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Abstract

Background

Oxidative stress is a major cause of cardiovascular disease. Superoxide dismutase-1

(SOD1) is an antioxidant that protects against oxidative stress. Deoxyribonucleic acid

(DNA) variations such as single nucleotide polymorphism (SNP) or haplotypes within the

SOD gene are reportedly associated with the development of cardiovascular disease. How-

ever, it remains to be determined whether SOD1 variability is associated with cardiovascu-

lar or all-cause mortality in the general population.

Methods and Results

This prospective cohort study included 2799 subjects who participated in a community-

based health study with a 10-year follow-up. We genotyped 639 SNPs and found the asso-

ciation of SNP rs1041740 and rs17880487 within a SOD1 gene with cardiovascular mortal-

ity. There were 193 deaths during the follow-up period including 57 cardiovascular deaths.

Multivariate Cox proportional hazard regression analysis revealed that the homozygous T-

allele of rs1041740 was associated with all-cause and cardiovascular deaths after adjusting

for confounding factors. The net reclassification index was significantly improved by adding

rs1041740 as a cardiovascular risk factor. On the other hand, cardiovascular death was not

observed in homozygous T-allele carriers of rs17880487. Haplotype analysis identified the

haplotype with T-allele of rs1041740 and that with T-allele of rs17880487 as increasing and

decreasing susceptibility for cardiovascular mortality, and it had complementary SNP

sequences.
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Conclusion

Variation in the SOD1 gene was associated with cardiovascular deaths in the general

population.

Introduction

Despite advances in medicine, cardiovascular disease remains a major public health problem
associated with highmortality [1,2]. The development of cardiovascular disease is associated
with multiple genetic and cardiovascular risk factors. Single nucleotide polymorphism (SNP) is
the most frequent type of human population deoxyribonucleic acid (DNA) variation and hap-
lotype is defined as a combination of SNP alleles along a chromosome [3,4]. Whether DNA
variation can be used to identify genes that increase the risk of cardiovascular disease is cur-
rently under discussion [5].

Oxidative stress is the excessive accumulation of reactive oxygen species (ROS) relative to
antioxidant activity and is a major cause of cardiovascular disease [6,7]. Superoxide dismutase-
1 (SOD1) is an antioxidant protein that plays a pivotal role in reducing ROS by catalysing
superoxide into oxygen and hydrogen peroxide [8]. Previous reports demonstrated that some
SOD1 SNPs are associated with the development of cardiovascular disease [9,10,11].

The present study examined whether SOD1DNA variation can predict all-cause and cardio-
vascularmortality in the general population.

Methods

Ethics statement and study population

The institutional ethics committee of Yamagata University School of Medicine approved the
study, and all participants provided written informed consent. The procedures were performed
in accordance with the Helsinki Declaration.

Our analysis was part of a community-based health study of inhabitants in the town of
Takahata in northern Japan (total population 26,026). Community members, aged>40 years
were invited to participate in this study. In 2004 and 2005, 2,968 subjects (1,343 males and
1,625 females) were enrolled in the study but 169 subjects were excluded due to their incom-
plete data and study withdrawal.

Genotyping

Genotyping was performedwith the Invader assay (ThirdWave Technologies, Madison,WI,
USA) and Taq Man Allelic discrimination assay. Reagents were purchased from Applied Bio-
systems (Foster City, CA, USA). Taq Man probes that can distinguish SNPs after polymerase
chain reaction (PCR) were designed and synthesized by Applied Biosystems. One allelic probe
was labelled with the fluorescent FAM dye, and the other with the fluorescent VIC dye. PCR
was performedwith the Taq Man Universal Master Mix with primers at concentrations of 225
nM and Taq Man MGB probes at concentrations of 50 nM. Reactions were performed in 382
well plates in a total volume of 3 μL using 3.0 ng genomic DNA. The plates were then placed in
a GeneAmp PCR system 9700 (Applied Biosystems) and heated at 95°C for 10 min, followed
by 40 cycles at 92°C for 15 sec and at 60°C for 1 min, with a final incubation at 25°C. The fluo-
rescent intensities of each well in the plates were then read by the Prism 7900HT instrument
(Applied Biosystems). Fluorescent data files from each plate were analyzed with the SDS 2.0
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allele calling software (Applied Biosystems). Several data points were eliminated to preserve
the reliability of the assay system (missing data due to poor signal intensity< 1.1%) [12].

Haplotype statistics

Haplotype was identified according to the expectationmaximization (EM) algorithm. Haplo-
types with extremely low frequencywere excluded from haplo.score analysis using R software.
To examine the association of haplotype with cardiovascularmortality, haplo.scores were cal-
culated. All haplotype analyses were performedwith the haplo.stats plug in.

Definition of cardiovascular risks

Hypertension was defined as systolic blood pressure�140 mmHg, diastolic blood pressure
�90 mmHg, or antihypertensive medication use. Diabetes mellitus (DM) was defined as hav-
ing fasting blood glucose�126 mg/dL, glycosylated hemoglobin A1c�6.5% (National Glyco
hemoglobin Standardization Program), or anti-diabeticmedication use. Hyperlipidemia was
defined as total cholesterol�220 mg/dL, triglyceride�150 mg/dL, or anti-hyperlipidemic
medicine use. Family histories of cardiovascular disease and previous cardiovascular disease
were determined by self-reported questionnaires. Framingham risk score was calculated
according to previous report [13].

Biochemical markers

Blood samples were obtained to measure brain natriuretic peptide (BNP). These samples were
transferred to chilled tubes containing 4.5 mg ethylene diamine tetra acetic acid disodium salt
and aprotinin (500 U/mL), and centrifuged at 1,000 g for 15 minutes at 4°C. The clarified
plasma samples were frozen, stored at -70°C, and thawed just before assay. BNP concentrations
were measured using a commercially available radioimmunoassay specific for human BNP
(Shiono RIA BNP assay kit, Shionogi Co. Ltd., Tokyo, Japan) [14].

Estimated glomerular filtration rate (eGFR) was calculated using the modification of diet in
renal disease equation with the Japanese coefficient [15].

Total cholesterol, triglyceride, high density lipoprotein cholesterol, fasting blood glucose,
and glycosylated hemoglobin A1c were also measured at the same time.

Endpoint and follow-up

All subjects were prospectively followed for a median period of 3,397 days (interquartile range,
3,097–3,443 days). The endpoint was all-cause death, which was further divided into cardiovas-
cular and non-cardiovascular death. Cardiovascular death was defined as death due to coro-
nary artery disease, heart failure, arrhythmia, stroke, or aortic artery disease. The cause of
death was determined by reviewing death certificates through the end of 2014. The death code
(International Classification of Diseases, 10th Revision) and place of death were reviewed.

Statistical analysis

Continuous variable normality was checked with a Kolmogorov-Smirnov-Lillefors test.
Because BNP was not normally distributed, we used loge BNP for all analyses. All values are
expressed as the mean ± standard deviation. Continuous and categorical variables were com-
pared with t-tests and chi-square tests, respectively. Differences among SOD1genetic variations
were assessed with analysis of variance (ANOVA) with Bonferroni post hoc tests. A Cox pro-
portional hazard analysis was performed to determine independent predictors for all-cause
deaths, cardiovascular deaths, and non-cardiovascular deaths, and cardiovascular risk factors
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were entered into the multivariate analysis. We calculated the net reclassification index (NRI)
and integrated discrimination index (IDI) to measure the quality of improvement for the cor-
rect reclassification according to the addition of SNPs within SOD1 to the multivariate model.
Survival curveswere constructedwith the Kaplan-Meier method and compared using log-rank
tests. P< 0.05 was considered statistically significant. All statistical analyses were performed
with standard statistical program packages (JMP version 11; SAS Institute Inc., Cary, NC, USA
and R 3.0.2 with additional packages including Rcmdr, Epi, pROC, and PredictABEL).

Results

Baseline characteristics and clinical characteristics related SNP

rs1041740

The Yamagata study protocol and the genotyped SNPs within SOD1 are shown in Fig 1. During
the follow-up period, there were 193 all-cause deaths including 57 cardiovascular and 136 non-
cardiovascular deaths. We found the association of SOD1 SNP with cardiovascularmortality
using in silico analysis from the 639 SNPs examined in this study. The homozygous T-allele
(TT), heterozygous (TC), and homozygous C-allele (CC) carriers of rs1041740 were identified

Fig 1. The study protocol (A) and polymorphism in SOD1 gene examined in the study (B). Chr, chromosome; SNP,

single nucleotide polymorphism; SOD, superoxide dismutase; UTR, untranslated region.

doi:10.1371/journal.pone.0164732.g001
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in 307 (11%), 1,259 (45%), and 1,233 (44%) subjects, respectively. Also, TT, TC, and CC carri-
ers of rs17880487 were identified in 29 (1%), 465 (17%), and 2,305 (82%), respectively. As
shown in Table 1, rs1041740 TT carriers had a higher BNP level compared to other groups.
Moreover, rs1041740 TT carriers had a greater family history of cardiovascular disease com-
pared to the rs1041740 CC carriers. There were no significant differences in age, gender, or
prevalence rates of previous cardiovascular disease, smoking, hypertension, DM, or hyperlipid-
emia among rs1041740 genotypes. The rs1041740 TT carriers did not overlap the rs17880487
TT carriers.

Clinical characteristics related to rs17880487 were shown in S1 Text. Interestingly, the
rs17880487 TT carriers had a lower prevalence of family history of cardiovascular disease com-
pared to rs17880487 TC and CC carriers. Cardiovascular death was not observed in

Table 1. Baseline and clinical characteristics among rs1041740 genotypes.

Variables All subject

n = 2799

Homozygous C-allele carriers

n = 1233

Heterozygous carriers

n = 1259

Homozygous T-allele

carriers n = 307

Age, years 63 ± 10 63 ± 10 63 ± 10 64 ± 10

Male/female, n 1270/1529 556/677 562/697 152/155

Family history of cardiovascular

disease, n (%)

476 (17%) 178 (14%) 241 (19%) 57 (19%)#

Previous CVD, n (%) 383 (14%) 149 (12%) 187 (15%) 47 (15%)

Previous cancer, n (%) 55 (2.0%) 23 (1.8%) 27 (2.1%) 5 (1.6%)

Smoking, n (%) 906 (32%) 398 (32%) 400 (32%) 108 (35%)

Hypertension, n (%) 1038 (37%) 446 (36%) 477 (38%) 115 (37%)

Diabetes mellitus, n (%) 191 (7%) 92 (7.5%) 82 (6.5%) 17 (5.5%)

Hyperlipidemia, n (%) 1044 (37%) 479 (39) 454 (36) 111 (36)

Systolic BP, mmHg 134 ± 16 134 ± 16 134 ± 16 135 ± 16

Diastolic BP, mmHg 79 ± 10 79 ± 10 79 ± 10 79 ± 10

HbA1c, % 5.6 ± 0.7 5.7 ± 0.7 5.6 ± 0.7 5.6 ± 0.5

FBG, mg/dL 94 ± 17 95 ± 18 93 ± 16 94 ± 16

TC, mg/dL 201 ± 31 201 ± 32 200 ± 31 200 ± 32

HDLc, mg/dL 59 ± 14 59 ± 14 59 ± 14 60 ± 15

TG, mg/dL 106 ± 64 107 ± 62 104 ± 65 107 ± 66

eGFR, mL/min/1.73 m2 81 ± 16 82 ± 16 80 ± 16 83 ± 18†

Loge BNP, pg/mL 3.02 ± 0.83 3.00 ± 0.83 3.00 ± 0.83 3.14 ± 0.88*†

Framingham risk score 14 ± 4 14 ± 4 14 ± 4 14 ± 4

SNP SOD gene

rs2070424, AA/AG/GG 644/1433/722 58/454/721 279/979/1 307/0/0

rs4998557, AA/AG/GG 720/1433/646 720/454/59 0/979/280 0/0/307

rs1041740, CC/CT/TT 1233/1259/307 1233/0/0 0/1259/0 0/0/307

rs4817420, CC/CT/TT 1233/1259/307 1233/0/0 0/1259/0 0/0/307

rs17880487, CC/CT/TT 2305/465/29 911/293/29 1087/172/0 307/0/0

Data are expressed as mean ± standard deviation or number (%)

BNP, brain natriuretic peptide; BP, blood pressure; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; FBG, fasting blood glucose;

HbA1c, glycosylated hemoglobin A1c; HDLc, high density lipoprotein cholesterol; SNP, single nucleotide polymorphism; SOD, superoxide dismutase; TC,

total cholesterol; TG, triglyceride.

*p<0.05 vs. homozygous C-allele carriers
†p<0.05 vs. heterozygous carriers by analysis of variance (ANOVA) with Bonferroni test.
#p < 0.05 by chi-square test.

doi:10.1371/journal.pone.0164732.t001
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rs17880487 TT carriers. The impact of rs1041740 TT carriers and rs17880487 TT carriers on
the cardiovascular disease was shown in S1 Fig.

All-cause and cardiovascular mortality and SNP rs1041740

As shown in Fig 2A, univariate Cox proportional hazard regression analysis demonstrated that
the homozygous T-allele of rs1041740 was related to all-cause deaths and cardiovascular deaths
in the general population. On the other hand, it was not related to non-cardiovascular deaths.
To determine the risk factors associated with all-cause deaths, cardiovascular deaths, and non-
cardiovascular deaths, cardiovascular risk factors were entered into the multivariate Cox pro-
portional hazard model. It demonstrated that the homozygous T-allele of rs1041740 was an
independent predictor of future all-cause and cardiovascularmortality (all-cause deaths,
adjusted hazard ratio, 1.53; 95% confidence interval, 1.01–2.30; P = 0.0445 and cardiovascular
deaths, adjusted hazard ratio, 2.07; 95% confidence interval, 1.10–3.91; P = 0.0244; Fig 2B).

Kaplan-Meier analysis demonstrated that rs1041740 TT carriers had a higher rate of all-
cause and cardiovascularmortality compared to rs1041740 TC and CC carriers (Fig 3).

Fig 2. Univariate (A) and multivariate (B) Cox proportional hazard regression analyses for mortality. *after adjustment for age, gender, family

history of cardiovascular disease, previous cardiovascular disease, smoking, hypertension, diabetes mellitus, hyperlipidemia, total

cholesterol, high density lipoprotein cholesterol, systolic blood pressure, BNP, and eGFR. #after adjustment for age, gender, BNP, eGFR,

and Framingham risk score. BNP, brain natriuretic peptide; CI, confidence interval; eGFR, estimated glomerular filtration rate.

doi:10.1371/journal.pone.0164732.g002
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Subgroup analysis in subjects without previous cardiovascular disease

Next, we performed subgroup analysis in subjects without previous cardiovascular disease to
examine whether homozygous T-allele of rs1041740 could also predict cardiovascularmortal-
ity in these populations. As shown in Fig 4A, univariate Cox proportional hazard regression
analysis demonstrated that the homozygous T-allele of rs1041740 was related to cardiovascular
deaths in the general population. To determine the risk factors associated with cardiovascular
deaths, age, gender, and Framingham risk score were entered into the multivariate Cox propor-
tional hazard model. It demonstrated that the homozygous T-allele of rs1041740 was an inde-
pendent predictor of cardiovascularmortality (adjusted hazard ratio, 2.13; 95% confidence
interval, 1.02–4.45; P = 0.0440; Fig 4A).

Kaplan-Meier analysis demonstrated that rs1041740 TT carriers had a higher rate of cardio-
vascularmortality compared to rs1041740 TC and CC carriers (Fig 4B).

Improvement of reclassification by adding SOD1 SNP rs1041740 to

predict all-cause and cardiovascular mortality

To examine whethermodel fit and discrimination improve when the SOD1 SNP rs1041740
was added to the known predictors of age, gender, family history of cardiovascular disease, pre-
vious cardiovascular disease, smoking, DM, eGFR, BNP, and Framingham risk score, we evalu-
ated improvements in the NRI and IDI. As shown in Table 2, NRI and IDI to predict
cardiovascularmortality was significantly improved by adding the SOD1 SNP rs1041740
(Table 2).

SOD1 haplotype and cardiovascular mortality

As shown in Table 3, nine haplotypes were identified in the study population. The sequence in
haplotype 2 was GATTC, including the minor T-allele of rs1041740. The sequence in

Fig 3. Kaplan-Meier analysis of all-cause deaths (A) and cardiovascular deaths (B) among rs1041740 genotype.

doi:10.1371/journal.pone.0164732.g003
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haplotype 4 was AGCCT, including the minor T-allele of rs17880487, indicating that these
haplotypes had complementary SNP sequences. To examine whether SOD1 haplotype is
related to cardiovascularmortality, the haplo.score was calculated, and the results suggested
that haplotypes 2 and 4 confer susceptibility and protection for cardiovascularmortality,
respectively (Haplotype 2 haplo.score, 1.9912, P = 0.0465; haplotype 4 haplo.score, -2.13818,
P = 0.0325).

Fig 4. (A) Multivariate Cox proportional hazard regression analyses for cardiovascular mortality in subjects without previous cardiovascular

disease. After adjustment for age, gender, and Framingham risk score. CI, confidence interval. (B) Kaplan-Meier analysis of cardiovascular

deaths among rs1041740 genotype in subjects without previous cardiovascular disease.

doi:10.1371/journal.pone.0164732.g004

Table 2. Statistics for model fit and improvement with the addition of rs1041740 on the prediction of

cardiovascular mortality.

NRI (95%CI, P value) IDI (95%CI, P value)

Baseline model Reference Reference

+rs1041740 0.1084 (0.0101–0.2068, P = 0.0308) 0.0151 (0.0001–0.0301, P = 0.0492)

Baseline model includes age, gender, family history of cardiovascular disease, previous cardiovascular

disease, smoking, diabetes mellitus, estimated glomerular filtration rate, brain natriuretic peptide, and

Framingham risk score. 95%CI, 95% confidence interval; NRI, net reclassification index; IDI, integrated

discrimination index.

doi:10.1371/journal.pone.0164732.t002
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Discussion

Main findings

The results of this study revealed that the rs1041740 TT carriers in the SOD1 gene had a higher
level of BNP and a more frequent family history of cardiovascular disease compared to TC and
CC carriers. Subjects with the rs1041740 TT genotype were at higher risk of all-cause and car-
diovascularmortality; these associations were significant even after adjustments in a multivari-
ate model with other known risk factors. Adding the rs1041740 TT genotype with known risk
factors to the model enhanced the predictive capacity of cardiovascularmortality as NRI and
IDI were significantly improved. We also identified protective and susceptible SOD1 haplo-
types for cardiovascularmortality.

Family history of cardiovascular mortality and DNA variation of SOD1

A family history of cardiovascular disease is considered to be a risk factor for cardiovascular
disease since it was reported to be closely associated with the development of cardiovascular
disease [16,17]. Since inheritedDNA sequence variants were suggested to play a causal role in
cardiovascular disease susceptibility, SNP has been noted to explain the inherited cardiovascu-
lar disease [18]. In the present study, we showed that rs1041740 TT carriers had a higher preva-
lence of family history compared with rs1041740 CC carriers. On the other hand, rs17880487
TT carriers had no family history of cardiovascular disease. Although family history examined
by self-reported questionnaires often includes recall bias, these results raised the possibility
that DNA variation of SOD1 contribute to cardiovascular disease heritability.

BNP and rs1041740

BNP is a diagnosticmarker for heart failure, that is constitutively synthesized and secreted
from cardiomyocytes [19]. BNP levels are reportedly affected by several factors such as aging,
gender, bodymass index, and kidney function [20,21,22,23]. In the present study, the homozy-
gous T-allele of rs1041740 carriers had a higher level of BNP compared to other groups despite
similar levels of these factors. BNP expression is also reported to be increased in the several
conditions such as left ventricularmechanical stretch, inflammation, and oxidative stress [24],
suggesting that DNA variation of SOD1 modulated BNP expression in the general population.
Previous studies have reported that BNP is a useful indicator of all-cause and cardiovascular
deaths in the general population [25]. The results describedhere supported our hypothesis that
genetic variation of SOD1 is a risk for cardiovascularmortality.

Table 3. Haplotype sequence, frequency, and hap score in SOD1 haplotypes.

Haplotype rs4998557 rs2070424 rs1041740 rs4817420 rs17880487 Frequency Hap score P value

1 A G C C C 0.41956 -0.35348 0.7237

2 G A T T C 0.33439 1.9912 0.0465

3 G A C C C 0.15132 -0.33304 0.7391

4 A G C C T 0.09330 -2.13818 0.0325

5 G G C C C 0.00088

6 A A C C C 0.00023

7 G G T T C 0.00020 -0.31975 0.7492

8 A A C C T 0.00013

9 G G C C T 0

SOD, superoxide dismutase.

doi:10.1371/journal.pone.0164732.t003
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DNA variation of SOD1 and mortality

No prospective study has examined the impact of SOD1DNA variation on all-cause and car-
diovascularmortality in the general population. Previous reports concluded that the minor T-
allele of rs1041740 is a risk for future cardiovascularmortality in patients with DM [26,27].
Similarly, we showed that the allele variation in SOD1 is associated with all-cause and cardio-
vascularmortality in the general population. Although the SNPs examined in the present study
were located in the intron or 3’-untranslated region, haplotype analysis showed that there were
susceptible and protective haplotypes for cardiovascularmortality and they had complemen-
tary SNP sequences. Previous reports raised the possibility that DNA variation in these regions
regulates gene expression by influencing transcription and translation processes [28,29].
Experimental studies have demonstrated that SOD1 works as an antioxidant and protects car-
diomyocytes from oxidative stress in a myocardial infarctionmodel [30,31]. Interestingly, SNP
within SOD1was the independent predictor of cardiovascular deaths after adjustment for car-
diovascular risk factors. The genetic variation of SOD1may deteriorate cardiovascularmortal-
ity through reduced SOD1 expression and activity with resultant increase in oxidative stress.
Considering the role of SOD1, it is possible that variation in the gene encoding this protein is
related to cardiovascular disease hereditability.

Limitation

The strengths of this study are that it was conducted with a large number of participants and
had a long follow-up period.However, there are some limitations. First, this study collected
baseline information at a single time point. Subsequent medical interventions may have
affected serumBNP levels. Second, non-fatal diseases were not assessed, which could result in
an underestimation of the association between SNPs within SOD1 and clinical outcomes.
Third, a missensemutation of SOD1 is associated with the development of amyotrophic lateral
sclerosis [32]. Taking the role of SNPs used in the present study into account, it is unlikely that
these SNPs induce amyotrophic lateral sclerosis. Finally, protein expression and activity of
SOD1 and oxidative stress markers were not measured.

Conclusions

SOD1 variation was found to be associated with cardiovascularmortality in the general popula-
tion. This knowledgemay improve re-classification beyond known risk factors and underlies
the importance of cardiovascular disease hereditability.

Supporting Information

S1 Fig. The association betweenDNA variation and family history of cardiac disease (A) and
cardiovascular deaths (B). TT, homozygous T-allele carriers; TC, heterozygous carriers; CC,
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S1 Text. Clinical characteristics related SNP rs17880487.
(DOCX)
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