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Abstract
Because of a high mutation rate, HIV exists as a viral swarm of many sequence variants

evolving under various selective pressures from the human immune system. Although the

Nef gene codes for the most immunogenic of HIV accessory proteins, which alone makes it

of great interest to HIV research, it also encodes an RNA structure, whose contribution to

HIV virulence has been largely unexplored. Nef RNA helps HIV escape RNA interference

(RNAi) through nucleotide changes and alternative folding. This study examines Historic

and Modern Datasets of patient HIV-1 Nef sequences during the evolution of the North

American epidemic for local changes in RNA plasticity. By definition, RNA plasticity refers

to an RNA molecule’s ability to take alternative folds (i.e., alternative conformations). Our

most important finding is that an evolutionarily conserved region of the HIV-1 Nef gene,

which we denote by R2, recently underwent a statistically significant increase in its RNA

plasticity. Thus, our results indicate that Modern Nef R2 typically accommodates an alter-

native fold more readily than Historic Nef R2. Moreover, the increase in RNA plasticity

resides mostly in synonymous nucleotide changes, which cannot be a response to selec-

tive pressures on the Nef protein. R2 may therefore be of interest in the development of

antiviral RNAi therapies.

Introduction

The HIV-1 Nef gene has a single exon of about 620 nucleotides, which partially overlaps a 3’-
long terminal repeat. It encodes an immunogenic accessory protein with multiple activities
during HIV infection. Although Nef is not essential for viral replication in vitro, it is an impor-
tant virulence factor in vivo [1, 2], and it is highly expressed from the early stages of infection
[3]. Recent findings have elucidated the poorly understood and complex mechanisms by which
Nef enhances viral infectivity [4–6]. Among other mechanisms, it downregulates CD4 cell sur-
face expression and major histocompatibility complex I antigens, and it also modulates T-cell
signaling pathways [7]. Althoughmost studies focus on the Nef protein, the Nef gene also
encodes an RNA structure, whose contribution to HIV virulence is largely unexplored.
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Experimental evidence shows that from the early stages of viral replication, Nef sequences
appear within HIVmRNAs [8] that may facilitate viral rebound during antiretroviral therapy
[9]. Based on computational approaches [10], Peleg et al. [11] noted that Nef RNA contains
extensive information beyond the information required merely to encode the Nef protein, and
they proposed that the information corresponds to conservedRNA structures.

The reverse transcriptase in HIV lacks double-stranded proofreading, so its high mutation
rate generates viral variants, some of which eventually escape selective pressures from the host
immune system. The viral variability includes RNA motifs corresponding to “local” RNA sec-
ondary structures [12], which are in turn informative of 3D conformations [13]. Viral RNA
conformations may in fact be evolving at a much faster rate than the underlying sequence itself
[14]. Regardless of evolutionary rates, the prediction and identification of RNA motifs help to
construct and to explore important biological hypotheses about the viral life cycle [15–18].

The inherent flexibility of RNA can yield alternative conformations (“folds”) with distinct
biological functions. Riboswitches typically have two alternative folds, e.g., for regulating bacte-
rial genes [19–21]. Although viral RNAs are much shorter than bacterial RNAs, with corre-
spondingly less sequence to encode information, their conformational changes can still
indicate transitions between competing processes, or even RNA-protein interactions such as
RNA processing, among other possibilities [22]. RNA’s ability to assume different low-energy
conformations, its “plasticity,” can also be indicative of an ability to evolve [23], since only a
few sequencemutations are then required to trigger dramatic conformational rearrangements.
HIV-1 RNA may in fact be particularly flexible [24], and several alternative folds may be criti-
cal in the HIV-1 life cycle. As examples, the HIV-1 untranslated leader RNA influences RNA
dimerization [25, 26]; nascent transcripts of TAR RNA influence transcription and gene
expression [27]; and the Rev Response Element modulates nucleocytoplasmic export to control
HIV replication rates [28, 29].

RNA interference (RNAi) is a cellular process expressing RNA molecules to inhibit gene
expression, typically by accelerating RNA degradation. As such, RNAi provides an evolution-
arily conserveddefense against viruses [30, 31]. In vitro, Nef RNA can evade RNAi with alter-
native folds [32–34]. In vivo, HIV-1 RNA is under selective pressure to evade host-induced
RNAi [35] to avoid the downregulated viral replication occurringwhen certain cellular and
Nef RNAs interact [36, 37]. HIV also encodes RNAs, including a Nef-derivedmiRNA,
miR-N367, to regulate its own transcription [38, 39]. Although induced RNAi can inhibit viral
replication [40, 41], HIV is resistant to many RNAi-based antiviral therapies [42]. These con-
siderations motivate the present investigation of the evolution of Nef RNA structures and their
ability to evade the host immune system via alternative folds.

This article measures RNA plasticity (i.e., the ability to take alternative folds) primarily with
a computed quantity “Capacity for Alternative Folds” (CAF). CAF can contribute insights into
RNA kinetics, because it incorporates more than just the minimum free energy structure into
its measurement of plasticity. To relate changes in RNA plasticity to the evolution of the HIV
epidemic, we collectedHIV-1 sequences from the Los Alamos Database [43] and from a study
on the North American HIV-1 Epidemic [44]. Based on sampling year, we partitioned each of
the two datasets into Historic and Modern subsets. If the human immune system places detect-
able selective pressure on viral plasticity, each Modern dataset should be statistically different
from the correspondingHistoric dataset. Because the local RNA dynamics observed in vitro
correspond to local changes to the RNA secondary structure [34], and because local predictions
are generally more dependable than global predictions, our study primarily computed local sec-
ondary structures from subsequences, rather than global secondary structures from the full-
length Nef sequence. Because small changes in a sequence can propagate dramatically to sur-
rounding RNA structures [45], we examined overlapping subsequences.

Changes in HIV-1 Nef RNA Plasticity over Time
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Many computational approaches to the ab initio prediction of alternative folds from RNA
sequence exist [46–52]. Although these approaches do not have established success in discrimi-
nating riboswitches from genomic background, they have proved useful for investigating the
structural features that accompany alternative folding. Ensemble diversity, based on sampling
the energy landscape of RNA secondary structures, e.g., can characterize alternative structures
in riboswitches [53–55]. Given an RNA sequence, ensemble diversity provides a competitive
method for investigating thermodynamically stable alternative folds, and in addition, it has the
merits of simplicity and generality. CAF, our measure of RNA plasticity, in fact partially char-
acterizes the diversity in an ensemble of RNA conformations. Our other measures also quantify
evolutionary changes in the full-lengthNef RNA secondary structure, and in tertiary structural
motifs such as pseudoknots and G-quadruplexes (G4).

Materials and Methods

Ethics statement: The sequences in the Test Datasets were obtained from subjects enrolled under
REB-approved protocols who gave written, informed consent in the original studies collecting
the specimens. The Institutional ReviewBoards at Providence Health Care/University of British
Columbia and Simon Fraser University granted ethical approval for the study that provided the
sequences in the Test Datasets [44]. The Office of Human Subjects Research Protections at NIH
determined the present study was excluded from IRB review per 45 CFR 46 and NIH policy.

HIV-1 Nef datasets: Historic and Modern Test Datasets: Cotton et al. [44] classified their
cohorts into two datasets according to specimen collection date: a Historic Dataset (1979–
1989) and a Modern Dataset (2000–2011). We used the same classification and coordinates
(1–621) as their HXB2-alignments. Cotton et al. [44] collected sequences from untreated
patients from various locations in North America and verified that the sequences belonged to
HIV-1 subtype B. We discarded sequences whose alignments covered< 41% of the HXB2 Nef
gene, resulting in Historic and Modern Datasets of 335 sequences each. Table 1 displays addi-
tional details about the datasets.

Historic and Modern Training Datasets: For the Training Datasets, we used the intra-
patient Nef sequence data available in Los Alamos HIV Database as of Feb 12, 2015 [43]. We
selected drug naïve patients infected with HIV-1 Subtype B worldwide (a total of 66 studies
and 179 patients), with> 95% Nef coverage, from the latest available sampling point (Fiebig
stages 4–6). Our statistical tests require independent sampling, so each patient contributed
only one sequence. If more than one sequence satisfied our criteria, we selected a single
sequence at random. To parallel protocols for the Test Dataset, we split the Training Data into
Historic (1979–1989) and Modern (2000+) Training Datasets. No patient contributed to both
the Historic and Modern Training Datasets. The Historic Training Dataset contained 9 Nef
sequences; the Modern Training Dataset, 125 Nef sequences. HIVAlign [43] aligned the Train-
ing Dataset sequences to the HXB2 reference sequence (Genbank accession: K03455). In every

Table 1. Features of the Test and Training Datasets of Nef sequences.

Dataset Name No. of patients (= Nef sequences) Collection date Sampling region Reference

Test Historic 335 1979–1989 North America Cotton et al. [44]

Modern 335 2000–2011

Training Historic 9 1979–1989 Worldwide Los Alamos Database as of Feb 12, 2015

Modern 125 2000+

All Nef sequences are of HIV-1 subtype B and have >95% coverage. No dataset shares a sequence with any other. Sequences of Historic and Modern

Datasets are derived from drug-naïve patients. Historic and Modern Datasets for each category do not share a common patient.

doi:10.1371/journal.pone.0163688.t001

Changes in HIV-1 Nef RNA Plasticity over Time

PLOS ONE | DOI:10.1371/journal.pone.0163688 September 29, 2016 3 / 21



procedure described below, we optimized any adjustable parameters with the Training Data-
sets. Some optimizations were informal (by eye), whereas others had a formal figure of merit.
In either case, the corresponding procedure with the Test Dataset always fixed its adjustable
parameters and used the values optimized on the Training Dataset. For example, the Modern
Training Dataset originally had 136 sequences but we reduced it to 125 to permit a useful but
informal optimization from the resulting alignment. The Training and Test Datasets had no
sequences in common.

Measuring distance: Hamming distances quantified the dissimilarity between aligned pairs of
sequences by the number of differing nucleotides (dnt) or amino acids (daa). Dissimilarity
between two RNA secondary structures can bemeasured by the number of differing base pairs
(dbp) or the tree-editing distance (dte) [56], the minimum number of base-pair changes required
to edit one RNA secondary structure into another. Symbols with over-bars represent average
pairwise values, e.g., dbp represents an average dbp (see, e.g., the definition of CAF below).

ExtractingwindowedNef subsequences: Two parameters, the window size (Win, an even
integer) and the skip size (Skip), were adjustable. Positions of the formWindow/2 + k × Skip,
(k = 0,1,. . .) within Nef alignment positions 1 to 621 provided coordinates for centering subse-
quences of lengthWindow within the alignedNef. We extended the Nef subsequences on both
sides from their center so that each side includedWindow/2 letters of the original Nef sequence
on either side. We optimizedWindow and Skip on the Training Dataset, minimizing by eye the
overall p-values from our statistical tests. To facilitate the interpretation of biological features,
the center of each Nef subsequence was mapped back into the reference HXB2 sequence.

Capacity for alternative folds (CAF): For each windowedNef subsequence s described
above, according to standard thermodynamicmodels of RNA secondary structure [10, 57–60],
the ViennaRNA (version 2.1.9) [56, 61] command RNAsubopt-s -p 500 sampledM = 500
secondary structures sm from the Boltzmann distribution. The command RNAdistance
-DF–Xm calculated the base-pair Hamming distance dbp{sm,sn} between distinct sampled sec-
ondary structures sm and sn, (m,n = 1,2,. . .,M). The CAF for the subsequence s is the average
base-pair Hamming distance:

CAF � dbp ¼
2

MðM � 1Þ

X

1�m<n�M

dbpfsm; sng

Thus, if a subsequence s has a large CAF, then on average, its folds contain very diverse base
pairs.

Test of statistical significance: The R functionwilcox.test calculates two-sided p-values
for theMann-Whitney U-tests [62]. The U-test, which corrects for different sample sizes if nec-
essary, evaluated the statistical significance of CAF changes betweenHistoric and Modern
Datasets of Nef subsequences. Adjusted p-values [63] based on a variant of the Benjamini
Hochberg (BH) procedure [64] corrected for multiple tests by providing an upper bound on
False Discovery Rates (FDRs).

Selecting regions (R1, R2, and R3) with significant changes in their CAF: Fifty-three
(d(NefLength −Window)/Skipe = 53) different locations contributed to the comparison of His-
toric and Modern Datasets forWindow = 100 nt and Skip = 10 nt, the parameters optimized
on the Training Dataset. Of the locations, 6/53 showed a statistically significant CAF change
betweenHistoric and Modern Datasets, with p-values corresponding to a FDR< 0.001 (shown
in red in S1 Fig). The six regions overlapped, so we selected the three regions with the smallest
p-values for further investigation, naming them R1 (112–211), R2 (362–461), and R3 (492–
591). R1, R2, and R3 do not overlap, and all other regions overlap with one of them.

Changes in HIV-1 Nef RNA Plasticity over Time
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CalculatingRNAshapes Entropy: RNAshapes (version 2.1.6) [46], command RNAshapes–p
calculated the probabilities for abstract RNA shapes. RNAshapes Entropy is the Shannon entropy
of the resulting probability distribution (for details, see SectionB.1 in S1 Text). Like CAF, RNA-
shapes Entropy is a measure of RNA plasticity.

Computing RNA secondary structural stability and the most stable conformation: For each
RNA subsequence s, the ViennaRNA command RNAfold–T37C calculated the minimum free
energy (MFE), which corresponds to the most stable secondary structure. Similarly, using default
parameters, the ViennaRNA command centroid_fold calculated the consensus secondary
structure, as follows. The ViennaRNA command centroid_fold randomly sampled
M = 1000 RNA structures sm from the Boltzmann distribution, listed all base pairs {bp1. . .bpN}
occurring in at least half (M/2 = 500) of the structures sm, and then combined the base pairs
{bp1. . .bpN} into a single, consensus structure (for details, see Ding et al. [65]). The free energy of
the consensus structure is abbreviated as CFE (consensus free energy). To summarize, therefore,
the free energy of the most stable structure is theMFE; of the consensus structure, the CFE. Typi-
cally, either a lower MFE or a lower CFE can suggest greater stability of the dominant RNA con-
formation. In passing, we note that according to the gold standard of RNA structural alignments,
the CFE typically predicts RNA structuremore accurately than theMFE [65].

Clustering RNA secondary structures for a single sequence s or a set S of sequences: Con-
sider an arbitrary set of RNA secondary structures. The R functionpam implements the Parti-
tioning Around Medoids (PAM) algorithm to partition a set of structures into two clusters.

Calculating dominant and alternative structures for a single R2 subsequence: For each R2
subsequence s, the ViennaRNA command RNAsubopt-e 3 –s sampled the Boltzmann dis-
tribution of secondary structures. The sampled structures were partitioned into two clusters, as
described above. The “dominant structure” of the subsequence s was its MFE structure (which
was the most stable structure in one of the clusters); and its “alternative structure” was the
most stable structure in the other cluster (see SectionB.2 in S1 Text for details).

Calculating the Dominant-Alternative Hamming Distance (DAHD) for a single R2 subse-
quence s: The DAHD is the base-pair distance (dbp) between the dominant and alternative
structures (see SectionB.2 in S1 Text for details).

Calculating dominant and alternative R2 structures from a set S of R2 subsequences: Each
R2 subsequence s has a most stable structure. The PAM algorithm partitioned the R2 subse-
quences into two clusters according to their most stable structures, as described above. The
larger cluster is the “dominant cluster” C1; the smaller, the “alternative cluster” C2. Each cluster
has a medioid, an R2 subsequence within it whose structure has the minimum average base-
pair distance dbp to the other structures. Each medioid therefore provides a convenient repre-
sentative of its cluster. The dominant cluster has medioidC1 , “the dominant R2 subsequence”
(of the set S of R2 subsequences), whosemost stable structure is “the dominant R2 structure”.
Similarly, the medioidC2 is “the alternative R2 subsequence”, whosemost stable structure is
“the alternative R2 structure”. (A warning for all that follows: the adjective “dominant” always
refers to the dominant cluster of structures.)

Regressing CAF on MFE: Nested linear regression models of CAF on MFE, with and with-
out a variable indicating whether a sequence was Modern, assessed the statistical significance
of CAF changes (see SectionB.3 in S1 Text for details).

Mutation test: Among the set of R2 subsequences in the Modern Dataset, the dominant
(most stable) structureC1ðModern R2Þ corresponds to a particular R2 subsequence, which we
call the “wildtype”. The R2 subsequences corresponding to the dominant and alternative struc-
tures differed in two consecutive nucleotidesM1M2 (398,399) and M5M6 (453,454), and two
single nucleotidesM3 (405) and M4 (447), corresponding to four hypothetical mutants M1M2,

Changes in HIV-1 Nef RNA Plasticity over Time
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M3, M4, and M5M6 of the wildtype sequence. ViennaRNA compared the MFEs and the most
stable structures of the mutants to the wildtype.

Back-Translated (BT) Nef sequences: The EMBOSS (version 6.3.1) [66] command back-
transeq generated random sets of hypothetical encoding full-lengthNef sequences [11],
based on back-translation with the HIV-1 codon-usage file at http://www.kazusa.or.jp/codon/.
If a gap caused the amino acid corresponding to a real codon to become ambiguous, the ran-
domization replaced the real codon triplet with three gaps. Thus, BT sequences typically had
more gaps than real sequences.

RNA-enforced Back-Translated (REBT) subsequence set: To investigate the significance of
Modern R2 plasticity, we generated random RNA sequences such that both their secondary
structure (hence, RNA-Enforced) and translated residues (hence, “Back-Translated”) would
resemble Modern R2 subsequences as much as possible. The random REBT sequences had the
same length (100 nt) as the R2 subsequences, and each of 335 Modern R2 subsequences and its
most stable structure served as a template for generating a REBT sequence, as follows:

If a pair of nucleotide positions corresponded to a base pair in the most stable structure of the
Modern sequence and both positions corresponded to the third codon, then the corresponding
random bases in the REBT sequencewere also a potential base pair. The empirical distribution of
the base pair was p(A,U) = p(U,A) = 0.169, p(C,G) = p(G,C) = 0.273, and p(G,U) = p(U,G) =
0.058, the probabilities being the base pair frequencies in predictions of most stable structures for
all 335 Modern R2 sequences. The frequencies are similar to Rfam base pair frequencies, so our
results are likely robust for any reasonable choice of empirical base-pair frequencies. The Infernal
command esl-alistat listed base pairs in the most stable structure [67].

If a nucleotide position corresponded to an unpaired nucleotide on the most stable structure
of the Modern sequence, then the REBT procedure drew the corresponding base at random
from a uniform distribution.

All other nucleotide positions in the REBT sequence remained unchanged. The most stable
structure generally paired very few third codon positions. Hence, the REBT procedure prefers
to randomize base pairs, even if it changes an amino acid.

Pseudoknot prediction: For a given sequence s, PknotsRG (version 1.3) [68] predicted pseu-
doknots within the RNA structure. For the R2 region only, the option –m predicted pseudo-
knots within the MFE structure.

Calculating (Doubly) DifferencedRelative Entropy: Relative Entropy calculations followed
Peleg et al. [11], which uses MFE predictions from full-lengthNef RNA sequence. The
EMBOSS (version 6.3.1) [66] command backtranseq generated BT random sequences.
SectionC in S1 Text contains the details of calculating (Doubly) DifferencedRelative Entropy
ΔΔI fromHistoric, Modern, and Back-Translated (BT) random sequences.

Predicting RNA G-quadruplexes (locally and globally stable G4): The ViennaRNA com-
mand RNAfold-g predicted thermodynamically stable RNA G4 for both the 100-nt long
windowedNef subsequences (locally stable G4) and the full-lengthNef RNA sequence (glob-
ally stable G4). See SectionD in S1 Text and S3 Table for detailed results.

Visualizing structures: The VARNA software [69] provided RNA secondary structure
diagrams.

Results

Three regions of Nef show noticeable change in RNA plasticity

CAF quantified the RNA plasticity of windowedNef subsequences in the Test Dataset. For
each Nef subsequence of length 100 nt (theWindow parameter) at 10 nt intervals along the
Nef RNA sequence (the Skip parameter), the corresponding two-sidedMann-Whitney p-value

Changes in HIV-1 Nef RNA Plasticity over Time
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compared the CAFs within the Historic and Modern Datasets (an exploratory optimization on
the Training Dataset fixed theWindow and Skip parameters used on the Test Dataset). All
results presented correspond to the Test Dataset from Cotton et al. [44].

S1 Fig gives the complete set of p-values comparing the CAFs of all Historic and Modern
Nef subsequences. Our focus here is on the three Nef regions with the most statistically signifi-
cant changes in CAF, namely, the regions R1, R2, and R3 appearing in Table 2.

Table 2 quantifies some important sequence and structure features of the R1, R2, and R3
regions in the Historic and Modern Datasets. The Methods section describes our windowed
Nef subsequences.Within each window (i.e., within each set of alignment columns), the aver-
age Hamming amino acid distance daa between translated pairs of subsequences quantified the
amino acid diversity (the opposite of its conservation). The average of daa over all windows was
cdaaðHistoricÞ ¼ 3:33 in the Historic Dataset and cdaaðModernÞ ¼ 4:54 in the Modern Dataset
(see SectionA in S1 Text). Table 2 shows that in both datasets, the amino acid diversity of R2
was lower than in its average over windowed subsequences (i.e., 2:73 ¼ daaðHistoric R2Þ <

cdaaðHistoricÞ ¼ 3:33 and 3:46 ¼ daaðModern R2Þ < cdaaðModernÞ ¼ 4:54); the amino acid
diversity of R1 and R3, higher. Table 2 also shows that R2 had a lower CFE (i.e., a more stable
consensus RNA structure) than R1 and R3. In fact, when we varied theWindow parameter
(subsequence length) from 100 nt to values between 75 nt to 150 nt, both Historic and Modern
Nef sequences in the Training Dataset consistently had the lowest CFE in regions overlapping
R2, indicating that R2 contains the most stable local secondary structures within Nef.

In Table 2, the GC compositions of R1 and R2 in particular do not change much from His-
toric to Modern Datasets, so their GC composition is unlikely to influence directly the other
structural features in Table 2.

RNA plasticity in region R2 increased significantly from Historic to

Modern Datasets

Modern R2 sequenceshave gained RNA plasticity as measured by CAF. Overall, the
CAF increase fromHistoric to ModernDatasets was most significant in R2 (q-value = 2.89x10-17);
in contrast to other features such as GC composition and CFE, which changed less in R2 than in

Table 2. Summary of Nef regions with the most significant change in CAF.

Location on Nef (1–621) Datasets and p-values daa CFE GC CAF

R1 (112–211) Historic 4.69 ± 4.70 -5.08 ± 4.10 0.47 ± 0.02 23.21 ± 7.00

Modern 5.69 ± 4.48 -6.26 ± 4.66 0.48 ± 0.02 20.77 ± 7.48

p-value 8.69x10–4 5.48x10-2 3.26x10–5

(q-value) (5.76x10-3) (1.12x10-1) (5.75x10-4)

R2 (362–461) Historic 2.73 ± 1.51 -11.90 ± 4.60 0.52 ± 0.02 13.15 ± 7.25

Modern 3.46 ± 1.59 -10.88 ± 5.07 0.52 ± 0.02 18.88 ± 8.73

p-value 6.01x10-3 4.54x10-1 5.44x10–19

(q-value) (2.22x10-2) (5.32x10-1) (2.89x10-17)

R3 (492–591) Historic 4.45 ± 2.78 -8.07 ± 4.83 0.54 ± 0.02 16.84 ± 6.35

Modern 5.23 ± 2.52 -5.85 ± 4.39 0.52 ± 0.03 19.20 ± 6.71

p-value 5.67x10–10 5.36x10–13 1.13x10–6

(q-value) (3.01x10-8) (9.48x10-12) (3.00x10-5)

Values with symbol ± denote mean ± standard deviation. The p-values in bold are significant at FDR levels 0.001. FDR calculations were performed

separately for each measure of CFE, GC, and CAF.

doi:10.1371/journal.pone.0163688.t002
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R1 or R3. The GC composition of R2 was similar in bothHistoric andModern Datasets
(0.52 ± 0.02, Table 2). Moreover, at the FDR threshold of 0.01, R2 displayed no significant differ-
ences in either GC composition or CFE between the Historic andModernDatasets. Notably,
therefore, the R2 CAF increase fromHistoric to ModernDatasets lacks a co-associationwith
changes in CFE or GC composition.
Othermeasures confirm increasedRNA plasticity in Modern R2. Additional procedures

on R2 confirmed its increasedRNA plasticity (see theMaterials andMethods, and SectionB in
S1 Text for details). First, the Dominant-Alternative Hamming Distance (DAHD) counted the
base-pair differences between structures (cluster medioids) representative of dominant and alter-
native RNA conformations of each R2 subsequence [53, 54]. Second, the software RNAshapes
(version 2.1.6) [46] helped calculate RNAshapes Entropy, yet another, but very different measure
of RNA plasticity and alternative folding. Third, an analysis regressing CAF on theMFE quanti-
fied the dependencyof the increasedCAF (as a measure of RNA plasticity) on changes in the
MFE (as a measure of RNA stability). The analysis also compared the regression to a similar
regression using Simian ImmunodeficiencyVirus homologs taken from Pan troglodytes troglo-
dytes (SIVcpz.ptt), miRNAs, and TPP riboswitches.Genbank [70, 71] provided 5 SIVcpz.ptt
sequences [72]. The NCBI/BLAST/TBLASTN tool [73] then extracted regions similar to HIV-1
Nef R2. Rfam [74] provided the miRNA and TPP riboswitch sequences. Like the CAF analysis,
the DAHD and RNAshapes Entropy of Modern R2 were higher than those of the Historic R2
(comparing corresponding values in rows “Modern” and “Historic” in Table 3 and also RNA-
shapes Entropy bar plots in S2 Fig). Regression analyses also supported an increased RNA plas-
ticity in Modern R2 where the F-statistic derived fromANOVA was 82.87 (p = 2.2 x10‒16) (see
S3 Fig for regression plots). SectionB in S1 Text provides extensive detail on the above tests.
Modern R2 hasmore plasticity than randomRNA. Column daa of Table 3 shows that

although the amino acid diversity (daa) of R2 was lower than that of R1 or R3, it was greater in
Modern R2 than in Historic R2. We examined possible relationships between amino acid
diversity and RNA plasticity with a set of RNA-Enforced-Back-Translated (REBT) random
sequences, as follows. For each Modern R2 subsequence, the REBTModern Dataset contained
a random subsequencematched to it by length (100 nt), amino acid sequence, and RNA struc-
tural features (see the Materials and Methods). In Table 3, the rows correspond to Modern,
REBTModern, and Historic Datasets of R2 subsequences. The columns correspond to various
quantities associated with the sets of R2 subsequences, given as mean ± standard deviation
where possible. Although the REBTModern R2 subsequences had higher nucleotide (dnt ),
amino acid (daa), and structure (dbp) diversity than real Modern R2 subsequences, they had
lower RNA plasticity (as measured by CAF, DAHD, or RNAshapes Entropy) than real Modern
sequences (e.g., 13.93< 18.88 for CAF).

Most stable structures of R2 fall naturally into two clusters, the dominant

cluster and the alternative cluster

Consider each of the Historic and Modern Datasets in turn. Each R2 subsequence in the Data-
set has a most stable structure (its predictedMFE structure). For each Dataset, the structures

Table 3. Measures of diversity and plasticity for Modern, REBT (random) Modern, and Historic R2 sets.

R2 dnt daa dbp
MFE CAF DAHD RNAshapes Entropy

Modern 8.30 3.46 38.55 -28.67 ± 4.04 18.88 ± 8.73 30.05 ± 18.11 0.51 ± 0.57

REBT Modern 20.51 4.09 41.43 -32.81 ± 4.07 13.93 ± 6.94 19.55 ± 16.35 0.36 ± 0.51

Historic 4.59 2.73 26.14 -29.49 ± 4.17 13.15 ± 7.25 19.32 ± 16.27 0.20 ± 0.41

doi:10.1371/journal.pone.0163688.t003
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partitioned naturally into two clusters (i.e., the optimal clustering index under dbp equaled 2).
The larger cluster (which we examine first) we called the dominant cluster; the smaller, the
alternative cluster. We chose a “dominant R2 structure” to represent the dominant cluster (the
cluster medioid: see the Materials and Methods; also, S1 Table). The dominant R2 structure
corresponds to an R2 subsequence, which for brevity and consistency with our other terminol-
ogy, we call the “dominant R2 subsequence” (but see the warning about terminology in Meth-
ods subsection “Calculating dominant and alternative R2 structures from a set S of R2
subsequences”).

Substitute “alternative” for “dominant” throughout to obtain analogous definitions of “alter-
native R2 subsequence” and “alternative R2 structure”.

The dominant R2 structure was the same in both Historic and Modern Datasets, whereas
the alternative R2 structure in the Historic Dataset differed by a single base pair from its Mod-
ern counterpart. The size of the alternative cluster increased significantly from the Historic to
the Modern Dataset, from 40/335 to 101/335 (two-tailed Fisher Exact p = 8.5x10‒9).
In theModern Dataset, the RNA structures predicted from the dominant R2 subse-

quence and from its full-lengthNef sequence share features (and similarly, for the alterna-
tive R2 subsequence). Until further notice, consider only the Modern Dataset. If an RNA
secondary structure predicted from a full-length sequence shares features with the structure
predicted from a subsequence, the agreement increases confidence in the features. With this
agreement in mind, define “the dominant Nef sequence” as the full-lengthNef sequence (Nef
coordinates 1–621) containing the dominant R2 subsequence. The dominant Nef sequence has
a most stable RNA structure, called “the dominant Nef structure”. Define similarly “the alter-
native Nef sequence” and “the alternative Nef structure”. S4 Fig compares the dominant and
alternative Nef structures to each other and to the dominant and alternative R2 structures. In
S4 Fig, the dominant Nef structure contains the hairpin-like structure called P0 (in blue), as do
both the dominant and alternative R2 structures. S4(A) and S4(C) Fig show that the dominant
R2 structure shares features with the dominant Nef structure, with both containing both P0
and P1 hairpins. Furthermore, S4(B) and S4(D) Fig show that the alternative R2 structure
shared similarities with the alternative Nef structure, with both containing the P2 hairpin. The
agreements confirm that the hairpins probably have biological functions.
Phylogenetic trees argue against an oversampling bias within our datasets. The phylo-

genetic trees in Fig 1 applied Neighbor-Joining [75] and the p-distance method [76] to amino
acid distances (daa) between: (A) the 335 full-lengthNef sequences of the Historic Dataset; (B)
the 335 Historic R2 subsequences; (C) the 335 Modern R2 subsequences; All analyses were
conducted in MEGA6 [77]. Each blue triangle indicates an amino acid sequence whose R2 sub-
sequence had a most stable RNA structure in the dominant cluster; each red circle, in the alter-
native cluster. In the Historic Dataset, a few R2 subsequences in the dominant cluster
generated similar amino acid sequences (see Fig 1(B), occasional concentrations of blue trian-
gles). The similar amino acid sequences dispersed, however, in a phylogenetic tree based on
full-lengthNef sequences (see Fig 1(A)). The dispersion argues against biases from oversam-
pling any clade in the Historic Dataset. In the Modern Dataset, R2 subsequences displayed no
noticeable concentrations of either blue triangles or red circles (see Fig 1(C)). Thus, oversam-
pling biases within our datasets appear unlikely.
Five or six nucleotidemutations in R2 can cause a subsequence’s most stable structure

to switch between the dominant and alternative structures. The tree-editing distance (dte)
between dominant and alternative R2 structures for the Modern Dataset was 82; the base pair
distance (dbp), 51 (see S1 Table); the nucleotide distance (dnt) between the dominant and alter-
native R2 subsequences, 6. (The corresponding figures for the Historical Dataset were dte, 82;
dbp, 50; dnt, 5.) For random RNA sequences of length 100 nt, Fig 3 of Schuster et al. [45] shows
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that the average tree-editing distance (dte) between pairs was about 35, whereas the nucleotide
distance (dnt) usually exceeded 20. Thus, the distances between the dominant and alternative
R2 structures differ quantitatively from distances between random sequences.
The switch between dominant and alternative R2 structures dependsmostly on synony-

mous nucleotide changes. Fig 2 displays the six point mutations converting the dominant R2
subsequence into the alternative R2 subsequence. (See dnt in the previous paragraph.) As
described in the Materials and Methods, the alternative R2 subsequence corresponded to four
hypothetical mutants of the dominant “wildtype” sequence: consecutive-basemutants (M1M2,
M5M6) and two single nucleotide mutants (M3, M4). Of these, only M3 and M4 are synony-
mous mutations. The codon containing M1M2may reflect HLA restrictions [44].

Let ΔMFE denote a mutant MFEminus the wildtypeMFE. On one hand, mutations M1M2
in codon (397,398,399) and M5M6 in codons (451,452,453), and (454,455,456) stabilized the
dominant structure (ΔMFE = ‒2.2 kcal/mol for M1M2; ΔMFE = ‒0.9 kcal/mol for M5M6).
M1M2 also stabilized the important hairpin P1. On the other hand, the synonymous mutations
M3 and M4 destabilized it (ΔMFE = +1.4 kcal/mol and + 4.7 kcal/mol, respectively), apparently
by unwinding stems.
The Alternative conformation for R2 may contain pseudoknots. Pseudoknots are a fre-

quent type of base pairing in RNA structures. Because the secondary structuremodels in Vien-
naRNA do not predict pseudoknots, we used PknotsRG (version 1.3) [68] to assess pseudoknot
formation in all Historic and Modern R2 subsequences (see S2 Table). PknotsRG predicted no
pseudoknots in the dominant R2 structure, but it did predict three pseudoknots in the alterna-
tive R2 structure (see S5 Fig). Apart from the pseudoknots, the alternative R2 structure predic-
tion was consistent with that of ViennaRNA. The synonymous change at M3 (mentioned
above, at Nef coordinate 405) contributed to pseudoknots (see the black square in S5 Fig).

The region between R2 and R3 has increased base-pair variability

Following Peleg et al. [11], each full-lengthNef RNA sequence yielded a most stable secondary
structure in a dot-bracket representation (dots, and left and right parentheses). For four data-
sets (Historic and Modern, and the corresponding random RNA back-translations preserving

Fig 1. Phylogenetic trees based on amino acid sequences for (A) Historic full-length Nef, (B) Historic R2, and (C) Modern R2. Each blue

triangle represents a full-length Nef sequence or an R2 subsequence where the most stable R2 structure fell into the dominant cluster; each red

circle, into the alternative cluster.

doi:10.1371/journal.pone.0163688.g001
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protein sequences), background frequencies of dots and brackets were noted (see SectionC in
S1 Text). Then, we aligned all full-lengthNef RNA sequences in the Historic and Modern
Datasets together. For each of the four datasets, RNA structural diversity within each alignment
column was quantified by the Relative Entropy (I) of the frequencies of its dot-bracket charac-
ters relative to the background frequencies (with all gap characters ignored). In each column,
subtracting the Relative Entropy for the random sequences from that for the real sequences
yielded the DifferencedRelative Entropy at each aligned position, which accounts for the effect
of random sequence variations on structure. Then, subtracting the difference for the Historic
Dataset from the difference for the Modern Dataset yielded the (Doubly) DifferencedRelative
Entropy, denoted by ΔΔI. At each position,ΔΔI represents the change in RNA structural diver-
sity from Historic to Modern Dataset (see SectionC in S1 Text for details). The diversity
peaked at Positions 476, 482, and 485, i.e., 15 nt downstream of R2 and 15 nt upstream of R3
(see S6 Fig). Although the position of the ΔΔI peaks do not match the previous study exactly,
our analyses showed that the known (historic) structural diversity near R2 [11] increased even
further from the Historic Dataset to the Modern Dataset.

Fig 2. Dominant (wildtype) secondary structure for R2 and structural variations corresponding to hypothetical mutants. The green

curves enclose codon triplets. The four rectangle insets show local rearrangements of the RNA secondary structures resulting from four mutations.

Mutants are labeled in blue and designated M1M2, M3, M4, and M5M6. Major secondary structural changes caused by mutations are shown

inside corresponding squares.

doi:10.1371/journal.pone.0163688.g002
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Modern R1 contains significantly fewer stable RNA G-quadruplexes

than Historic R1

G4s are abundant structural elements in both RNA and DNA, and simple energymodels per-
mit RNA secondary structure programs to predict them [78] (see SectionD in S1 Text and S3
Table for details). Both local prediction (on 100-nt subsequences) and global prediction (on
the full-lengthNef RNA sequence) suggested that the positions of both locally and globally sta-
ble G4s are highly conservedwithin and betweenHistoric and Modern sequences, particularly
at two locations: 27–39 and 186–200. Locally stable G4s at location 186–200 decreased signifi-
cantly from the Historic to the Modern Dataset (257/335 to 137/335, p = 3.0x10‒21, 76.7% to
40.9%) as did their corresponding globally stable G4 predictions (187/335 to 89/335,
p = 1.6x10‒14, 55.8% to 26.6%). G4s at location 27–39 displayed a similar (but non-significant)
trend (see S3 Table).

Discussion and Conclusions

To discover biologically important structural changes in Nef RNA during the evolution of the
North American HIV epidemic, we compared two sets of HIV-1 sequences from untreated
patients (Historic and Modern) and identified RNA changes in plasticity, quantified here as
the capacity for alternative folds (CAF). In addition to plasticity and local RNA structure, our
statistical analysis of RNA changes examined pseudoknots and G-quadruplexes, as well as the
relative entropies relevant to structural diversity. Fig 3 summarizes relevant results about the
Nef gene by others and by the present work.

Many studies focus on the Nef protein, with its subtle and complex activities in viral infec-
tivity. The function of the Nef protein complicates and therefore must temper any interpreta-
tion of evolutionary changes in RNA structure. The Nef gene does contain occasional
conservedprotein regions, however, where protein function is unlikely to drive systematic
changes in the Nef RNA. Caveats aside, in moving from the Historic to the Modern Dataset of
HIV sequences, significant differences in the 621 nt of Nef RNA included fewer G4s, more
pseudoknots, and changes in RNA plasticity depending on the Nef region (less plasticity in R1

Fig 3. Mapping of this work’s major results regarding Nef RNA. Regions (R1, R2, and R3) in red correspond to locations with significant changes in CAF

when comparing Historic and Modern HIV-1 Nef sequences. (See Table 2 for exact coordinates.) The green region (sites 186–200) displays significantly

reduced stable G4s. The region in black (sites 476–485) showed high diversity (quantified by the Doubly Differenced Relative Entropy ΔΔI). The grey

segment labeled A (segment 123–190) refers to the region coinciding with R1 identified by Westerhout et al. [34]; the gray label B points to segment 416–

446, referred to by Peleg et al. [11]. In Fig 3, the term “Sequence and Structural Variations Increasing” refers to the observed simultaneous changes in the

GC composition, CFE, and CAF of Modern R3.

doi:10.1371/journal.pone.0163688.g003
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(112–211); more plasticity in R2 (362–461) and R3 (492–591). In R3, the GC composition, sta-
bility (CFE), and plasticity (CAF) all changed significantly, so correlations complicate any
inference about specific selective pressures on R3. Accordingly, our inferences focus on R1 and
R2.

R1 secondary structure became more rigid over time

Modern R1 (region 123–190) displays less nucleotide conservation than most of Nef, and its
RNA plasticity and number of thermodynamically stable RNA G4s decrease from the Historic
to the Modern Dataset. In fact, RNA base pairs mostly replace the G4s near a conserved region
(164–182) targeted by RNAi. An experimentalmutation increasing plasticity within R1 permit-
ted an alternative fold that stopped RNAi from binding to the target, enabling Nef RNA to
escape RNAi [34]. Here, the emergence of a more stable and rigid RNA secondary structure
(decreasedCFE and CAF) in R1, where Historic subsequences had an unusually high RNA
plasticity (average CAF = 23.21), suggests a recent selective pressure for RNA secondary struc-
tural rigidity.

To summarize, although R1 plasticity correlated positively with HIV replication in an
experiment, it diminished during the North American HIV epidemic, in seeming contradiction
with probable selective pressures on HIV. The biological implications are therefore unclear.
Although RNAi-based antiviral therapies might be able to target R1 because of its decreased
plasticity, they might also reverse the evolutionary trend to decreasedR1plasticity by provoking
unwanted escape mutants.

Unusually strong evidence supports selective pressures on RNA

plasticity in R2

RNA in R2 encodes for thirty-twoNef amino acids within the anti-parallel β sheet on β3/β4. In
Historic and Modern Datasets, the R2 amino acids are highly conserved (i.e., R2 subsequence
pairs have a small daa). Although the region upstream of R2 sometimes varies in length (see Fig
2 of Reference [72]), an alignment of HIV-1 and SIVcpz Nef proteins displays moderate amino
acid conservation in R2. R2 has a low structural free energy (low CFE and MFE), strongly sug-
gesting a locally stable RNA secondary structure, including a highly stable hairpin P0, confirm-
ing previous predictions [11].

Despite the amino acid conservation and the RNA structural stability, the most significant
change in Nef RNA plasticity occurs in R2. (CAF, DAHD, and RNAshapes Entropy all
increased, and regression analysis (SectionB.3 in S1 Text) showed that CAF increased, even
after accounting for confounding effects from the MFE.) A randomization (REBT) of the R2
subsequence had less plasticity (CAF, DAHD, and RNAshapes Entropy) than real Modern R2
subsequence, suggesting that the high plasticity in R2 may have biological functionality. More-
over, five or six nucleotide mutations can switch the most stable structure for R2 between the
dominant and alternative structures, far fewer than the switch requires for random 100 nt
sequences. Finally, the Training Dataset from the Los Alamos HIV database showed that the
increase in plasticity (CAF) was robust against changes in theWindow size (from 50 nt to 150
nt), even for HIV-1 B Nef sequences drawn worldwide.

The relative stability of the dominant and alternative R2 structures does not correlate obvi-
ously with Nef protein sequence (see Fig 1). In fact, nonsynonymous nucleotide mutations in
R2 (M1M2 and M5M6) usually stabilized one RNA conformation, as opposed to increasing
plasticity to accommodate both conformations (see Fig 2). Although sparse, the evidence there-
fore tends to contradict selection at the amino acid level as a cause of increasing R2 plasticity.
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Apparent diversity of most stable (MFE) structures in the set of R2 subsequences is likely
due to the high RNA plasticity at an individual sequence level. Peleg et al. [11] noted
(despite the severe limitations of the computations and data available to them) that the most
stable structures for full-lengthNef sequences fell into two groups, with the highly conserved
hairpin P0 within R2 having length either 5 nt or 7 nt. Although not focused on P0 loop-length,
our results showed increased abundance of the alternative most stable structure in Modern R2,
in agreement with their conclusions about two different structures near R2. Tests of base-pair
variability (ΔΔI, SectionC in S1 Text) also supported increased variability of the most stable
structure near R2. Finally, tests of plasticity (CAF) show a noticeable increase in thermody-
namically stable and RNA conformations available to each individualModern R2 subsequence.

To summarize, both the RNA plasticity of individual R2 subsequences and the diversity of
the most stable structures of R2 subsequences increased over time. In agreement with Peleg
et al. [11], our results show that there are two possible most stable structures within R2, a domi-
nant structure and a less common alternative structure, and that the most stable structure of
each individual R2 subsequence resembles either the dominant structure or the alternative
structure. Our computations show in addition, however, that kinetics take each individual R2
subsequence through equilibrium conformations resembling in turn the dominant and alterna-
tive structures. The two findings, about stability and kinetics, relate naturally to each other. On
one hand, in a set of R2 subsequences with high RNA plasticity, a few nucleotide mutations in
each sequence can toggle its most stable structure between two conformations corresponding
to the dominant and alternative structures. On the other hand, R2 is in fact highly conserved,
with only minor sequence variability. R2 sequence conservation suggests heavy selective pres-
sure, possibly to preserve RNA plasticity, so every individual Nef sequence has alternative folds
available to it.

R2 plasticity can help evade host responses and might even function in

viral RNA switching

The increasing plasticity and potential for alternative folds in and near R2 may therefore be an
HIV response to selective pressures from its human host. Such pressures may include cellular
and viral RNA molecules in HIV-1-host interactions. As a specific example, Nef-derived
miR-N367 targets the 30-UTR of Nef, which includes R2, to regulate HIV-1 transcription and
replication [38], and an alternative fold might evademiR-N367. Alternative folds could also
operate like bacterial riboswitches. In some bacterial riboswitches, ligand binding causes allo-
steric conformational changes propagating along RNA like a domino effect. Among other
attractive possibilities, HIVmight exploit changes in Nef RNA (either directly or allosterically)
to regulate reverse transcription, intra-subtype recombination, or even frameshifting during
translation.

Evidence in support of Nef RNA-protein coevolution

The alternative most stable structure for R2 is more frequent in the Modern than Historic
Dataset. The transition from the dominant to alternative most stable structure in R2 requires
the P1 hairpin to destabilize, which synonymous changes (M3 and M4) facilitate, and nonsy-
nonymous changes (M1M2 and M5M6) impede. Cotton et al. [44] suggest (see their Fig 6) that
mutations at codon (397,398,399) preadapt Nef to its interactions with a restrictedHuman
LeukocyteAntigen (HLA). According to our computations, however, the nonsynonymous
mutation M1M2 actually stabilizes P1, favoring the dominant most stable structure and reduc-
ing plasticity. Our results suggest that in R2, Nef RNA is under selective pressure to accommo-
date alternative folds (e.g., the alternative most stable structure). The mutation M3 critical to
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increasing RNA plasticity is synonymous, ruling out selective pressures on the corresponding
amino acid and confining adaptation to RNA (not protein). Possibly, the synonymous changes
maintain or increase RNA plasticity and the frequency of alternative folds in R2, while permit-
ting compensatory responses to selection pressures fromHLA-polymorphisms at the protein
level.

The hairpin P1 within R2 may be an attractive target for antiviral

therapeutics

Targeting stable RNA motifs may be a particularly fruitful therapeutic strategy [79]. R2 is the
most stable region of Nef RNA. Within R2, the P1 hairpin appears in predictions of the most
stable structure for both R2 and full-lengthNef RNA, and its sequencemay have to accommo-
date evolutionary pressures on both protein function and RNA plasticity. Furthermore, experi-
ments suggest that certainHIV-1 viruses can evade RNAi [80, 81]. Hence, if increased R2
plasticity helps HIV evade RNAi, then computational predictions about alternative R2 folds
may eventually contribute usefully to clinical decisions about RNAi therapies, by identifying
evolutionary bottlenecks for HIV sequences that evade RNAi. Moreover, computations suggest
that mutation M3 at position 405 in loop of P1 hairpin forms a pseudoknot only in the alterna-
tive R2 structure, which would increase RNA plasticity near P1 by stabilizing the alternative
over the dominant R2 structure.Many considerations therefore point to the loop of P1 hairpin
in R2 as a particularly attractive target for RNAi-based anti-viral therapeutics.

Supporting Information

S1 Fig. Two-sided Mann–Whitney U-test p-values at 10-nt intervals, comparing average
Hamming distance between 335 Historic and 335 Modern Nef subsequencesof length 100
nt. The blue points correspond to FDR not exceeding 0.01; the red, to an FDR not exceeding
0.001. The three bold red line segments correspond to the regions designated R1, R2, and R3.
(PNG)

S2 Fig. RNAshapes Entropy histogram of Historic andModern Nef R2 subsequences.Col-
ors blue, red, green, and black roughly correspond to number of structures 1, 2, 3, and 4,
respectively (seeMaterials and Methods).
(PNG)

S3 Fig. MFE vs. CAF linear regression of R2. (A) CAF values of Historic R2 subsequences
(335 red data points), Modern R2 subsequences (335 green data points), and SIVcpz.ptt (5 blue
data points). Colored lines represent the corresponding linear regression models. Adjusted R-
squared value of the linear model CAF~MFE by combining Historic and Modern Datasets
(670 data points) was 0.2455. Adjusted R-squared value of the model CAF~MFE+R2 distin-
guishing Historic and Modern Datasets in the model, was 0.3279. ANOVA test between the
two models including and excluding variable R2 gives F-value of 82.87 (p = 2.2 x10‒16). (B)
CAF values from sequence datasets corresponding to miRNA (19 red data points) and TPP-
riboswitch (42 blue data points). Colored lines represent the corresponding linear regression
models. Adjusted R-squared value of the model CAF~MFE by combining miRNA and TPP-
riboswitch Sets (61 data points) was 0.3112. Adjusted R-squared value of the linear model
CAF~MFE+ncRNA distinguishingmiRNA and TPP-riboswitch sets, was 0.3199. ANOVA test
between the models including and excluding variable ncRNA gives F-value of 1.7588
(p = 0.19). The gray area in each plot shows a 95% confidence band for the linear regression
model.
(PNG)
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S4 Fig. Most stable RNA secondarystructures of two representativeModern R2 structures.
(A) The dominant R2 structure. (B) The alternative R2 structure. (C) The dominant Nef struc-
ture (i.e., the most stable structure of the full-lengthNef sequence containing the R2 subse-
quence whosemost stable structure is the dominant R2 structure). (D) The alternative Nef
structure (i.e., the most stable structure of the full-lengthNef sequence containing the R2 sub-
sequence whosemost stable structure is the alternative R2 structure). In A and B, red nucleo-
tides mark the six mutations that switch the most stable structure between the dominant and
alternative R2 structures. The conservedhairpin P0 is shown in blue. In C and D, R2 is marked
in red, to contrast the structural predictions for the R2 subsequence and the full-lengthNef
sequence. In C and D, the green circles indicate notable ΔΔI peaks.
(PNG)

S5 Fig. Pseudoknot prediction in the alternative R2 structure.The triple pseudoknot is
shown with blue arrows. Hairpins P0 (shown in red stripe) and P2 are identical to prediction
of the alternative structure. Nucleotide differences from those of the dominant structure are
shown in red. Black square shows location of the synonymous nucleotide difference that corre-
sponds to position of mutation M3. PKnotsRG [68] program was used for prediction. Visuali-
zation was done using VARNA [69].
(PNG)

S6 Fig. (Doubly) DifferencedRelative Entropy ΔΔI. Top five values are shown in black dots.
Positions 145, 476, 482, 485, and 490. Standard deviation resulting from sampling bias shown
in red. Standard deviation value of each position was equal to the square root of sum of the
individual variance measures corresponding to the four datasets. SeeMaterials and Methods
for more details.
(PNG)

S1 Table. Clustering statistics of region R2 structures.MFE predictions of R2 sequences
were used for clustering (SeeMaterials and Methods). Base-pair Hamming distances between
the two medoids of clusters are shown in column dbpfC1ðR2Þ;C2ðR2Þg.
(DOCX)

S2 Table. Prediction of locally stable pseudoknots in R2. Total No. of predicted pseudoknots
shows the number of pseudoknot pairs observed in a total of 335 sequences in each set. Loca-
tions of pseudoknots varied. The location of predicted pseudoknots in the alternative structure
was conserved between the Historic and Modern counterparts. PKnotsRG [68] program was
used for prediction.
(DOCX)

S3 Table. Location and frequencyof locally and globally stable RNA G-quadruplexes (G4)
in the Historic andModern Nef RNA datasets.Predictions made using RNAfold–g com-
mand from ViennaRNA Software (version 2.1.9) [56]. Rows “Global Historic” and “Global
Modern” represent results corresponding to the full-lengthNef sequence (globally stable RNA
G4s). Rows “Local Historic” and “LocalModern” represent results corresponding to 100 nt
windowedNef subsequences (locally stable RNA G4s) that best surround locations derived
from the global predictions. The blue column shows the location of the RNA G4 that had a
noticeable decrease in frequency in Modern sequences.
(DOCX)

S1 Text. SupplementaryMaterials. SectionA: The average of Hamming amino acid distance
over all 100-nt windows of Nef sequences. SectionB: Additional Tests of RNA plasticity in His-
toric and Modern R2. SectionC: Base-pair variability using full-lengthNef RNA secondary
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structures. SectionD: Globally and locally thermodynamically stable RNA G-quadruplexes
within region R1.
(DOCX)
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