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Abstract
Using the forward period analysis (FPA), we obtain the period of a Morse oscillator and

mathematical pendulum system, with the accuracy of 100 significant digits. From these

results, the long-term [0, 1060] (time unit) solutions, ranging from the Planck time to the age

of the universe, are computed reliably and quickly with a parallel multiple-precision Taylor

series (PMT) scheme. The application of FPA to periodic systems can greatly reduce the

computation time of long-term reliable simulations. This scheme provides an efficient way

to generate reference solutions, against which long-term simulations using other schemes

can be tested.

Introduction

The Hamiltonian system plays a vital part in describing the evolution of a physical system. Var-
ious numerical schemes, including the Euler, Runge–Kutta, linear multistep methods, and
some low-order Taylor methods, have been designed to describe the dynamical system. How-
ever, these methods are non-structure-preserving.In addition, they lead to unstable computa-
tion or incorrect solutions. The symplectic method [1–3], a common structure-preserving
method, conserves the area or volume of the system during computation. The square conserva-
tion also preserves the structure through conserving the length of the simulated system [4].
These structure-preservingmethods allow the Hamiltonian constant to remain constant, or
only vary periodically during the entire integration time range [0,t]. The structure-preserving
methods have the advantages in that they provide a true long-term trajectory of the simulated
system and stabilize the computation process.

However, these structure-preservingmethods need to be improved. First, when tackling the
nonlinear Hamiltonian systems, some of the symplectic methods strongly depend on the gen-
erating function. These implicit methods are applied to solve nonlinear algebraic equations at
each step, and thus efficiencybecomes a problem. Some symplectic methods are based on the
Runge–Kutta method, the order of which is generally less than 10 (rarely more than 15), to
avoid a complicated procedure. Some other high-order explicit symplectic methods are used to
study separable Hamiltonian systems [2,5], but these explicit methods usually have an order of
less than 10, and are limited to separable Hamiltonian systems.
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Second, although symplectic methods have the advantage of choosing a larger step size than
in a classical approach and thus saving simulation time, such an increase in step-size causes
large errors in the primary variables. This occurs despite that there is no modification in the
trajectory structure. Gladman [6] has said that “. . .the conservation of the integrals is not a
problem for the symplectic integration algorithms (SIAs) but the phase errors can still be
uncomfortable after a large number of orbits. If one wanted to integrate the Earth for the life-
time of the solar system it is doubtful that these two SIAs could perform the ~109 orbit integra-
tion reliably. This is not necessarily too disheartening, since no other integration scheme
known to the authors could perform the integration either.”

The phase trajectory of a Hamiltonian system is one of the most basic requirements. How-
ever, given the period of the Hamiltonian system, the symplectic method provides no special
insight, and only gives approximate numerical periodswith the precision proportional to the
order of method and step-size. The long-term integration of a dynamical system is a challenge
but urgent task in many fields. Orders of magnitude of time periods in physics range from the
Planck time (5.39 × 10−44 s) to the age of universe (about 1017 s). Thus, a meaningful non-
dimensional time for a dynamical system is within 1060 orders of magnitude. Simulation of the
position of dynamical variables (not the trajectory structure) in the ultra long-term (i.e.,
t = 1060) is still a time consuming task, even for a periodic dynamical system. The purpose of
this study is to provide a reliable scheme to solve the issues mentioned above.

Materials and Methods

The parallel multiple-precision Taylor (PMT) method [7–12] is originally designed to solve
nonlinear chaotic systems. It provides ultra-high reliable solutions for longer times than other
methods. The order of the PMT method can be very high compared to other traditional
approaches. Here, the application of the PMT method to a nonlinear Hamiltonian system is
examined. The orbits of the system for two atoms with Morse potential energy [13] are

dx
dt
¼ p

dp
dt
¼ e� 2x � e� x

and H ¼
p2

2
þ

1

2
ðe� 2x � 2e� xÞ: ð1Þ

8
>><

>>:

The initial values are x0 = 0 and p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:02
p

, where x is the displacement and p is the
momentum of the particles. Using the substitution y = e−x yields

dy
dt
¼ � py

dp
dt
¼ y2 � y

; ð2Þ

8
>><

>>:

where y0 = 1 and p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:02
p

, and H ¼ p2

2
þ 1

2
ðy2 � 2yÞ is a constant.

The Taylor series expansions relevant to solving (2) are

ynþ1 ¼ yn þ
XM

k¼1

akhk

pnþ1 ¼ pn þ
XM

k¼1

bkhk

; ð3Þ

8
>>>><

>>>>:

where the coefficients are given by ak ¼
1

k!

dkyðtnÞ

dtk and bk ¼
1

k!

dkpðtnÞ
dtk ; and h is the step-size. The
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coefficients are determined from the initial conditions
a0 ¼ yn

b0 ¼ pn

(

, and the relations

akþ1 ¼
� 1

kþ 1

Xk

i¼0

ak� ibi

 !

bkþ1 ¼
1

kþ 1

Xk

i¼0

ak� iai � ak

 ! : ð4Þ

8
>>>>><

>>>>>:

More details associated with the parallel scheme are referred to Wang et al. [7]. The solution
of (1) may be expressed as xn+1 = −ln yn+1, after obtaining the values of yn+1 and pn+1. If the
order, M, is larger than 100, the parallel scheme greatly reduces the computation time; if M is
smaller than 30, one CPU is generally sufficient to perform the calculation on a reasonable
timescale.

The symplectic method used to solve (1) is a 2nd order explicit method (SE2), as discussed
by Qin et al. [14]:

u1 ¼ pk � hc1f ðxkÞ; v1 ¼ xk þ hd1gðu1Þ;

pkþ1 ¼ u1 � hc2f ðv1Þ; xkþ1 ¼ v1 þ hd2gðpkþ1Þ;

where c1 = 0, c2 = 1, d1 ¼ d2 ¼
1

2
, f(x) = −(e−2x − e−x), and g(p) = p.

The second and more complex example is a non-separable Hamiltonian system, which is
often broadly defined as:

dp
dt
¼ psinq

dq
dt
¼ pþ cosq

: ð5Þ

8
>><

>>:

The Hamiltonian is H ¼ 1

2
p2 þ pcosq, and the initial values are q0 = 0, p0 = 1:

pnþ1 ¼ pn þ
XM

k¼1

akhk

qnþ1 ¼ qn þ
XM

k¼1

bkhk

;

8
>>>><

>>>>:

where b(t) = sin q, g(t) = cos q, c(t) = p sin q, d(t) = p + cos q and the kth Taylor coefficients are
bk, gk, ck, and dk. Therefore, other coefficients are: amþ1 ¼

1

mþ1
cm, bmþ1 ¼

1

mþ1
dm,

bm ¼
1

m

Xm

i¼1

igm� ibi, gm ¼
� 1

m

Xm

i¼1

ibm� ibi, cm ¼
Xm

i¼0

am� ibi, dm = αm + gm, and the initial coeffi-

cients are α0 = p0, β0 = q0, b0 = sin q0, g0 = cos q0, c0 = p0 sin q0, and d0 = p0 + cos q0.
The conservation of the Hamiltonian indicates dH

dt ¼ 0. In the present numerical simulation,
if |ΔH|� 10−16 (i.e., the smallest relative error in double-precision floating point arithmetic); it
is regarded as unchanged. When H is a non-zero constant, j DH

H j � 10� 16 is a criterion for a
large Hamiltonian.
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For instance, there is a Hamiltonian constant, H = −0.01, for Eq 2 when the numerical solu-
tions of p and x are pN and xN, respectively. The error of the Hamiltonian is

DH ¼ HN � H ¼
pN

2

2
þ

1

2
ðyN

2 � 2yNÞ

� �

�
p2

2
þ

1

2
ðy2 � 2yÞ

� �

:

Since

jDHj �
pN

2

2
�

p2

2

�
�
�
�

�
�
�
�þ

1

2
yN

2 � y2
�
�

�
�þ jyN � yj;

and

pN
2

2
�

p2

2

�
�
�
�

�
�
�
�þ

1

2
jyN

2 � y2j þ jyN � yj < 10� 16

guarantees |ΔH|< 10−16. The numerical error at time t indicates that |pN − p|� C1hM+1 and
|yN − y|� C2hM+1.

pN
2

2
�

p2

2

�
�
�
�

�
�
�
� � jpðpN � pÞj � jpjC1hMþ1

where C1 and C2 are constants, and yN
2

2
�

y2

2

�
�
�

�
�
� � jyðyN � yÞj � jyjC2hMþ1. Since |p| and |y| are

bounded variables,

pN
2

2
�

p2

2

�
�
�
�

�
�
�
�þ

1

2
jyN

2 � y2j þ jyN � yj < ChMþ1;

where C is a constant that satisfies |p|C1 + |y|C2 + C2� C.
With a step-size of h = 0.01, a high enough order M is chosen to guarantee

pN
2

2
�

p2

2

�
�
�

�
�
�þ 1

2
jyN

2 � y2j þ jyN � yj < ChMþ1 < 10� 16. In practice, the order of M can be easily

determined by several numerical runs without knowing the value of C. By using this high-
order method, the structure-preservingsolution of the original equation is obtained by numeri-
cal means. In fact, because it is very easy to increase M with the Taylor series method, we can
make |ΔH| even smaller to meet Eq 2.

In the direct simulation of Eq 2 with t = 107, a 20-order PMT scheme is used to achieve the sim-
ulation results. Fig 1 illustrations of the direct simulation of Eq 2. In Fig 1C, the PMT method is
shown to predict the correct trajectory structure (x-p plane) along with a correct cycle of x (Fig
1A). During the entire computation time range, the Hamiltonian H approaches a constant (Fig
1D), while Fig 1E shows that H varies periodicallyand has larger errors when using the SE2
method. From Fig 1B we could found a more important issue is that the error in x increases as the
simulation time increases. Thus, the position of x is not reliable at times longer than 105 time units.

Fig 2 is the direct simulation of Eq 5 by the 20-order PMT method. Meanwhile, using the
PMT method to solve the non-separable equation, the variable (Fig 2B) and the Hamiltonian
H (Fig 2A) are simulated well. The Hamiltonian H remains to be a constant throughout the
simulation in Fig 2A.

These results are all indicates that the PMT scheme can be used to simulate dynamical sys-
tem with very high precision. Furthermore, the PMT scheme is a self-verifying scheme, as dis-
cussed in [7]. This verification scheme is a standard operation for PMT and CNS [12,15,16]
numerical experiments.

The (Forward period analysis) FPA computation procedure is combined by two stages,
one is the period finding and another is application of the founded period to do long term
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simulation. The FPA (and PMT scheme) are all suitable to solve the linear problem, but here
we use a nonlinear system as objection to test the scheme’s performance. The more details of
FPA are reported in the following section.

Results

FPA stage 1: The period discover of a Hamiltonian system

Establishing the phase trajectories of Hamiltonian systems is a basic requirement, which can be
achieved by the symplectic method as well as PMT. However, the symplectic method only
gives approximate numerical periods, with a precision proportional to the order of the method
and step-size.

The key of numerical methods to identify the period of a dynamical system is to find out
when the solutions return to the initial values (if the system is defined by n-th 1rst order

Fig 1. Illustrations of the direct simulation of Eq 2: (a) variable x by PMT; (b) error of x computed by the SE2

method; (c) structure of the x-p plane by PMT; (d) the Hamiltonian H by PMT to T = 107; (e) error of the

Hamiltonian H by the SE2 method. Panels (a–c) have step-size h = 0.01; (d–e) have step-size h = 0.1.

doi:10.1371/journal.pone.0163303.g001

Fig 2. The direct simulation of Eq 5 by the 20-order PMT method, with a step-size of h = 0.01: (a) Hamiltonian H, (b) variable p versus time (the first 20

time units).

doi:10.1371/journal.pone.0163303.g002

Forward Period Analysis of Periodic Hamiltonian System

PLOS ONE | DOI:10.1371/journal.pone.0163303 October 11, 2016 6 / 13



differential equation, the n variables must return to their initial values simultaneously). The inte-
gration time between the start point and the repeat point is thus approximately the period.Gen-
erally, the period obtained by numerical method in this way varies. The error between a variable
(such as x) and its corresponding repeat point (defined as Ex, for example Ex� 10−30) indicates
the uncertainty (Δt) in estimating the period. Because Ex is small and dxðtÞ

dt �
Ex
Dt, Δt � p� Ex. The

standard division of p is obtained through numerical experiments, sðpÞ ¼
ffiffiffiffiffi
�p2

p
, as an averaged

value of p such that Δt * Ex / σ(p). This formula suggests that the error bounds of a typical
periodhave a magnitude of 10−30.

The forward period analysis (FPA) method is proposed to obtain the period for Eq 2. The
first stage of FPA is a pre-computation to find a suitable residual interval. The computation
starts with y = 1, p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:02
p

and _y ¼ � py ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:02
p

, and a time-step size of h0 =
0.01. At each step, the values of yk and yk−1 are checked to find out the approximately first
period. The first repeat position satisfies y� 1 and _y � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:02
p

, determinedwithin the
interval of [Tl,Th], where Tl is the lower and Th the higher bound. This interval is the time it takes
for y to cross the base line y = 1 (from the y> 1 to the y< 1 direction, the steps that reach the
lower bound are defined as k). The first period is now between Tl = kh0 and Th = (k + 1)h0 time
units, and thus the period T� Tl. The error of the period is about (h0 + Δt)� 10−2, and thus the
precision of this forward period analysis method is mostly dependent on the last computation
step-size hF (in this stage, hF = h0).

The second stage is the post-computation at the residual interval [kh0,(k + 1)h0] where k =
Int(t / T) is a positive integer number. This interval can be separated into subintervals by the
dichotomy method. Denoting the whole interval as before, [Tl,Th], with Tl = kh0 and Th = (k +
1)h0, a new step size hF = hF / 2 is chosen to separate the interval into [Tl,Tl + hF] and [Tl + hF,
Th]. If the value of y at Tl + hF does not cross the base line, then Tl = Tl + hF; otherwise, Th =
Tl + hF and then the operation is repeated in the new interval [Tl,Th]. The dichotomy method
maintains hF smaller than the magnitude of ET / σ(p), and thus total error of the period is dom-
inated by ΔT (ΔT< Th − Tl� 10−30). The computation cost for the dichotomy method in the
last interval is about 30log2 10� 100 loops, while that in the pre-computation stage is about
T / 0.01 loops. The value of T can be roughly estimated from Fig 3A (T is within a 45 time
unit). The total loops for obtaining the period of Eq 2 are within 5000 loops.

The above procedures are also suitable for SE2 and other symplectic methods; if we choose
the step-size (h) for SE2, the periodwith precision at the magnitude of h2 is obtained. Applying
the dichotomy method at the last interval for SE2, the error at Tl and Th must first be confirmed
to be small enough, and this is not the superiority for SE2. Since a decreas in h greatly increases
the computation time, if a more accurate period is required, for example ΔT = 10−30, h� 10−15

must be set, and this requires 1015 loops to finish the computation.
In addition, applying self-verification requires reducing step-size to be about h/100 or less

in SE2 to guarantee that the reference solution is more accurate than the solution in which
step-size is h, and this requires 100 times more loops than the computation process. While self-
verification of the PMT method only requires increasing the order M to a bigger value for
example (M+10), this does not increase the number of computation loops of the verification
process, but only the time cost per loop. The increasing time cost in one integration loop is
insignificant when M is large (for example M>100). As a consequence, the PMT method is effi-
ciently verified.

Fig 3 is the demonstration of the FPA method to obtain the period for Eq 2. After we obtain
the roughly value of periodT from Fig 3A. we then can obtain a more precise value from the
enlarged time axis in Fig 3B. In Fig 3B the first stage of FPA is to determine the residual interval
of Eq 2 as [44.42,44.43], i.e. Tl = 44.42 and Th = 44.43. The FPA procedure in this interval, and
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the values of 30 and 100 significant digits, are listed in Table 1. To the author’s knowledge, this
level of accuracy has never been reported.

FPA stage 2: The application of FPA in long-term simulations

Before demonstrating an ultra long-term simulation of Eq 2, a simple periodic dynamical sys-
tem is analyzed to determine the most important parameters in the long-term computation.
The simple dynamical system is defined by

� dx=dt ¼ p

dp=dt ¼ � x
ð6Þ

Fig 3. Demonstration of the FPA method to obtain the period for Eq 2: (a) the numerical result of variable y by the PMT method in the interval [0,100];

and (b) variable y in the enlarged interval of [43,45].

doi:10.1371/journal.pone.0163303.g003

Table 1. The period of a Morse system obtained by FPA with M = 200, h = 0.01, and the precision we use is 2000 bits.

Significant digits T

30 44.4288293815836624701588099006

100 44.42882938158366247015880990060693698614621689375690223085395606956434793099473910575326934764765237

doi:10.1371/journal.pone.0163303.t001
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and the initial values are
(

xð0Þ ¼ 0

pð0Þ ¼ 1
:

The issue is how to obtain 16 significant digits of x(t) at t = 1030. Since the analytical solution
of this equation is

(
xðtÞ ¼ sinðtÞ

pðtÞ ¼ cosðtÞ
;

the result should be x(1030) = sin(1030). As sin(t − 2πk) = sin(t), the result is given by sin(1030)
= sin(1030 − 2πk), and k ¼ Int 1030

2p

� �
, i.e., the integer part of 1030

2p
. The precision of sin(1030) is

dependent on the precision of the approximation to 2π. The reference value of π with 50 signif-
icant digits and the computed k are listed in Table 2, and the double-precision (16 significant
digits) results are also compared. From Table 2, note that the k values corresponding to the two
different precisions of π are different. The different k-values cause the residual of t, i.e., Tr =
1030 − 2πk, to be more uncertain. Therefore, precision to 16 significant digits for sin(1030) is
not possible in a double-precision float platform.

The above example indicates that the reliable long-term computation of a periodic system is
dependent on the precision of the period; 2π can be regarded as the period in this example. The
relative error bound, ε, is estimated for the period to limit the computation error at t to
Δx = 10−16. The true residual time can be written as

Tr ¼ 1030 � 2pInt
1030

2p

� �

;

and the residual time induced by numerical error is

T 0r ¼ 1030 � 2pð1þ εÞInt
1030

2pð1þ εÞ

� �

:

The first restriction of ε guarantees that k ¼ Int 1030

2p

� �
and k ¼ Int 1030

2pð1þεÞ

h i
are the same.

Under this situation, we have Tr = 1030 − 2πk, T 0r ¼ 1030 � 2pð1þ εÞk and the difference
between Tr and T 0r is Δt = 2πkε. The error bounds, ε, satisfying 2πkε< 10−16 will guarantee
Δx< 10−16. Since 0< 1030 − 2πk< 2π, 2πk� 1030 and ε< 10−16/2πk = 10−46 is the relative
error bound of 2π. The 50 significant digits of π satisfy this error bound. Thus, Tr =
3.231831977487846 and sin(1030) = −0.090116901912138058.

The analysis of error bounds for a general periodic dynamical system is the same as the
example by changing the period from 2π to T. Thus, ε< E(t)/t is the period error bound,
where t is the simulation time and E(t) the required relative error bound for the output. The
fast computation of sin(1030) is a benefit from the pre-known of precise value of π. However,
for a general periodic dynamical system such as Eq 2 there is no such pre-knowledge for the
period T, hence FPA is proposed to obtain the precise T first.

Table 2. The values of π and k.

Significant digits π k

50 3.1415926535897932384626433832795028841971693993751 159154943091895335768883763372

16 3.141592653589793 159154943091895335768883763373

doi:10.1371/journal.pone.0163303.t002
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Long-term simulation by FPA is achieved by dividing the long-term (t� T) computation
into two parts: one is the detection of period of a cycle; the other is the simulation of the resid-
ual time, equal to t − kT. Because the computation error of the symplectic method generally
propagates linearly with time [17,18], such that an increase of t times requires a t1/M times
smaller step-size to control the error, where M denotes the order of the symplectic method.
The computation complexity for time t in unit loops is O(t1+1/M). However, applying the FPA
procedure with PMT helps to reduce the computation from O(t1+1/M) to O(T / h0) in the first
stage, and to O(ln t) in the second stage, i.e., O(ln t + T / h0).

As illustrated in Table 3, the long-term computation of a dynamical system uses at least O
(t) loops without FPA, but with FPA this is cut to O(ln t + T / h0) at most. This improvement
greatly decreases the CPU time cost and makes many unsolvable long-term problems be reli-
ably solvable.

Given the period obtained by FPA (see Table 1), the variable values for the Morse system
will be computed quickly. The results of selected times from (10 to 1060) are listed in Table 4,
with the corresponding values obtained by direct integration. The results of direct integrations
with FPA and PMT agree well. The results of the SE2 method have errors from the early inte-
gration stage, and the results beyond 105 are incorrect. It took about one day to obtain the
result at t = 107 by direct integration, so obtaining a result at 1060 is a seemingly impossible
task for direct integration, but with the help of FPA, reliable results can be obtained.

Another classical dynamical system is the mathematical pendulum. The Hamiltonian of a
pendulum system is H ¼ 1

2
p2 � cosq, and the dynamical equation is

(
_q ¼ p

_p ¼ � sinq
ð7Þ

Table 3. The loops used in the different schemes.

Scheme Direct integration Applying FPA

Symplectic O(t1+1/M) O(ln t + Tt1/M)

PMT O(t / h0) O(ln t + T / h0)

doi:10.1371/journal.pone.0163303.t003

Table 4. The variable p obtained by FPA and direct simulation for a Morse system.

t Direct integration with SE2 Direct integration with PMT By FPA with PMT

0 0.989949493661166 0.989949493661166 0.989949493661166

10 0.142033683767425 0.142049967327890 0.142049967327890

102 0.120638240019144 0.120968440888269 0.120968440888269

103 −0.015582896828410 −0.013519353495639 −0.013519353495639

104 0.275552330918520 0.406695207104251 0.406695207104251

105 0.120371703265026 −0.209442226126745 −0.209442226126745

106 −0.017153824006555 −0.575071021680786 −0.575071021680786

107 0.214900072283681 0.406850634713920 0.406850634713920

108 - - −0.208888390114776

109 - - −0.548460247715134

1010 - - 0.632436322896067

1020 - - −0.459751580833174

1030 - - 0.203324673559885

1040 - - 0.240998707662065

1050 - - 0.544244466975686

1060 - - −0.839008449972302

doi:10.1371/journal.pone.0163303.t004
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with initial values
(

qð0Þ ¼ 0

pð0Þ ¼ 1
:

The period of this system approaches to 2π, while the initial momentum p! 0 [17]. Table 5
lists the period corresponding to the initial condition, q = 0, with different momenta, p. All
periods are accurate to 50 significant digits. As illustrated in Table 5, the period approaches 2π
when p decreases from 1 to 10−30. This experiment again proves the correctness of FPA.

It is very fast applying FPA to obtain a period for these demonstration systems, and the
computation can be finished within 1 minute on a Linux system with an Intel Xeon 2.5 Ghz
CPU. The long-time scope solutions can be obtained within 1 minute by FPA.

Discussion and Conclusion

Using the FPA, we obtain the periods of some classical Hamiltonian systems, with the accuracy
of 100 significant digits. We also confirm that reliable solutions within the time range t 2
[0,1060] can be obtained. To the best of the author’s knowledge, this accuracy of time period for
long-term solutions of Hamiltonian systems has not been reported before. The FPA method
provides a powerful tool to gain time-effectiveultra long-term reliable solutions of periodic
systems.

The FPA procedure works well in conjunction with the traditional symplectic method and
the PMT method. Generally, symplectic methods with different orders require different sub-
routines to conduct the computation. In contrast, it is relatively easy to change the order of the
Taylor series method, so that it provides the flexibility to carry out simulations with different
orders of accuracy for one system. The PMT method reasonably simulates the Morse system
for t 2 [0,107], but for much longer times simulation it is hard without FPA. This is demon-
strated using a simple example. For more complex systems, higher order PMT approaches can
be used. Indeed, details of an example for application of a high-order PMT method in direct
simulationg of the Henon–Heiles system is referred to Liao [15].

The Taylor series method has a good convergence property when the order is high enough
[9]. This feature can enlarge the step-size h to 0.01 for Eq 2, and increase the simulation speed.
The result obtained by the Taylor series method not only maintains ΔH’ 0, but also reduces
numerical errors. The PMT method is not a structure-preservingmethod, but it can preserve
the structure well by numerical means. Consequently, it can be used as an alternative of sym-
plectic methods for the computation of simple Hamiltonian systems. Moreover, PMT can be

Table 5. The period of a mathematical pendulum system obtained by FPA with M = 200, h = 0.01, and the precision we use is 2000 bits.

P T (50 significant digits)

1 6.7430014192503841714848146311963079580032035765643

10−1 6.2871178299331781141446745665180361610970124356918

10−2 6.2832245776399990205430348375448192284997546476674

10−3 6.2831856998787233989673928392330685974085610706684

10−4 6.2831853111065772994348591606129983671149348353934

10−5 6.2831853072188563850957114151234372289079555651010

10−10 6.2831853071795864769292137573759930099424226253101

10−20 6.2831853071795864769252867665590057683943780686583

10−30 6.2831853071795864769252867665590057683943387987502

2π 6.2831853071795864769252867665590057683943387987502

doi:10.1371/journal.pone.0163303.t005
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applied to some non-separable nonlinear Hamiltonian systems as well as separable ones, and
even to non-Hamiltonian chaotic systems.

The essence of applying FPA to long-term computation is divided into two parts. One is the
period detection of a unit cycle. The other is the computation of residue time equal to t − kT.
This procedure helps to reduce the computation time for the long-term reliable simulation
from O(t1+1/M) to O(ln t + T / h0). The FPA procedure improves not only the PMT method,
but also facilitates the traditional symplectic method. The main problem of the symplectic
method is that if the order M is not large enough (for example M<10) it still requires many
computation loops for t = 1060 –about O(60 ln 10 + T1060/M) loops. For a medium-term time
period, such as the ~109 orbits of the Earth–solar system, the solution is required at a t = 1017

seconds magnitude. In this case, the symplectic method should work as well as FPA.
Recently, Barrio et. al[19] provided a shooting-periodicalmethod which is a faster algorithm

to obtain solutions in [0,10000] for a pre-obtained initial value for Lorenz system. The author
notices that the long-term database obtained by Barrio is for the special initial values, while the
method here is for any general initial values. It is well known that some Hamiltonian systems
such as boundedKepler system always have periodical orbits. Thus, in this case no shooting
methods are needed to obtain the property initial values. While other Hamiltonian systems
such as Arenstorf orbits[20] problems which have more freedom initial dimensions perhaps
need such shooting methods to obtain precise initial values.

In this study, the author focuses on the long term simulation of periodicHamiltonian sys-
tems, and not considers the spatial effect.When we count the spatial dimensional the ODE
(ordinary differential equation) will change to PDE(partial differential equation), some of this
PDE system still have periodic properties. For instant, the barotropic vorticity equation on the
sphere[21]. While other systems may not have periodic for instant the Allee effect[22] in popu-
lation dynamics. Two difficultiesmay occurwhen apply FPA to deal with these systems. Firstly,
the determination of periodic of PDE system is more complicate then the ODE. Secondly, their
may have no high enough integration scheme to do the integration within one periodic, and
thus cause the founded periodic not very accurate. Nevertheless, as Sun et,al. pointed that the
spatial dynamic pattern describe by PDE is ubiquitous in nature[23], thus improve FPA to do
computation of such PDE dynamical system in an important work in the future study.
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