B, K represents the number of windows in CIR and is calculated by K = 1+⌈(L-1)/s⌉, where ⌈x⌉
denotes the smallest integer larger than or equal to x; the 1 is added to account for the first win-
dow that represents the direct path and dominant path for LOS and NLOS, respectively. When
producing theWB-CIR, the size of the first window is always set to one bin to contain the
direct path in LOS scenarios or the most dominant path in NLOS scenarios. Regarding the
remaining windows, an equal window size is used. This window arrangement makes the chan-
nel tap in the first window independent of the channel taps in the other windows across all spa-
tial locations. This is because the CIR in (4) is normalizedwith respect to the direct path in
LOS scenarios or to the most dominant path in NLOS scenarios. Hence, the first window will
be represented using unity tap gain (i.e., aw1

¼ 1) when theWB-CIRs of (5) are generated from
the measured CIRs for all location indices. As a result, no prediction is required for aw1

. Using
theWB-CIR in (5), the evolution of UWB channels is modeled as an autoregressive (AR) pro-
cess of orderM.

The relative movement of the transmitter (Tx) and receiver (Rx) over several wavelengths
introduces variation in the delays of MPCs, thus switching an MPC from one delay bin to
another [19]. As a result, when predicting the future WB-CIR at p + 1 of windowwk, which
corresponds to the strongest MPC, there is a likelihood that the future WB-CIR tap is the MPC
coming from the left wk−1 or right wk+1 window. Hence, the AR process, modeling the evolu-
tion of UWB channels, should consider this possibility. The channel tap at location index p + 1
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for windowwk can be predicted using:

~awkðpþ 1Þ ¼ CH
A ðpÞ:aAðpÞ; ð6Þ

for k = 2,3,. . ., K, and A 2 {wk−1,wk,wk+1} denotes the left, current and right window, respec-
tively. The vector aA(p) = [aA(p),aA(p − 1),. . .,aA(p −M + 1)]T corresponds to the observedM
window taps of the present p andM-1 previous location indices from windowA, whereas the
vectorCA(p) = [cA(0),cA(1),. . .. . .,cA(M − 1)]T represents the prediction coefficient. The super-
scriptsH and T denote the Hermitian and transpose operators, respectively. Here, we use ~awi
and awi to distinguish between the tap gain of window i obtained from the prediction and mea-
surement, respectively.

Considering the channel tap correlation across delay bins, the key in the proposed predic-
tion in (6) is the usage of three filter coefficients,where for k = 2, only two filter coefficients are
computed for the current windoww2 and the right windoww3. This is because the left window
w1 contains only the unchanged and unity channel gain of the direct path for LOS or the domi-
nant path for NLOS in tracking the evolution of the channel tap in windowwk. The three coef-
ficients are computed independently and simultaneously usingM observedwindow taps each
from windowswk−1,wk and wk+1. In this work, the recursive least square algorithm is used to
compute the prediction filter coefficientsCA(p) with initial values:

CAðpÞ ¼ ½0; 0; . . . :; 0� ð7Þ

The resulting update equation for CA(p) is given by:

CAðpÞ ¼ CAðp � 1Þ þ KH
A ðp � 1Þ:eðpÞ; ð8Þ

where e(p) is the prediction error defined as:

eðpÞ ¼ aAðpÞ � CH
A ðp � 1ÞaAðp � 1Þ; ð9Þ

and the gain factorKA(p) of RLS is defined as [8]:

KAðpÞ ¼
GAðP � 1ÞaAðPÞ

gþ aHA ðPÞ �GAðP � 1Þ � aAðPÞ
ð10Þ

TheGA(P−1) in (10) is the inverse of theM ×M sample covariance with an initial value of
z−1I, where z is a small positive constant (we chose z = 0.1), and I is the identity matrix. It is cal-
culated recursively using [13]:

GAðPÞ ¼
½1 � KAðpÞa

H
A ðPÞ�GAðP � 1Þ

g
; ð11Þ

where γ 2 {0,1} is the forgetting factor that controls the influence of observedCIRs in the pre-
diction. In this work, γ = 0.7 is used because it provides good prediction. Finally, once all three
filter coefficients for A 2 {wk−1,wk,wk+1} are obtained when executing the RLS algorithms
under S iterations, the final updated coefficient that produces the lowest prediction error of (9)
and its corresponding observedwindow taps are used for predicting the future WB-CIR at
location index p+1 in (6). The experimental CIR data are collected from the time domain
UWB channel measurements to evaluate the proposed predictionmethod, which is described
in the next section.
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Measurement Setup and Environment

The UWBCIRs are collected from time domain measurements conducted in outdoor environ-
ments for LOS and NLOS scenarios by using a pair of PulsON1410 transceivers equipped with
vertically polarized omnidirectionalwideband (3.1–10.6 GHz) dipole antennas (Figs A and B in
S1 Text). The details of the measurement devices can be found in [20]. The parameters for the
measurement setup are summarized in Table 1. The measurements were taken at two different
sites inside Universiti Teknologi Malaysia. The first measurement runwas carried out in an open
place where the receiver was placed in front of the viewing platform, whereas the transmitter was
moved away from the receiver as illustrated in Fig 1. At every transmitter movement of 1 cm, the
CIRs were recorded starting from the Tx–Rx separation distance of 3.0 m up to 3.31m. The oper-
ator of the setup sat behind a brick column to ensure a stationary environment. In the NLOS sce-
nario, the directed path (LOS path) was blocked by a human obstacle with a height of 1.6 m
standing between the receiver and transmitter antennas at a distance of 2 m from the receiver.
The second set of measurements was taken in an outdoor corridor that represents a rich multi-
path environment, as shown in Fig 2. This outdoor environment consists of a concrete floor and
roofing, wooden columns used to support the roofing, and many cars in the parking area. A
groundedmetallic sheet was placed between the person operating the attached computer system
and the setup itself to ensure a stationary environment. The receiver antenna was located at a
fixed point adjacent to the metallic sheet, whereas the transmitter part was allowed to move. The
transmission antenna height was 2.5 m, and the height of the receiver antenna was 1.7 m. The
measurement was performed at a sampling distance of 1 cm, starting from Tx–Rx separation of 3
m up to 3.31 m, which corresponds to 32 samples.

The Evaluation Criterion

The proposed predictionmethod is evaluated based on the normalizedmean square error
(NMSE) between the predicted and measuredWB-CIR taps given by:

EðpÞ ¼
1

K

XK

i¼1

awiðpÞ � ~awiðpÞ
� �2

ðawiðpÞÞ
2

ð12Þ

Evaluating the method by predicting theWB-CIR at L − p location indexes, the average
NMSE is computed using:

Eavg ¼

XL

i¼p
EðiÞ

L � p
ð13Þ

Table 1. Measurement Parameters.

Parameter Value

Range of frequency 3.1–5.3 GHz

Bandwidth 2.2 GHz

Transmit power -14.5 dBm

Tx and Rx antenna gains 3 dBi

Samples per snapshot 1632

Sampling time 61 ps

Open Environment Tx antenna height (LOS, NLOS) (2.0 m, 1.5 m)

Open Environment Rx antenna height (LOS, NLOS) (1.7 m, 1.45 m)

Outdoor Corridor Tx antenna height (LOS) (2.5 m)

Outdoor Corridor Rx antenna height (LOS) (1.7 m)

doi:10.1371/journal.pone.0164944.t001
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Another approach that is used to evaluate the proposedmodel and predictionmethod is to
use the estimated propagation channel parameters. The normalized path gain, maximum
excess delay and root mean square (RMS) spread propagation parameters are estimated and
compared for the predicted and measured CIRs in a particular location. The normalized path
gain is estimated from CIRs, which is normalized based on the maximum gain of the path in
MPCs (LOS path in LOS scenario and dominant path in NLOS scenario). The maximum
excess delay is the delay of the path that has a 10% gain over the strongest path in one particu-
lar CIR. The RMS delay spread is calculated from the power delay profile (PDP), where the
PDP of the particular CIR is given by:

pðt; tÞ ¼ jhðt; tÞj2 ð14Þ

The RMS delay spread is defined by the second central moment of the (PDP) as [21]:

trms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � ðtmÞ
2

q

; ð15Þ

Fig 1. The Channel Measurement Setup for the Open Environment.

doi:10.1371/journal.pone.0164944.g001
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Fig 2. The Channel Measurement Setup for the Outdoor Corridor Environment.

doi:10.1371/journal.pone.0164944.g002
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where t2 is the secondmoment of the PDP and is given as:

t2 ¼

X

k
pðtkÞ � ðtkÞ

2

X

k
pðtkÞ

; ð16Þ

and tm is the mean excess delay, also given as:

tm ¼

X

k
pðtkÞ � tk

X

k
pðtkÞ

; ð17Þ

where p and τ are the power and delay of the k-th path, respectively.

The Complexity Evaluation

Since there are L delay bins to be predicted for UWB CIR at spatial location p + 1, the complex-
ity of RLS predictions becomesO(M2L). By reducing the number of delay bins to only K<L
window taps, the complexity of the RLS prediction technique is reduced to O(M2K). As the
proposed prediction technique predicts three filter coefficients of the current and neighboring
windows, its complexity is three times higher than that of O(M2K).

Results and Analysis

Based on the conductedmeasurement at Tx–Rx spatial distances of 3.00–3.31 m, we have
p = 32 sets of measured CIRs. Each CIR consists of 1632 bins. One bin has duration of 61 ps,

Fig 3. Average NMSE for LOS Scenarios in the Open Environment.

doi:10.1371/journal.pone.0164944.g003
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which is the optimized locked sampling time for the PulsON1410 receiver to capture the mea-
surement pulse signals [20]. (Fig C in S1 Text) (S1 Text). CollectData Procedures and Post
Processing). This sampling time is higher than the Nyquist rate; hence, the bin resolution of
the measurement is small to ensure that all MPCs are resolvable. Using the captured 1632 bins
of CIRs, the size of the first window is set to 1 bin, and the size of the remaining windows
w = 2,. . ..,W is set to 7 bins. As a result, there are a total ofW = 234 non-overlapping windows,
which corresponds to a reducedWB-CIR with 234 taps. Here, the windows have equal size of
1/B, where B = 2.2GHz is the bandwidth used in the measurement. The 1/B size of the window
is the minimum resolution required to maintain the channel characteristics; i.e., the second-
order statistics such as root mean square (RMS) delay spread and maximum excess delay
remain the same [18].

The generatedWB-CIRs are then used for predictions using RLS algorithms of order 5, 10
and 15. For computing the average NMSE Eavg in (13), the proposedmethod is used to predict
theWB-CIRs at several Tx–Rx location indices. For example, using a prediction order of 5, the
WB-CIR prediction is carried out for 27 spatial locations of Tx–Rx distances from 3.05 m to
3.31 m. Note that we can predict theWB-CIR only at the spatial locations starting from 3.05 m
because the RLS algorithm of orderM = 5 requires five previousWB-CIRs of locations from
3.00 to 3.04 m. For comparison, we predict WB-CIRs using the RLS algorithms that consider
only the previousM taps of WB-CIR from the current window (conventional method). Here,

Fig 4. Average NMSE for NLOS Scenarios in the Open Environment.

doi:10.1371/journal.pone.0164944.g004
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this benchmarkmethod does not consider the tap correlation across the windows because the
modeledAR process uses previousWB-CIRs only from the current window. We refer to the
proposed and benchmarkmethods as Methods 1 and 2, respectively. Fig 3 shows the average
NMSE Eavg of Methods 1 and 2 using RLS algorithms with S = {30, 90} iterations and predic-
tion ordersM = {2,4,. . .,20} for LOS scenarios. In general, the prediction errors improve when
larger prediction orders are applied for both methods. Using the RLS algorithm with the same
prediction order and iteration, Method 1 achieves smaller prediction errors compared with
Method 2. Note that Method 1 requires the computation of three RLS filter coefficients; hence,
computing each filter coefficient using RLS algorithms with lower S = 30 iterations produces a
total of 90 iterations for Method 1. Under similar computational complexity measured by the
total number of RLS iterations, Method 1 with S = 30 iterations still outperformsMethod 2
with S = 90 iterations. For prediction orderM= 10, Method 1 with approximately Eavg =
5×10−3 is improved by approximately 80% in terms of prediction error compared with Method
2 with approximately Eavg = 2.6×10−2. Another advantage of Method 1 is that it is approxi-
mately three times faster than Method 2 because the three filter coefficients can be computed
simultaneously with fewer S = 30 iterations.

Next, we present the average NMSE Eavg of Methods 1 and 2 using RLS algorithms with S =
{30, 90} iterations and prediction ordersM = {2,4,. . .,20} for NLOS scenarios in Fig 4. We see
that Eavg improves when larger prediction orders or higher RLS iterations are used for both
methods. Similar performance, as in LOS conditions, can be observed for NLOS scenarios

Fig 5. Channel Path Comparison for Measured and Predicted Channels in LOS Scenario at 3.11 m Tx–Rx

Separation Distance.

doi:10.1371/journal.pone.0164944.g005
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whereMethod 1 outperformsMethod 2 for the three considered prediction orders. Comparing
the two methods at similar computational complexity, Method 1 with S = 30 achieves an
average NMSE of approximately 2.0×10−3, whereasMethod 2 with S = 90 performs at approxi-
mately 5.4×10−3, for the prediction order ofM= 10. This gives an improvement of approxi-
mately 63% when adopting our proposedMethod 1.

The results of the predictionmethod are also evaluated by comparing the predicted and
measured channels in terms of the maximum excess delay, RMS delay spread and path gain of
the channel. Fig 5 shows that the predicted channel almost totally matches the measured chan-
nel for the first prediction horizon (one step ahead prediction) in terms of the normalized path
gain, number of paths and maximum excess delay. The RMS delay spread at different transmit-
ter receiver separation distances is also compared. The RMS delay spread for the predicted CIR
is almost the same as that of the measured channel at a separation distance of 3.1 m. The RMS
delay spread values for a 3.1 m (10 cm from the first snapshot of CIR) Tx–Rx separation dis-
tance are 2.2 ns and 2.1 ns for the predicted and measured channels, respectively. In the NLOS
scenario, the predicted channel especially differs from the actual measurement channel in the
maximum excess delay as depicted in Fig 6. This difference in maximum excess delay will not
affect the performance of the system since its value lower than the measured value.

To test the performance of the proposed predictionmethod, we used different datasets col-
lected from a dense multipath environment in an outdoor corridor as described in the

Fig 6. Channel Path Comparison for Measured and Predicted Channels in NLOS Scenario at 3.11 m Tx–Rx

Separation Distance.

doi:10.1371/journal.pone.0164944.g006
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measurement and environment section (S1 Text). Fig 7 shows the average NMSE of the pro-
posed predictionMethods 1 and 2 using RLS algorithms with 30 iterations and different pre-
diction orders for LOS scenarios in an outdoor corridor environment. Method 1 with S = 30
achieves an average NMSE of approximately 1.0×10−3, whereasMethod 2 with S = 90 accom-
plishes approximately 1.0×10−2 for a prediction order ofM = 10. This gives an improvement of
approximately 90% when adopting our proposedMethod 1.

Fig 7 also illustrates the performance of our proposedMethod 1 under a well-known Saleh-
Valenzuela (S-V) channel model [17,22,23]. For the prediction order M = 10 and iteration
S = 30, Method 1 achieves a lower average NMSE of approximately 0.002, whereas Method 2
performs at approximately 0.2. This gives an improvement of approximately 95% when adopt-
ing the proposedMethod 1.

In addition, the RMS delay spread is investigated in this work using the proposedWB-CIR
and comparing it with the measured one. It is used to estimate the maximum data rate for
transmission [24]. The maximum transmission rate is inversely proportional to the RMS delay
spread [25]. The cumulative distribution functions (CDF) of the RMS delay spreads for the
measured and proposed CIR are provided for two different datasets as shown in Figs 8 and 9.
For the studied open environment, Fig 8 shows that 90% of the RMS delay spread values for
the measured CIR and proposedWB-CIR are less than 2.1 and 2.2, respectively. The average
RMS delay spread values for the measured and proposed CIRs are 2.0 and 2.1, respectively. On
average, using the measured CIR gives a data rate of approximately 500 Mbps, whereas the pro-
posedmethod performs at approximately 476 Mbps. For the studied outdoor corridor environ-
ment, 80% of the RMS delay spread values are less than 1.9 ns for both the measured and
proposed CIRs, with average RMS values of 1.7 ns as shown in Fig 9. This implies that the

Fig 7. Average NMSE for LOS Scenarios in the Outdoor Corridor Environment.

doi:10.1371/journal.pone.0164944.g007
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average RMS delay spread for the proposedmethod is totally matched with the measured CIR.
The average data rate for both is 588 Mbps.

Limitations and Future Works

The main objective of the proposedmethod is to model and predict the channel impulse
response of the UWB channel. As a proof of concept, in this work, the size of each window is
set only to the inverse of the transmitted bandwidth (1/B) because of the static environment
measurement. In real applications—for example, when consideringmobility scenarios, the
optimal window size depends on the changes of the channel. The results also show that the
proposedmethod works well within stationary scenarios.

As a future work, an improved model considering the mobility scenario and dynamic win-
dow size will be applied for an ultra-wideband channel in millimeter-wave frequency bands
such as 28 GHz and 38 GHz that represent the candidate bands for the 5G wireless network
[26,27].

Conclusion

This work presented a predictionmethod for time-varyingUWBCIRs that exploits the correla-
tion between delay bins using windows. By considering the sparsity of UWB channels, we first
proposed a simplifiedWB-CIR to represent the high temporal resolutions of UWB channels.
The predictionmethod then tracked the evolution of WB-CIR taps in windowwk using three

Fig 8. CDF of the RMS Delay Spread for the Open Environment.

doi:10.1371/journal.pone.0164944.g008
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RLS coefficient filters computed from the observed channel taps of the leftwk−1, the right wk+1,
and the current wk windows. The coefficient filter with the lowest RLS error is used for predict-
ing the futureWB-CIR. Compared with a conventional predictionmethod at similar computa-
tional complexity, our predictionmethod achieved better prediction errors with improvements
of approximately 80% and 63% for LOS and NLOS scenarios, respectively.
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