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Abstract

We use the generalized singular value decomposition (GSVD), formulated as a compara-

tive spectral decomposition, to model patient-matched grades III and II, i.e., lower-grade

astrocytoma (LGA) brain tumor and normal DNA copy-number profiles. A genome-wide

tumor-exclusive pattern of DNA copy-number alterations (CNAs) is revealed, encom-

passed in that previously uncovered in glioblastoma (GBM), i.e., grade IV astrocytoma,

where GBM-specific CNAs encode for enhanced opportunities for transformation and pro-

liferation via growth and developmental signaling pathways in GBM relative to LGA. The

GSVD separates the LGA pattern from other sources of biological and experimental varia-

tion, common to both, or exclusive to one of the tumor and normal datasets. We find, first,

and computationally validate, that the LGA pattern is correlated with a patient’s survival and

response to treatment. Second, the GBM pattern identifies among the LGA patients a sub-

type, statistically indistinguishable from that among the GBM patients, where the CNA

genotype is correlated with an approximately one-year survival phenotype. Third, cross-

platform classification of the Affymetrix-measured LGA and GBM profiles by using the Agi-

lent-derived GBM pattern shows that the GBM pattern is a platform-independent predictor

of astrocytoma outcome. Statistically, the pattern is a better predictor (corresponding to

greater median survival time difference, proportional hazard ratio, and concordance index)

than the patient’s age and the tumor’s grade, which are the best indicators of astrocytoma

currently in clinical use, and laboratory tests. The pattern is also statistically independent of

these indicators, and, combined with either one, is an even better predictor of astrocytoma

outcome. Recurring DNA CNAs have been observed in astrocytoma tumors’ genomes for

decades, however, copy-number subtypes that are predictive of patients’ outcomes were
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not identified before. This is despite the growing number of datasets recording different

aspects of the disease, and due to an existing fundamental need for mathematical frame-

works that can simultaneously find similarities and dissimilarities across the datasets. This

illustrates the ability of comparative spectral decompositions to find what other methods

miss.

Introduction

RecurringDNA copy-number alterations (CNAs) have been recognized as a hallmark of can-
cer for>100 years [1–3], yet what these alterations imply about a solid tumor’s development
and progression, and a patient’s diagnosis, prognosis, and treatment remains poorly under-
stood. This is despite the growing number of high-dimensional datasets, recording different
aspects of a single disease, such as DNA copy-number profiles of two or more cell types from
the same set of patients, possibly measuredmore than once by different platforms. This is due
to an existing fundamental need for mathematical frameworks that can create a single coherent
model from, i.e., simultaneously find similarities and dissimilarities across such datasets,
arranged in two or more tables, of two or possibly more dimensions, i.e., matrices or tensors, of
matched columns but independent rows.

A recent comparison of DNA copy-number profiles of primary tumor and normal cells
from the same set of ovarian serous cystadenocarcinoma (OV) patients, measured by the same
set of platforms, uncovered three tumor-exclusive platform-consistent chromosome arm-wide
patterns of DNA CNAs that are correlated with a patient’s survival and response to platinum
therapy [4]. The datasets had been publicly available in the Cancer Genome Atlas (TCGA)
since 2011, and analyzed by using several methods [5]. The patterns, however, remained
unknown until the datasets were modeled in 2015 by using a novel comparative spectral
decomposition, the tensor generalized singular value decomposition (GSVD). For>30 years
prior, statistically the best indicator of OV survival was the tumor’s stage at diagnosis [6].
About 25% of primary OV tumors are resistant to platinum therapy, the first-line treatment,
yet no diagnostic existed to distinguish resistant from sensitive tumors before the treatment
[7].

A previous comparison of copy-number profiles of primary tumor and normal cells from
the same set of glioblastoma (GBM) brain cancer patients, uncovered a tumor-exclusive
genome-wide pattern of CNAs that is correlated with a patient’s survival and response to che-
motherapy [8]. The datasets had been publicly available in TCGA since 2008 [9]. The pattern,
however, remained unknown until the datasets were modeled in 2012 by using the GSVD [10–
16], formulated as a comparative spectral decomposition [17] (see also [18–30]). For>50 years
prior, statistically the best indicator of GBM outcome was the patient’s age at diagnosis [31–33]
(see also [34, 35]). Copy-number subtypes of GBM, i.e., grade IV astrocytoma, which are pre-
dictive of survival and response to treatment were not conclusively identified [36, 37].

Results

GSVD Comparison of Patient-Matched LGA Brain Tumor and Normal

DNA Copy-Number Profiles

To identify CNAs that might predict grades III and II, i.e., lower-grade astrocytoma (LGA)
patients’ outcomes, we, therefore, used the GSVD to model TCGA patient-matched LGA

DNA Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD

PLOS ONE | DOI:10.1371/journal.pone.0164546 October 31, 2016 2 / 22

(NCATS) UL1 Grant TR-001067. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing Interests: OA is a co-founder of and an

equity holder in Eigengene, Inc. This does not alter

our adherence to PLOS ONE policies on sharing

data and materials.



tumor and normal DNA copy-number profiles [38]. We selected patient-matched Affymetrix-
measured DNA copy-number profiles of primary LGA tumor and normal tissue samples from
a discovery set of 59 patients (Methods and S1 Dataset). The structure of these tumor and nor-
mal datasets is that of two full column-rankmatricesD1 2 R

M1�N and D2 2 R
M2�N of N = 59

matched columns (i.e., patients), but independent, i.e., not necessarilymatched or equal in
numbersM1,M2 = 933,827 rows (i.e., tumor and normal genomic regions, or Affymetrix
probes), whereM1,M2�N (Fig 1).

Fig 1. GSVD of the patient-matched LGA tumor and normal DNA copy-number profiles. The structure of the LGA discovery, tumor and normal

datasets Di is that of two matrices of 59 matched columns (i.e., patients), and 933,827, not necessarily matched or equal in numbers, rows (i.e., tumor

and normal genomic regions, or Affymetrix probes). The GSVD of Eq (1) simultaneously separates the datasets into a single set of normalized, not

necessarily orthogonal probelets VT (i.e., patterns of variation across the patients), which are identical for both datasets, but correspond to different sets

of generalized singular values Σi (i.e., weights, or superposition coefficients) and orthonormal arraylets Ui (i.e., patterns of variation across the genome)

in each dataset. The GSVD is depicted in a raster display, with relative DNA copy-number gain (red), no change (black), and loss (green), which explicitly

shows only the first through the 10th, and the 50th through the 59th probelets and corresponding tumor and normal arraylets, and tumor and normal

generalized singular values. The angular distances of Eq (4) define the significance of each probelet in the tumor dataset relative to its significance in the

normal dataset in terms of the ratio of the corresponding tumor to normal generalized singular values [17]. The inset bar chart shows that the angular

distances largest in magnitude correspond to the first and second probelets, and are > 2π/15, whereas the magnitude of the angular distance that

corresponds to the 53rd probelet is < π/16.

doi:10.1371/journal.pone.0164546.g001

DNA Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD

PLOS ONE | DOI:10.1371/journal.pone.0164546 October 31, 2016 3 / 22



The GSVD simultaneously separates the two matrices, or tumor- and normal-specific data-
sets, into paired weighted sums of outer products, of each normalized, not necessarily orthogo-
nal right basis vector, or “probelet” vTn (i.e., a pattern of variation across the patients), which is
identical for both datasets, combined with one of the two corresponding orthonormal left basis
vectors, or “tumor arraylet” u1,n and “normal arraylet” u2,n (i.e., the tumor- and normal-specific
patterns of variation across the genome),

Di ¼ UiSiV
T ¼

XN

n¼1

si;nui;n 
 vTn ; i ¼ 1; 2: ð1Þ

The significance of a probelet vTn in either the tumor datasetD1 or the normal datasetD2, in
terms of the “generalized fraction” of the overall information that it captures in the dataset, is
proportional to the corresponding nonnegative generalized singular value σ1,n or σ2,n, respec-
tively,

pi;n ¼ s2

i;n=
XN

n¼1

s2

i;n; i ¼ 1; 2: ð2Þ

The “generalized normalized Shannon entropy” is defined to measure the complexity of each
dataset in terms of the distribution of the overall information in the dataset among the probe-
lets,

0 � di ¼ � ð logNÞ
� 1
XN

n¼1

pi;n logpi;n � 1; i ¼ 1; 2: ð3Þ

An entropy of zero corresponds to an ordered and redundant dataset, in which all the informa-
tion is captured by a single probelet. An entropy of one corresponds to a disordered and ran-
dom dataset, in which all probelets are of equal significance.

Following the relation of the GSVD to the cosine-sine (CS) decomposition [14], the signifi-
cance of a probelet vTn in the tumor datasetD1 relative to its significance in the normal dataset
D2 is defined by the “angular distance” θn [17],

� p=4 � yn ¼ arctan ðs1;n=s2;nÞ � p=4 � p=4: ð4Þ

Probelets for which θn * ±π/4 are exclusive to either the tumor or the normal dataset, respec-
tively, whereas probelets for which |θn|*0 are common to both. The probelets are arranged in
decreasing order of their angular distances, i.e., their significance in the tumor relative to the
normal dataset. The GSVD is unique, except in degenerate subspaces, defined by subsets of
equal pairs of generalized singular values σ1,n and σ2,n, and up to phase factors of ±1 of each
probelet vTn and the corresponding tumor and normal arraylets u1,n and u2,n.

We find that the two most tumor-exclusive patterns of variation across the patients, i.e., the
first and second probelets, with angular distances θ1, θ2> 2π/15, are also the first and third
most significant probelets in the tumor dataset, with>8% and 5% of the information in this
dataset, respectively (Fig A in S1 Appendix). The 53rd probelet, which with *10% of the infor-
mation is the most significant probelet in the normal dataset, is approximately common to
both datasets with |θ53|< π/16.

The GSVD, therefore, creates a single coherent model of the two datasets by simultaneously
identifying unique probelets that are significant in, and common to the two datasets, as well as
those that are significant in, and exclusive to either one of the datasets. We interpret the model
accordingly, in terms of the biological and experimental phenomena that are common to the
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LGA tumor and normal profiles, as well as those that are exclusive to the LGA tumor or the
normal profiles.

The GSVD Reveals a Genome-Wide LGA Tumor-Exclusive Pattern of CNAs Encom-
passed in the GBM Pattern. In a previous GSVD comparison of patient-matched Agilent-
measured DNA copy-number profiles of primary GBM tumor and normal samples, we found
that the secondmost GBM tumor-exclusive tumor arraylet describes a genome-wide pattern of
co-occurringCNAs that is correlated with a GBM patient’s outcome [8]. Now, we find that the
second LGA tumor arraylet describes a genome-wide pattern of co-occurringCNAs across the
Affymetrix probes, which is similar to the GBM pattern (Figs 2 and 3, and Fig B in S1 Appen-
dix). To compare the LGA to the GBM pattern, we assigned to the LGA pattern CNAs in the
chromosomes and chromosome arms as well as the genomic segments that were identified in
the GBM pattern (S2 Dataset).We find that the LGA pattern is encompassed in the GBM pat-
tern. Chromosomes, chromosome arms, and segments that are amplified or deleted in the
LGA pattern are also amplified or deleted in the GBM pattern, respectively, and at a greater
magnitude; some of those that show no copy-number change in the LGA pattern are amplified
or deleted in the GBM pattern.

Dominant in the LGA pattern, but at a lesser magnitude than in the GBM pattern, are the
known, GBM-associated gain of chromosome 7 and loss of chromosome 10 [36, 37]. Also
dominant in the LGA pattern, also at a lesser magnitude than in the GBM pattern, are GBM-
associated focal CNAs [8] (see also [9, 39]). Among these, we find amplifications and deletions
that contribute to decreased activity of the tumor suppressor protein p53. These include gains
of segments containing the p53-inactivating protein-encodingMDM4 (1q32.1) and the
p53-degrading protein-encodingMDM2 (12q15), and losses of segments containing CDKN2A
and CDKN2B (9p21.3), and PTEN (10q23.31). The tumor suppressor protein encoded by
PTEN negatively regulates the Mdm2 protein via the Akt pathway. Of the three known tran-
script variants of CDKN2A, one encodes p14ARF, which is a p53-stabilizing,Mdm2-sequester-
ing protein. The other two variants encode isoforms of the tumor suppressor protein p16INK4A.
CDKN2B encodes for the transforming growth factor-β (TGF-β) -induced growth inhibitor
p15INK4B [40]. Together with the retinoblastoma (Rb) protein tumor suppressor, and in parallel
to p53 and p14ARF, p16INK4A and p15INK4B act at a checkpoint for human normal to tumor cell
transformation, promoting cell cycle arrest, apoptosis, and senescence in response to rat sar-
coma virus (Ras) -mediated hyperactive growth factor signaling [41–44]. Amplifications that
are involved in increased growth factor signaling among the GBM-associated LGA-shared
CNAs include gains of segments containing the epidermal growth factor receptor EGFR
(7p11.2), the hepatocyte growth factor receptorMET (7q31.2), and the fibroblast growth factor
receptor (FGFR) substrate FRS2 (12q15) [45] (Fig C in S1 Appendix).

Additional LGA- and GBM-shared CNAs contribute to decreased activity of the tumor sup-
pressor protein Ptch1, and increased downstream conversion of the oncogenes Gli1–3 into
transcriptional activators by the Hedgehog (Hh) signaling pathway. These include gains of seg-
ments containing the Hh ligand-encoding SHH (7q36.3) and the Hh signal-transducing pro-
tein-encoding SMO (7q32.1), and a loss of a segment containing the Hh negative regulator
protein-encoding SUFU (10q24.32) [46]. Note that reduced Ptch1 activity is also shared by the
brain cancer medulloblastoma, where it was shown to contribute to the development of the
tumor [47, 48] (Fig D in S1 Appendix).

The GBM pattern consists of additional CNAs that are missing from the LGA pattern,
including the GBM-associated loss of the short arm of chromosome 9 (9p), and the long arm
of chromosome 22 (22q). Among the GBM-specificCNAs we find amplifications that contrib-
ute to decreasedRb activity. These include gains of segments containing the viral protein-bind-
ing Rb region-interacting protein-encodingKDM5A (12p13.33) [49], the Rb-phosphorylating
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protein-encodingCDK4 (12q14.1), and cyclin E1 CCNE1 (19q12), which repression by Rb is
necessary to prevent replication of senescent cells [50, 51]. Additional GBM-specific gains are
of segments containing the oncogenesAKT3 (1q44) [52] and Harvey Ras-encodingHRAS
(11p15.5) [53]. We find, therefore, that the GBM-specific amplifications, of AKT3,HRAS, and
genes involved in decreasedRb activity, together with the LGA-shared deletions of CDKN2A
and CDKN2B, and CNAs involved in decreased activity of p53, enhance the opportunity for

Fig 2. Significant probelets and corresponding tumor and normal arraylets revealed by the GSVD of the LGA

discovery datasets. (a) Plot of the second most LGA tumor-exclusive tumor arraylet describes a genome-wide pattern of

co-occurring CNAs across 933,827 Affymetrix probes. The probes are ordered, and their copy numbers are colored,

according to each probe’s chromosomal location. This LGA pattern is encompassed in a GBM pattern, which was previously

uncovered by the GSVD [8]. Segments (black lines) that were identified in the GBM pattern, and are amplified or deleted in

the LGA pattern, are also amplified or deleted in the GBM pattern, respectively, and at a greater magnitude (Fig 3). The

GBM-associated LGA-shared focal CNAs (black) include, e.g., a gain of a segment on chromosome 1 containing MDM4. (b)

Plot of the second LGA probelet describes the variation of the weight, or superposition coefficient of the LGA pattern in the

tumor profiles of the 59 patients. The second probelet classifies the patients into two groups of low (red) and high (blue)

weights, which are of statistically significantly different prognoses (Fig 4). (c) Raster display of the tumor dataset shows the

correspondence between the tumor profiles and the second LGA probelet and tumor arraylet. (d) Plot of the 53rd LGA normal

arraylet, which is the most significant in the normal dataset, describes a deletion of the X chromosome. (e) Plot of the 53rd

LGA probelet, which is approximately common to the tumor and normal datasets, describes a classification of the patients by

gender into females (red) and males (blue). The corresponding hypergeometric P-value is <10−13. (f) Raster display of the

normal dataset shows the male-specific X chromosome deletion across the normal genomes. This biological variation is

conserved in the patient-matched LGA tumor genomes. The GSVD separates this variation from the second LGA tumor

arraylet.

doi:10.1371/journal.pone.0164546.g002
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Fig 3. GBM genome-wide pattern of co-occurring CNAs previously uncovered by the GSVD of GBM tumor and normal profiles. (a) Plot of the

second most GBM tumor-exclusive tumor arraylet, which was previously uncovered by the GSVD [8], describes a genome-wide pattern of co-occurring

CNAs across 212,696 Agilent probes. The GBM pattern, which encompasses the LGA pattern (Fig 2), consists of LGA-shared (black) and GBM-specific

(blue) CNAs, including, e.g., gains of segments on chromosome 1 containing MDM4 and AKT3, respectively. (b) Both LGA-shared and GBM-specific

CNAs are visible across the 8,102 Affymetrix-matched Agilent probes, even though these are <4% of the probes that constitute the GBM pattern. (c) The

LGA-shared CNAs, e.g., in MDM4, are visible across the 4,697 Affymetrix-matched consistently-aberrated Agilent probes. (d) The GBM-specific CNAs,

e.g., in AKT3, are visible across the 3,405 remaining probes.

doi:10.1371/journal.pone.0164546.g003
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human normal to tumor cell transformation in response to growth factor signaling in GBM rel-
ative to LGA.

GBM-specificCNAs that contribute to increased conversion of the Gli oncogenes into tran-
scriptional activators, include gains of segments containing the genes encoding for two of the
three Gli proteins, GLI3 (7p14.1) and GLI1 (12q13.3), which was first identified in a screen of
amplified DNA in a malignant human glioma tumor sample [54]. Also included is a loss of a seg-
ment containing the serine/threonineprotein kinase-encodingCSNK1E (22q13.1). The encoded
kinase CKI� is one of twomembers of the casein kinase I (CKI) protein family that in the absence
of Hh facilitate the conversion of the Gli proteins into transcriptional repressors [55]. These
GBM-specificCNAs that are involved in increased levels of the Gli transcriptional activators,
together with the LGA-shared CNAs that are involved in decreased activity of Ptch1, enhance the
opportunity for proliferation in response to developmental signals in GBM relative to LGA [56].

Gains of segments containing putative drug targets are also among the GBM-specificCNAs,
including the methyltransferases-encodingMETTL2B (7q32.1) andMETTL2A (17q23.2), and
the serine/threonine kinase-encodingTLK2 (17q23.2) [8, 57].

To additionally compare the LGA and GBM patterns, we identified 8,102 pairs of one-to-
one overlapping Affymetrix and Agilent probes among the 933,827 Affymetrix probes of the
LGA pattern and the 212,696 Agilent probes of the GBM pattern. Among these, we identified
4,697 pairs of one-to-one overlapping probes that are consistently aberrated in the LGA and
GBM patterns. The LGA-shared CNAs in chromosomes, chromosome arms, and segments are
visible in both the LGA and GBM patterns, across the 8,102, and, separately, the 4,697 pairs of
probes, even though these are<1% and 4% of the probes that constitute the LGA and GBM
patterns, respectively.

The GSVD Separates the LGA Pattern from CNVs Common to the Normal Human and
LGATumor Genomes and Tumor-Exclusive ExperimentalBatch Effects. This is because
the second tumor arraylet, which describes the LGA pattern, is mathematically orthogonal to
the other tumor arraylets, which describe other sources of biological and experimental varia-
tion that compose the tumor dataset.

For example, the first tumor arraylet, which is mathematically the most significant arraylet in
the tumor dataset, describesmostly unsegmented chromosomes [58, 59], each with a copy-num-
ber distribution that is approximately centered at the autosomal genome with a relatively large,
chromosome-invariant width (Fig E in S1 Appendix and S3 Dataset). The first probelet, which is
mathematically the most tumor-exclusive probelet, is correlated with a tumor-exclusive experi-
mental variation in the hybridization plate of the LGA tumor samples, with both hypergeometric
[60] and Mann-Whitney-Wilcoxon P-values<10−2 (Fig F in S1 Appendix). Together, the first
probelet and tumor arraylet describe a tumor-exclusive experimental batch effect.

The 53rd normal arraylet, which is mathematically the most significant arraylet in the normal
dataset, and the 53rd LGA tumor arraylet (Fig G in S1 Appendix), both describe a deletion of
the X chromosome relative to the autosomal genome. Consistently, the 53rd probelet, which is
mathematically approximately common to the tumor and normal datasets, classifies the patients
by gender, with both hypergeometric and Mann-Whitney-Wilcoxon P-values<10−9. Together,
the 53rd probelet and arraylets describe a male-specificX chromosome deletion, a CNV across
the normal genomes that is conserved in the patient-matched LGA tumor genomes.

Note that although the male-specificX chromosome deletion is conserved in the tumor
genomes, the LGA pattern, which is describedby the second tumor arraylet, exhibits an unseg-
mented X chromosome copy-number distribution that is approximately centered at the auto-
somal genome with a relatively small, invariant width. This illustrates the separation of the
LGA tumor-exclusive pattern from the male-specificX chromosome deletion that is common
to the tumor and normal profiles.
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This GSVD separation of the LGA tumor and normal datasets into probelets, and tumor
and normal arraylets, is blind, that is, without a-priori knowledge of the sources of variation
that compose the datasets. The TCGA annotations that describe the patients (e.g., gender), and
the corresponding tumor and normal samples (e.g., the hybridization plate of the tumor vs. the
normal samples), are used only to interpret the patterns of variation across the patients, and
the tumor and normal genomes, which were uncovered by the GSVD.

The LGA Pattern is Correlatedwith LGAOutcome. To examine the correlation of the
LGA pattern with an LGA patient’s survival, we classified the discovery set of patients based
upon the weight of the pattern, that is, the superposition coefficient of the second LGA tumor
arraylet, in each patient’s tumor profile. These coefficients are linearly proportional to the rela-
tive copy numbers listed in the second LGA probelet. For the cutoff to be consistent with that
previously established for the GBM pattern [8], we scaled the secondGBM arraylet correlation
cutoff of 0.15 by the Euclidean-, i.e., 2-norm of the Pearson correlations of the discovery tumor
profiles with the second LGA tumor arraylet. The second probelet classifies the discovery set of
patients into two groups of statistically significantly different prognoses (Fig 4). The univariate
Cox [61] proportional hazard ratio is>9. This means that a high weight of the LGA pattern in
an LGA tumor’s profile confers>9 times the hazard of a low weight.

To examine the correlation of the pattern with response to treatment, we classified the dis-
covery set of patients by the GSVD and, in addition, by chemotherapy or radiation. Among the
patients who were treated by either chemotherapy or radiation, the Kaplan-Meier (KM) [62]
median survival time of the groups of patients with low coefficients is *3.5 times, and *4
years greater than the median survival time of the groups of patients with high coefficients.A
low weight of the LGA pattern in an LGA tumor’s profile is, therefore, correlated with a signifi-
cantly longer survival time, also in response to chemotherapy or radiation.

To computationally validate that the LGA pattern is correlated with LGA outcome, we clas-
sified the Affymetrix-measured primary LGA tumor profiles of a validation set of 74 TCGA
patients, mutually exclusive of the discovery set (S4 Dataset). The classification is based upon
the correlation of the second LGA tumor arraylet with each patient’s tumor profile across the
933,827 Affymetrix probes. We find that the results of the survival analyses of the LGA valida-
tion set are consistent with those of the LGA discovery set. Note also that in classifying the
tumor profiles, the 8,102 Agilent-matched Affymetrix probes and, separately, the 4,697 consis-
tently-aberrated probes among them, give qualitatively the same and quantitatively similar
results as the 933,827 Affymetrix probes.

The GBM Pattern Identifies among the LGA Patients a Subtype, Similar

to that among the GBM Patients, where the CNA Genotype is

Correlated with an Approximately One-Year Survival Phenotype

Because the GBM pattern encompasses the LGA pattern, we also examined the correlation of
the GBM pattern with an LGA patient’s survival. To start, we used the GBM pattern to classify
the primary GBM tumor profiles of a set of 364 TCGA patients (S5 Dataset).We find that the
GBM pattern is a platform-independent predictor of GBM survival. Classifying the GBM
patients based upon the Affymetrix-measured tumor profiles, and across just the 4,697 probes
(Fig 5), gives qualitatively the same and quantitatively similar results as the previous classifica-
tion based upon the Agilent-measured profiles, across the 212,696 Agilent probes [8]. As in the
previous classification, the KMmedian survival time of the group of patients with low correla-
tions is>2.5 times, and>1.5 years greater than the approximately one-year median survival
time of the group of patients with high correlations.
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Next, we used the GBM pattern to classify the Affymetrix-measured tumor profiles of the
133 TCGA patients in the LGA discovery and validation sets. The survival analysis results are
consistent with those based upon the correlation with the Affymetrix-derivedLGA pattern
across the 933,827 Affymetrix probes.

Fig 4. Survival analyses of the LGA patients classified by the LGA pattern and by treatment. (a) KM curves of the discovery set of 59 patients

classified by the weights, or superposition coefficients of the LGA pattern in their tumor profiles, as listed in the second probelet (Fig 3). The 63-month

KM median survival time of the group of patients with low coefficients is >3 times greater than that of the group of patients with high coefficients, with the

corresponding log-rank test P-value <10−4. The univariate Cox proportional hazard ratio is >9. (b) Among the 29 patients in the discovery set treated by

chemotherapy, the median survival time of the patients with low coefficients is *3.5 times greater than that of the patients with high coefficients. (c)

Among the patients treated by radiation, the median survival times of patients with low and high coefficients are the same as among the chemotherapy-

treated patients. (d) KM curves of the validation set of 74 patients classified by the Pearson correlation of the LGA pattern with their tumor profiles. The

73-month median survival time of the patients with low correlations is >3.5 times greater than that of the patients with high correlations, consistent with

the median survival times of the patients in the discovery set. (e) The median survival times of the 46 chemotherapy-treated validation patients with low

and high correlations are the same as those of the 74 validation patients, and consistent with those of the 27 chemotherapy-treated discovery patients. (f)

The median survival times of the radiation-treated validation patients are the same as those of the validation patients, and consistent with those of the

radiation-treated discovery patients.

doi:10.1371/journal.pone.0164546.g004

DNA Alterations Predicting Astrocytoma Survival and Response to Treatment Revealed by the GSVD

PLOS ONE | DOI:10.1371/journal.pone.0164546 October 31, 2016 10 / 22



Fig 5. Survival analyses of the LGA and GBM patients classified by the GBM pattern. KM curves, log-

rank test P-values, and Cox proportional hazard ratios of (a) the GBM set of 364 patients, (b) the LGA

discovery and validation sets of 133 patients, and (c) the LGA and GBM sets of 497 patients.

doi:10.1371/journal.pone.0164546.g005
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Because a high weight of the GBM pattern in either an LGA or a GBM tumor’s profile con-
fers a greater hazard and a shorter survival time, we compared the survival of the groups of
LGA and GBM patients that are identified by the GBM pattern. We find that the KM curves
for these two groups overlap, with the corresponding log-rank test P-value>0.05, which
means that the two groups are statistically indistinguishable based upon survival.

Classifying the 133 LGA and 364 GBM, i.e., 497 astrocytoma patients, based upon the
weight of the GBM pattern in each patient’s tumor profile, we find that the GBM pattern is a
predictor of survival among the general primary astrocytoma population, independent of
grade, where the CNA genotype that the GBM pattern describes is correlated with an
approximately one-year survival phenotype. We also assessed the distribution of several
TCGA annotations of intratumor heterogeneity in each astrocytoma grade, including the
tumor sample’s volume, the slide’s percents of tumor cells and nuclei, the portion’s weight,
and the analyte’s and aliquot’s native, unamplified DNA quantities. We find that at the
TCGA ranges for these annotations, the GBM pattern is independent of intratumor
heterogeneity.

The GBM Pattern is a Platform-Independent Predictor of Astrocytoma

Outcome, Statistically Better Than, and Independent of Age, Grade, and

Existing Laboratory Tests

To examine the correlation of the GBM pattern with an astrocytoma patient’s response to
treatment, we classified the 497 patients by chemotherapy or radiation and, in addition, by the
GBM pattern (Fig 6). These classifications give bivariate Cox hazard ratios which are close to,
and within the 95% confidence intervals of the corresponding univariate ratios (Table A in S1
Appendix). This means that the GBM pattern is a predictor of a patient’s survival independent
of treatment, and, therefore, also a predictor of the patient’s response to treatment.

Next, we examined the correlation of the GBM pattern with a patient’s age and a tumor’s
grade (Fig 7) [31–38]. We find that the log-rank test P-value, which corresponds to the classifi-
cation by the GBM pattern, is less than the P-values which correspond to the classifications by
age and grade. The univariate hazard ratio and the concordance index, which correspond to
the GBM pattern, are greater than those that correspond to age and grade. These mean that the
GBM pattern is statistically a better predictor of astrocytoma outcome than age or grade. Clas-
sifying the patients by the GBM pattern in addition to age or grade, we find that the GBM pat-
tern is also statistically independent of age and grade.

Combined with either age or grade, therefore, the GBM pattern is statistically an even better
predictor of astrocytoma outcome. For example, the>4-year survival difference among the
patients classified by both the GBM pattern and age, is>3 times, and>2.5 years greater than
the difference between the patients classified by age alone. The>3.5-year difference among the
grades III and IV astrocytoma patients classified by the GBM pattern and grade, is>1.5 times,
and 1.5 years greater than the difference between these patients classified by grade alone.

We also compared the GBM pattern to the existing pathology laboratory tests for astrocy-
toma. Silencing of a tumor’s MGMT gene by hypermethylation of its DNA promoter region
was associated with a GBM and, recently, also an LGA patient’s longer survival in response
to temozolomide chemotherapy treatment [63, 64]. Mutation of the gene IDH1 was associ-
ated with a patient’s longer survival [65], and linked with patterns of mRNA expression and
DNA methylation across several hundred genes and genomic regions, respectively, in the
tumor’s genome [66–68].

We find that the genome-wideGBM pattern of CNAs is statistically a better predictor of
astrocytoma outcome, corresponding to greater median survival time difference, proportional
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hazard ratio, and concordance index, thanMGMT promoter methylation and IDH1mutation
(Fig 8). The GBM pattern additionally classifies the patients with either a methylated or an
unmethylatedMGMT promoter, or a mutated or an unmutated IDH1, into two groups each,
with an approximately one-year to>4-year survival differences, which means that it is inde-
pendent of both. Combined with either existing pathology laboratory test, therefore, the GBM
pattern is an even better predictor of astrocytoma.

Discussion

To date, statistically the best indicators of astrocytoma outcome in clinical use remain the
patient’s age at diagnosis and the tumor’s grade [31–35, 38]. High-throughput molecular

Fig 6. Survival analyses of the astrocytoma patients classified by treatment and by the GBM pattern.

KM curves, log-rank test P-values, and Cox proportional hazard ratios of the 497 astrocytoma patients

classified by (a) chemotherapy, (b) radiation, (c) the GBM pattern combined with chemotherapy, and (d) the

GBM pattern combined with radiation.

doi:10.1371/journal.pone.0164546.g006
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profiling efforts identified two indicative genetic loci that were translated into pathology labora-
tory tests, one locus of DNA hypermethylation, and the other of DNA mutation linked with
mRNA expression and DNA methylation subtypes of astrocytoma [39, 63–68]. RecurringDNA
CNAs have been observed in astrocytoma tumors’ genomes for decades, however, copy-number
subtypes that are predictive of astrocytoma patients’ outcomes were not identified [36, 37].

Here, we showed that a genome-wide pattern of CNAs in a primary astrocytoma tumor’s
DNA copy-number profile is a predictor of the patient’s survival and response to chemother-
apy and radiation, statistically better than, and independent of the patient’s age, the tumor’s
grade, and the existing laboratory tests. We showed that the pattern is correlated with an
approximately one-year survival phenotype among the astrocytoma patients. The pattern is a
platform-independent predictor, and, therefore, it can be translated into a laboratory test by

Fig 7. Survival analyses of the astrocytoma patients classified by the patient’s age at diagnosis and

the tumor’s grade, and by the GBM pattern. The 497 astrocytoma patients classified by (a) the patient’s

age, (b) the tumor’s grade, (c) the GBM pattern combined with age, and (d) the GBM pattern combined with

grade.

doi:10.1371/journal.pone.0164546.g007
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using non-disease-specific FDA-approved platforms, such as next-generation sequencing
(NGS) [69].

The genome-wide pattern of CNAs was previously uncovered by using the GSVD to model
patient-matched copy-number profiles of GBM tumor and normal samples [8]. Here, a GSVD
comparison of patient-matched profiles of LGA tumor and normal samples, revealed a tumor-
exclusive genome-wide pattern of CNAs. We showed, and computationally validated, that this
LGA pattern is correlated with an LGA patient’s outcome. The GSVD separated this pattern
from other sources of experimental and biological variation, common to the tumor and normal
profiles, or exclusive to the tumor or the normal profiles, without a-priori knowledge of these
variations. We also showed that the LGA pattern is encompassed in the GBM pattern, where
GBM-specificCNAs encode for enhanced opportunities for transformation and proliferation

Fig 8. Survival analyses of the astrocytoma patients classified by the existing laboratory tests and

by the GBM pattern. The 497 astrocytoma patients classified by (a) MGMT promoter methylation, (b) IDH1

mutation, (c) the GBM pattern combined with MGMT, and (d) the GBM pattern combined with IDH1.

doi:10.1371/journal.pone.0164546.g008
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via growth and developmental signaling pathways in GBM relative to LGA. The LGA datasets
had been publicly available in TCGA since 2015, and analyzed by using several methods. The
pattern, however, remained unknown until the datasets were modeled by using the GSVD.
This illustrates the ability of comparative spectral decompositions in general, and the GSVD in
particular to find what other methodsmiss.

Note that in a GSVD comparison between two datasets, the only assumption is that the
structure of the datasets is that of two full column-rankmatrices of matched columns. It is,
therefore, not limited to profiles of human cells, DNA copy-number profiles, or profiles mea-
sured by DNA microarray platforms, nor is it limited to molecular biological datasets. The
GSVDwas first formulated as a comparative spectral decomposition to model cell cycle phase-
matched mRNA expression profiles of synchronized cells from human and yeast [17]. The
model predicted a genome-wide causal coordination betweenDNA replication and mRNA
expression [27, 28], which was then experimentally verified [70]. This demonstrated that the
GSVD can be used to correctly predict previously unknown cellular mechanisms. Since then,
the GSVD has been used to separate the similar from the dissimilar between different species,
as well as between different types of molecular biological profiles, mostly large-scale (e.g.,
mRNA and protein expression in addition to DNA copy-number profiles), and different profil-
ing technologies (e.g., NGS and quantitative real-time PCR in addition to DNA microarray
platforms) [18–23] (see also [24–26]).

Methods

LGADiscoveryDatasets Construction.We selected an LGA discovery set of 59 TCGA
patients of consistent survival annotations. The 59 patients were diagnosedwithWorld Health
Organization (WHO) grades III or II astrocytoma. The patient-matched primary LGA tumor
and normal tissue samples were obtained from US tissue source sites. Each tumor or normal
profile lists median-centered log2 TCGA raw level 2 of the AffymetrixGenome-Wide Human
SNP Array 6.0-measuredDNA copy numbers. The profiles are organized in one tumor and
one normal dataset, ofM1,M2 = 933,827 autosomal and X chromosome nonpolymorphic
copy-number probes, with valid data in allN = 59 patient-matched pairs of tumor and normal
profiles, respectively.

CNAs in the LGA Pattern. To compare the Affymetrix-derivedLGA pattern to the Agi-
lent-derived GBM pattern, we mapped the 933,827 Affymetrix probes that constitute the LGA
pattern onto the National Center for Biotechnology Information (NCBI) human genome
sequence build 36 at the University of California at Santa Cruz (UCSC) human genome
browser [58]. Previously, we also mapped the 212,696 probes of the Agilent Human Genome
CGH 244A microarray platform that constitute the GBM pattern onto the same sequence.We
then assigned to the LGA pattern CNAs in the chromosomes and chromosome arms, as well as
the 111 of the 130 genomic segments that were previously identified in the GBM pattern by
using the circular binary segmentation (CBS) [59], which are of�5 Agilent probes in length.

The LGA pattern was assigned a gain or a loss in a chromosome or a chromosome arm if
the deviation of the mean copy number of the chromosome or the arm from the genomic
mean is greater than twice the genomic standard deviation. The genomic mean and standard
deviation are calculated for the autosomal genome, excluding the outlying chromosomes 7 and
10, and chromosome arm 9p [8]. A gain or a loss in a segment were assigned if the deviation of
the segment mean copy number from the genomic mean is greater than twice the genomic
standard deviation, or if the deviation from the chromosomal mean is greater than the chromo-
somal standard deviation, when this deviation is consistent with the deviation from the geno-
mic mean.
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Cross-PlatformProbe Matching.We matched pairs of one Agilent and one Affymetrix
probe that overlap by at least one nucleotide.When multiple Affymetrix or Agilent probes
overlapped a single Agilent or Affymetrix probe, the Affymetrix or Agilent probe closest to the
genomic end or start coordinate of the Agilent or Affymetrix probe was selected, respectively,
to maintain a one-to-one matching between the platforms. This identified 8,102 pairs of one-
to-one overlapping Affymetrix and Agilent probes.

To identify the 4,697 pairs of one-to-one overlapping probes that are consistently aberrated
in the LGA and GBM patterns, we assigned to the patterns CNAs in the 8,102 Affymetrix and
Agilent probes, respectively. A gain or a loss in a probe were assigned if the deviation of the
probe copy number from the genomic mean is greater than twice the genomic standard devia-
tion, or if the deviation from the chromosomal mean is greater than the chromosomal standard
deviation, when this deviation is consistent with the deviation from the genomic mean.

ArrayletVisualization. To visualize the first tumor arraylet and 53rd normal and tumor
arraylets, we segmented each arraylet by using the CBS [59].

Probelet Interpretation. To biologically or experimentally interpret the first and 53rd probe-
lets, which are the most significant probelets in the tumor and normal datasets, respectively, we
assessed the subsets of patients that are of high or low relative copy numbers in each probelet for
enrichment in any one of the multiple TCGA annotations that describe the patients (e.g., gender),
and the corresponding tumor and normal tissue samples (e.g., the hybridization plate of the
tumor vs. the normal samples). The P-value of each enrichment was calculated assuming a hyper-
geometric probability distribution of theK annotations among theN patients of the discovery set,
and of the subset of k� K observedannotations among the subset of n patients that are of high

or low copy numbers in each probelet [60], Pðk; n;N;KÞ ¼
N

n

 !� 1
Xn

i¼k

K

i

 !
N � K

n � i

 !

.

In each probelet, we also assessed the distribution of the copy numbers among the different
groups of each TCGA annotation by using boxplots, and calculating the correspondingMann-
Whitney-Wilcoxon P-values.

LGAValidation Dataset Construction.We selected an LGA validation set of 74 TCGA
patients, which is mutually exclusive of the discovery set. Missing data among the 933,827
Affymetrix probes of the LGA pattern in any of the corresponding tumor profiles were not esti-
mated. The corresponding probes were excluded from the calculations of this profile’s median
copy number as well as the profile’s Pearson correlations with the LGA and GBM patterns.

GBMDataset Construction.We selected a GBM set of 364 patients from the previous
GBM discovery and validation sets [8]. For patients with more than one primary tumor profile,
medians of the profiles were taken.Missing data among the 933,827 Affymetrix probes of the
LGA pattern in any of the corresponding tumor profiles were not estimated. The correspond-
ing probes were excluded from the calculations of this profile’s median copy number as well as
the profile’s correlations with the GBM pattern.

MGMT Promoter Methylation and IDH1Mutation Annotations. To estimate the
MGMT promoter methylation status of a tumor, we used the TCGA raw level 1 of the Illumina
InfiniumHuman Methylation 27 or 450 BeadChip-measuredDNA methylation levels [64].

The IDH1mutation status of the LGA and GBM tumors is from TCGA [38, 68].

Supporting Information

S1 Appendix. Figs A–G and Table A. The Mathematica Notebook is available at http://www.
alterlab.org/astrocytoma_prognosis/.
(PDF)
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S1 Dataset. LGADiscoverySet of Patients. The corresponding Affymetrix-measuredLGA
tumor and normal profiles are at http://www.alterlab.org/astrocytoma_prognosis/.
(TXT)

S2 Dataset. GBM Segments. Segments previously identified by the CBS in the GBM pattern
[8].
(TXT)

S3 Dataset. LGA Segments. Segments identified by the CBS in significant tumor and normal
arraylets revealed by the GSVD of the LGA discovery datasets.
(TXT)

S4 Dataset. LGAValidation Set of Patients. The corresponding tumor profiles are at http://
www.alterlab.org/astrocytoma_prognosis/.
(TXT)

S5 Dataset. GBM Set of Patients. The corresponding tumor profiles are at http://www.
alterlab.org/astrocytoma_prognosis/.
(TXT)
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